Cryptanalysis Course
Part IV - Factorization

Tanja Lange

Technische Universiteit Eindhoven
30 November 2016
with some slides by
Daniel J. Bernstein

Q sieve

Sieving small integers $i>0$ using primes $2,3,5,7$:

1	22	
2		
3		3
4	22	
5		5
6	2	3
7		7
8	222	
9		33
10	2	5
11		
12	22	3
13		
14	2	
15		35
16	2222	
17		
18	2	33
19		
20	22	5

etc.

Q sieve

Sieving i and $611+i$ for small i using primes $2,3,5,7$:

etc.

Have complete factorization of the "congruences" $i(611+i)$ for some i 's.
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$.
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$.
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$.
$14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686$
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2}$.
$\operatorname{gcd}\left\{611,14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}\right\}$
$=47$.
$611=47 \cdot 13$.

Why did this find a factor of 611?
Was it just blind luck:
$\operatorname{gcd}\{611$, random $\}=47 ?$
No.
By construction 611 divides $s^{2}-t^{2}$ where $s=14 \cdot 64 \cdot 75$ and $t=2^{4} 3^{2} 5^{4} 7^{2}$.
So each prime >7 dividing 611 divides either $s-t$ or $s+t$.

Not terribly surprising
(but not guaranteed in advance!)
that one prime divided $s-t$ and the other divided $s+t$.

Why did the first three completely factored congruences have square product?
Was it just blind luck?
Yes. The exponent vectors
$(1,0,4,1),(6,3,2,0),(1,1,2,3)$
happened to have sum 0 mod 2 .
But we didn't need this luck!
Given long sequence of vectors, easily find nonempty subsequence with sum $0 \bmod 2$.

This is linear algebra over \mathbf{F}_{2}.
Guaranteed to find subsequence if number of vectors exceeds length of each vector.
e.g. for $n=671$:
$1(n+1)=2^{5} 3^{1} 5^{0} 7^{1}$;
$4(n+4)=2^{2} 3^{3} 5^{2} 7^{0}$;
$15(n+15)=2^{1} 3^{1} 5^{1} 7^{3}$;
$49(n+49)=2^{4} 3^{2} 5^{1} 7^{2}$;
$64(n+64)=2^{6} 3^{1} 5^{1} 7^{2}$.
F_{2}-kernel of exponent matrix is gen by (01011) and (10110); e.g., $1(n+1) 15(n+15) 49(n+49)$
is a square.

Plausible conjecture: \mathbf{Q} sieve can separate the odd prime divisors of any n, not just 611 .

Given n and parameter y :
Try to completely factor $i(n+i)$
for $i \in\left\{1,2,3, \ldots, y^{2}\right\}$ into products of primes $\leq y$.

Look for nonempty set / of i 's with $i(n+i)$ completely factored and with $\prod i(n+i)$ square.

$$
i \in I
$$

Compute $\operatorname{gcd}\{n, s-t\}$ where

$$
s=\prod_{i \in I} i \text { and } t=\sqrt{\prod_{i \in I} i(n+i)}
$$

How large does y have to be for this to find a square?

Uniform random integer in $[1, n]$
has $n^{1 / u^{\prime}}$-smoothness chance roughly u^{-u}.

Plausible conjecture:

\mathbf{Q} sieve succeeds
with $y=\left\lfloor n^{1 / u}\right\rfloor$
for all $n \geq u^{(1+o(1)) u^{2}}$;
here $o(1)$ is as $u \rightarrow \infty$.

More generally, if $y \in$
$\exp \sqrt{\left(\frac{1}{2 c}+o(1)\right) \log n \log \log n}$,
conjectured y-smoothness chance is $1 / y^{c+o(1)}$.

Find enough smooth congruences by changing the range of i 's: replace y^{2} with $y^{c+1+o(1)}=$
$\exp \sqrt{\left(\frac{(c+1)^{2}+o(1)}{2 c}\right) \log n \log \log n}$.
Increasing c past 1
increases number of i 's but reduces linear-algebra cost.
So linear algebra never dominates when y is chosen properly.

Improving smoothness chances

Smoothness chance of $i(n+i)$ degrades as i grows.
Smaller for $i \approx y^{2}$ than for $i \approx y$.
Crude analysis: $i(n+i)$ grows.
$\approx y n$ if $i \approx y$;
$\approx y^{2} n$ if $i \approx y^{2}$.
More careful analysis:
$n+i$ doesn't degrade, but
i is always smooth for $i \leq y$,
only 30% chance for $i \approx y^{2}$.
Can we select congruences to avoid this degradation?

Choose q, square of large prime. Choose a " q-sublattice" of i 's: arithmetic progression of i 's where q divides each $i(n+i)$. e.g. progression $q-(n \bmod q)$, $2 q-(n \bmod q), 3 q-(n \bmod q)$, etc.

Check smoothness of generalized congruence $i(n+i) / q$ for i 's in this sublattice. e.g. check whether $i,(n+i) / q$ are smooth for $i=q-(n \bmod q)$ etc.

Try many large q's.
Rare for i 's to overlap.
e.g. $n=314159265358979323$:

Original \mathbf{Q} sieve:

$$
\begin{array}{ll}
i & n+i \\
1 & 314159265358979324 \\
2 & 314159265358979325 \\
3 & 314159265358979326
\end{array}
$$

Use 997^{2}-sublattice,
$i \in 802458+994009 Z$:

$$
\begin{array}{rl}
i & (n+i) / 997^{2} \\
802458 & 316052737309 \\
1796467 & 316052737310 \\
2790476 & 316052737311
\end{array}
$$

Crude analysis: Sublattices eliminate the growth problem. Have practically unlimited supply of generalized congruences
$(q-(n \bmod q)) \frac{n+q-(n \bmod q)}{q}$ q between 0 and n.

More careful analysis: Sublattices are even better than that!
For $q \approx n^{1 / 2}$ have
$i \approx(n+i) / q \approx n^{1 / 2} \approx y^{u / 2}$ so smoothness chance is roughly $(u / 2)^{-u / 2}(u / 2)^{-u / 2}=2^{u} / u^{u}$, 2^{u} times larger than before.

Even larger improvements

from changing polynomial $i(n+i)$.
"Quadratic sieve" (QS) uses
$i^{2}-n$ with $i \approx \sqrt{n}$;
have $i^{2}-n \approx n^{1 / 2+o(1)}$,
much smaller than n.
"MPQS" improves o(1)
using sublattices: $\left(i^{2}-n\right) / q$.
But still $\approx n^{1 / 2}$.
"Number-field sieve" (NFS)
achieves $n^{o(1)}$.

Generalizing beyond \mathbf{Q}

The \mathbf{Q} sieve is a special case of the number-field sieve.

Recall how the \mathbf{Q} sieve factors 611:

Form a square
as product of $i(i+611 j)$
for several pairs (i, j) :
14(625) $\cdot 64(675) \cdot 75(686)$
$=4410000^{2}$.
$\operatorname{gcd}\{611,14 \cdot 64 \cdot 75-4410000\}$
$=47$.

The $\mathbf{Q}(\sqrt{14})$ sieve
factors 611 as follows:

Form a square

as product of $(i+25 j)(i+\sqrt{14} j)$
for several pairs (i, j) :
$(-11+3 \cdot 25)(-11+3 \sqrt{14})$
$\cdot(3+25)(3+\sqrt{14})$
$=(112-16 \sqrt{14})^{2}$.
Compute
$s=(-11+3 \cdot 25) \cdot(3+25)$,
$t=112-16 \cdot 25$,
$\operatorname{gcd}\{611, s-t\}=13$.

Why does this work?

Answer: Have ring morphism $\mathbf{Z}[\sqrt{14}] \rightarrow \mathbf{Z} / 611, \sqrt{14} \mapsto 25$, since $25^{2}=14$ in $\mathbf{Z} / 611$.

Apply ring morphism to square:
$(-11+3 \cdot 25)(-11+3 \cdot 25)$
$\cdot(3+25)(3+25)$
$=(112-16 \cdot 25)^{2}$ in $\mathbf{Z} / 611$.
ie. $s^{2}=t^{2}$ in $\mathbf{Z} / 611$.
Unsurprising to find factor.

Generalize from $\left(x^{2}-14,25\right)$ to (f, m) with irred $f \in \mathbf{Z}[x]$, $m \in \mathbf{Z}, f(m) \in n \mathbf{Z}$.

Write $d=\operatorname{deg} f$,
$f=f_{d} x^{d}+\cdots+f_{1} x^{1}+f_{0} x^{0}$.
Can take $f_{d}=1$ for simplicity, but larger f_{d} allows better parameter selection.

Pick $r \in \mathbf{C}$, root of f.
Then $f_{d} r$ is a root of monic $g=f_{d}^{d-1} f\left(x / f_{d}\right) \in \mathbf{Z}[x]$.
$\mathbf{Q}(r) \leftarrow \mathcal{O} \leftarrow \mathbf{Z}\left[f_{d} r\right] \xrightarrow{f_{d} r \mapsto f_{d} m} \mathbf{Z} / n$

Build square in $\mathbf{Q}(r)$ from

 congruences $(i-j m)(i-j r)$ with $i \mathbf{Z}+j \mathbf{Z}=\mathbf{Z}$ and $j>0$.Could replace $i-j x$ by higher-deg irred in $\mathbf{Z}[x]$; quadratics seem fairly small for some number fields. But let's not bother.

Say we have a square

$$
\begin{aligned}
& \prod_{(i, j) \in S}(i-j m)(i-j r) \\
& \text { in } \mathbf{Q}(r) ; \text { now what? }
\end{aligned}
$$

$\prod(i-j m)(i-j r) f_{d}^{2}$
is a square in \mathcal{O},
ring of integers of $\mathbf{Q}(r)$.
Multiply by $g^{\prime}\left(f_{d} r\right)^{2}$, putting square root into $\mathbf{Z}\left[f_{d} r\right]$: compute r with $r^{2}=g^{\prime}\left(f_{d} r\right)^{2}$. $\prod(i-j m)(i-j r) f_{d}^{2}$.

Then apply the ring morphism $\varphi: \mathbf{Z}\left[f_{d} r\right] \rightarrow \mathbf{Z} / n$ taking $f_{d} r$ to $f_{d} m$. Compute $\operatorname{gcd}\{n$, $\left.\varphi(r)-g^{\prime}\left(f_{d} m\right) \prod(i-j m) f_{d}\right\}$. In \mathbf{Z} / n have $\varphi(r)^{2}=$
$g^{\prime}\left(f_{d} m\right)^{2} \prod(i-j m)^{2} f_{d}^{2}$.

How to find square product of congruences $(i-j m)(i-j r)$?

Start with congruences for, e.g., y^{2} pairs (i, j).

Look for y-smooth congruences:
y-smooth $i-j m$ and
y-smooth f_{d} norm $(i-j r)=$
$f_{d} i^{d}+\cdots+f_{0} j^{d}=j^{d} f(i / j)$.
Here " y-smooth" means
"has no prime divisor >y."
Find enough smooth congruences. Perform linear algebra on exponent vectors mod 2.

