Cryptanalysis Course
Part I
Tanja Lange
Technische Universiteit Eindhoven
28 Nov 2016
with some slides by
Daniel J. Bernstein

Main goal of this course:
We are the attackers.
We want to break ECC and RSA.
First need to understand ECC; this is also needed for Dan's high-speed crypto course.

Main motivation for ECC:
Avoid index-calculus attacks
that plague finite-field DL.
See, e.g., yesterday's talk by
P. T. H. Duong.

Diffie-Hellman key exchange

Pick some generator P,
ie. some group element (using additive notation here).
Alice's
Bob's
secret key a
secret key 6

\downarrow
Bob's
public key
b P
\{Alice, Bob\}'s \{Bob, Alice\}'s
shared secret $a b P$
shared secret baP

Diffie-Hellman key exchange

Pick some generator P,
ie. some group element
(using additive notation here).
Alice's
Bob's
secret key a secret key b

public key

 b P\{Alice, Bob\}'s \quad Bob, Alice\}'s shared secret $=$ shared secret $a b P$ $b a P$

What does P look like \& how to compute $P+Q$?

The clock

y

This is the curve $x^{2}+y^{2}=1$.
Warning:
This is not an elliptic curve.
"Elliptic curve" $=$ "ellipse."

Examples of points on this curve:

Examples of points on this curve:

 $(0,1)=" 12: 00 "$.
Examples of points on this curve:

$(0,1)=" 12: 00 "$.
$(0,-1)=" 6: 00 "$.

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=$ " $3: 00$ ".

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ ".
$(-1,0)=" 9: 00 "$.

Examples of points on this curve:

$(0,1)=" 12: 00 "$.
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=$

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=$ " $3: 00$ ".
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=$

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=$

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00$ "
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ ".
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00$ ".
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00$ ".
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30$ ".
$(3 / 5,4 / 5) .(-3 / 5,4 / 5)$.

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ ".
$(-1,0)=" 9: 00 "$.
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30$ ".
$(3 / 5,4 / 5)$. $(-3 / 5,4 / 5)$.
$(3 / 5,-4 / 5) .(-3 / 5,-4 / 5)$.
$(4 / 5,3 / 5) .(-4 / 5,3 / 5)$.
$(4 / 5,-3 / 5)$. $(-4 / 5,-3 / 5)$.
Many more.

Addition on the clock:

Addition on the clock:

Addition on the clock:

$x^{2}+y^{2}=1$, parametrized by
$x=\sin \alpha, \quad y=\cos \alpha$. Recall
$\left(\sin \left(\alpha_{1}+\alpha_{2}\right), \cos \left(\alpha_{1}+\alpha_{2}\right)\right)=$ $\left(\sin \alpha_{1} \cos \alpha_{2}+\cos \alpha_{1} \sin \alpha_{2}\right.$,

Addition on the clock:

$x^{2}+y^{2}=1$, parametrized by
$x=\sin \alpha, \quad y=\cos \alpha$. Recall
$\left(\sin \left(\alpha_{1}+\alpha_{2}\right), \cos \left(\alpha_{1}+\alpha_{2}\right)\right)=$ $\left(\sin \alpha_{1} \cos \alpha_{2}+\cos \alpha_{1} \sin \alpha_{2}\right.$,
$\left.\cos \alpha_{1} \cos \alpha_{2}-\sin \alpha_{1} \sin \alpha_{2}\right)$.

Adding two points corresponds to adding the angles α_{1} and α_{2}.
Angles modulo 360° are a group, so points on clock are a group.

Neutral element: angle $\alpha=0$; point $(0,1)$; "12:00".
The point with $\alpha=180^{\circ}$
has order 2 and equals 6:00.
3:00 and 9:00 have order 4.
Inverse of point with α
is point with $-\alpha$
since $\alpha+(-\alpha)=0$.
There are many more points where angle α is not "nice."

Addition on the clock:

$x^{2}+y^{2}=1$, parametrized by
$x=\sin \alpha, \quad y=\cos \alpha$. Recall
$\left(\sin \left(\alpha_{1}+\alpha_{2}\right), \cos \left(\alpha_{1}+\alpha_{2}\right)\right)=$
$\left(\sin \alpha_{1} \cos \alpha_{2}+\cos \alpha_{1} \sin \alpha_{2}\right.$,
$\left.\cos \alpha_{1} \cos \alpha_{2}-\sin \alpha_{1} \sin \alpha_{2}\right)$.

Clock addition without sin, cos:

Use Cartesian coordinates for
addition. Addition formula
for the clock $x^{2}+y^{2}=1$:
$\operatorname{sum}\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$

Clock addition without sin, cos:

Use Cartesian coordinates for
addition. Addition formula for the clock $x^{2}+y^{2}=1$:
$\operatorname{sum}\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
$=\left(x_{1} y_{2}+y_{1} x_{2}, y_{1} y_{2}-x_{1} x_{2}\right)$.
Note $\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.
$k P=\underbrace{P+P+\cdots+P}$ for $k \geq 0$. k copies

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "
\end{aligned}
$$

"5:00" + "9:00"

$$
=(1 / 2,-\sqrt{3 / 4})+(-1,0)
$$

$$
=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "
$$

$$
2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)
$$

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 " .
\end{aligned}
$$

"5:00" + "9:00"

$$
=(1 / 2,-\sqrt{3 / 4})+(-1,0)
$$

$$
=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "
$$

$$
2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right) .
$$

$$
3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right) .
$$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.

Clocks over finite fields

$\operatorname{Clock}\left(\mathbf{F}_{7}\right)=$
$\left\{(x, y) \in \mathbf{F}_{7} \times \mathbf{F}_{7}: x^{2}+y^{2}=1\right\}$.
Here $\mathbf{F}_{7}=\{0,1,2,3,4,5,6\}$
$=\{0,1,2,3,-3,-2,-1\}$
with,,$+- \times$ modulo 7 .
E.g. $2 \cdot 5=3$ and $3 / 2=5$ in \mathbf{F}_{7}.
>>> for x in range(7): for y in range(7): if ($x * x+y * y$) \% 7 == 1 : print (x, y)
$(0,1)$
$(0,6)$
$(1,0)$
$(2,2)$
$(2,5)$
$(5,2)$
$(5,5)$
$(6,0)$
>>>
>>> class F7:
def __init__(self,x):
.. self.int $=x \% 7$
def __str__(self):
... return str (self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)
3
>>> F7.__eq__ = lambda a,b: \} a.int == b.int
>>>
>>> print $\mathrm{F} 7(7)==\mathrm{F} 7(0)$
True
>>> print F 7 (10) == F7(3)
True
>>> print F7(-3) == F7(4)
True
>>> print F 7 (0) == F7(1)
False
>>> print F7(0) == F7(2)
False
>>> print $F 7(0)==F 7(3)$
False
>>> F7.__add__ = lambda a,b: \} F7(a.int + b.int)
>>> F7.__sub__ = lambda a,b: \}
F7(a.int - b.int)
>>> F7.__mul__ = lambda a,b: \}
F7(a.int * b.int)
>>
>>> print F7(2) + F7(5)
0
>>> print F7(2) - F7(5)
4
>>> print F7(2) * F7(5)
3
>>>

Larger example: $\operatorname{Clock}\left(\mathbf{F}_{1000003}\right)$.

$p=1000003$
class Fp:
def clockadd(P1,P2):

$$
\begin{aligned}
& \mathrm{x} 1, \mathrm{y} 1=\mathrm{P} 1 \\
& \mathrm{x} 2, \mathrm{y} 2=\mathrm{P} 2 \\
& \mathrm{x} 3=\mathrm{x} 1 * \mathrm{y} 2+\mathrm{y} 1 * \mathrm{x} 2 \\
& \mathrm{y} 3=\mathrm{y} 1 * \mathrm{y} 2-\mathrm{x} 1 * \mathrm{x} 2
\end{aligned}
$$

return $x 3, y 3$
>> $P=(F p(1000), F p(2))$
>>> P 2 = clockadd (P, P)
>>> print P2
(4000, 7)
>>> P3 = clockadd(P2,P)
>>> print P3
(15000, 26)
>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6
(780000, 1351)
>>> print clockadd(P3,P3)
(780000, 1351)
>>
>>> def scalarmult (n, P) :

$$
\begin{array}{ll}
\cdots & \text { if } \mathrm{n}==0: \backslash \\
\ldots & \text { return }(\operatorname{Fp}(0), \operatorname{Fp}(1)) \\
\cdots & \text { if } \mathrm{n}==1: \text { return } P \\
\ldots & \mathrm{Q}=\operatorname{scalarmult}(\mathrm{n} / / 2, \mathrm{P}) \\
\ldots & \mathrm{Q}=\operatorname{clockadd}(\mathrm{Q}, \mathrm{Q}) \\
\ldots & \text { if } \mathrm{n} \% 2: \mathrm{Q}=\operatorname{clockadd}(\mathrm{P}, \mathrm{Q}) \\
\ldots & \text { return } \mathrm{Q}
\end{array}
$$

>>> n = oursixdigitsecret
>>> scalarmult (n, P)
(947472, 736284)
>>>
Can you figure out our secret n ?

Clock cryptography

The "Clock Diffie-Hellman protocol":

Standardize large prime $p \&$ base point $(x, y) \in \operatorname{Clock}\left(\mathbf{F}_{p}\right)$.

Alice chooses big secret a, computes her public key $a(x, y)$.

Bob chooses big secret b, computes his public key $b(x, y)$.

Alice computes $a(b(x, y))$.
Bob computes $b(a(x, y))$.
They use this shared secret to encrypt with AES-GCM etc.
Alice's
Bob's
secret key a secret key 6

\{Bob, Alice\}'s
shared secret
ba (X,Y)
Alice's
Bob's
secret key a

secret key b
$a(X, Y)$

public key $b(X, Y)$

に
\{Alice, Bob\}'s \quad Bob, Alice\}'s
shared secret $=$ shared secret $a b(X, Y)$
ba (X,Y)

Warning \#1:
Many p are unsafe!
Warning \#2:
Clocks aren't elliptic!
To match RSA-3072 security
need $p \approx 2^{1536}$.

Warning \#3:
Attacker sees more than public keys $a(x, y)$ and $b(x, y)$.

Attacker sees how much time Alice uses to compute $a(b(x, y))$.
Often attacker can see time for each operation performed by
Alice, not just total time.
This reveals secret scalar a.
Break by timing attacks, e.g.,
2011 Brumley-Tuveri.

Warning \#3:
Attacker sees more than public keys $a(x, y)$ and $b(x, y)$.

Attacker sees how much time Alice uses to compute $a(b(x, y))$.
Often attacker can see time for each operation performed by
Alice, not just total time.
This reveals secret scalar a.
Break by timing attacks, e.g.,
2011 Brumley-Tuveri.
Fix: constant-time code, performing same operations no matter what scalar is.

Exercise

How many multiplications

 do you need to compute $\left(x_{1} y_{2}+y_{1} x_{2}, y_{1} y_{2}-x_{1} x_{2}\right) ?$How many multiplications do you need to double a point, i.e. to compute $\left(x_{1} y_{1}+y_{1} x_{1}, y_{1} y_{1}-x_{1} x_{1}\right) ?$ How can you optimize the computation if squarings are cheaper than multiplications? Assume $\mathbf{S}<\mathbf{M}<2 \mathbf{S}$.

Addition on an Edwards curve

Change the curve on which Alice and Bob work.
y

$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$.

The clock again, for comparison:

y

$x^{2}+y^{2}=1$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(x_{1} y_{2}+y_{1} x_{2}\right.$,
$\left.y_{1} y_{2}-x_{1} x_{2}\right)$.
"Hey, there were divisions in the Edwards addition law!
What if the denominators are 0 ?"
Answer: They aren't!
If $x_{i}=0$ or $y_{i}=0$ then
$1 \pm 30 x_{1} x_{2} y_{1} y_{2}=1 \neq 0$.
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
"Hey, there were divisions in the Edwards addition law!
What if the denominators are 0 ?"
Answer: They aren't!
If $x_{i}=0$ or $y_{i}=0$ then
$1 \pm 30 x_{1} x_{2} y_{1} y_{2}=1 \neq 0$.
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$
and $\sqrt{30}\left|x_{2} y_{2}\right|<1$

"Hey, there were divisions

 in the Edwards addition law!What if the denominators are 0?"
Answer: They aren't!
If $x_{i}=0$ or $y_{i}=0$ then
$1 \pm 30 x_{1} x_{2} y_{1} y_{2}=1 \neq 0$.
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$
and $\sqrt{30}\left|x_{2} y_{2}\right|<1$
so $30\left|x_{1} y_{1} x_{2} y_{2}\right|<1$
so $1 \pm 30 x_{1} x_{2} y_{1} y_{2}>0$.

The Edwards addition law
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$
is a group law for the curve
$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Some calculation required: addition result is on curve; addition law is associative.

Other parts of proof are easy: addition law is commutative;
$(0,1)$ is neutral element;
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$

Edwards curves $\bmod p$

Choose an odd prime p.
Choose a non-square $d \in \mathbf{F}_{p}$.
$\left\{(x, y) \in \mathbf{F}_{p} \times \mathbf{F}_{p}\right.$:

$$
\left.x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

is a "complete Edwards curve".
Roughly $p+1$ pairs (x, y).
def edwardsadd(P1,P2):

$$
\begin{aligned}
& \mathrm{x} 1, \mathrm{y} 1=\mathrm{P} 1 \\
& \mathrm{x} 2, \mathrm{y} 2=\mathrm{P} 2 \\
& \mathrm{x} 3=(\mathrm{x} 1 * \mathrm{y} 2+\mathrm{y} 1 * \mathrm{x} 2) / \\
& (1+\mathrm{d} * \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{y} 1 * \mathrm{y} 2) \\
& \mathrm{y} 3=(\mathrm{y} 1 * \mathrm{y} 2-\mathrm{x} 1 * \mathrm{x} 2) / \\
& (1-\mathrm{d} * \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{y} 1 * \mathrm{y} 2)
\end{aligned}
$$

return $x 3, y 3$

Denominators are never 0 . But need different proof; " $x^{2}+y^{2}>0$ " doesn't work.

Denominators are never 0. But need different proof; " $x^{2}+y^{2}>0$ " doesn't work.

Answer: Can prove that the denominators are never 0 . Addition law is complete.

Denominators are never 0. But need different proof; " $x^{2}+y^{2}>0$ " doesn't work.

Answer: Can prove that the denominators are never 0 . Addition law is complete.

This proof relies on choosing non-square d.

Denominators are never 0 .

But need different proof; " $x^{2}+y^{2}>0$ " doesn't work.

Answer: Can prove that the denominators are never 0 . Addition law is complete.

This proof relies on choosing non-square d.

If we instead choose square d : curve is still elliptic, and addition seems to work, but there are failure cases, often exploitable by attackers.
Safe code is more complicated.

Edwards curves are cool

ECDSA

Users can sign messages
using Edwards curves.
Take a point P on an Edwards curve modulo a prime $p>2$.

ECDSA signer needs to know the order of P.

There are only finitely many other points; about p in total.
Adding P to itself will eventually
reach $(0,1)$; let ℓ be the smallest integer >0 with $\ell P=(0,1)$.
This ℓ is the order of P.

The signature scheme has as system parameters a curve E; a base point P; and a hash function h with output length at least $\left\lfloor\log _{2} \ell\right\rfloor+1$.
Alice's secret key is an integer a and her public key is $P_{A}=a P$.

To sign message m,
Alice computes $h(m)$;
picks random k;
computes $R=k P=\left(x_{1}, y_{1}\right)$;
puts $r \equiv y_{1} \bmod \ell$; computes $s \equiv k^{-1}(h(m)+r \cdot a) \bmod \ell$.

The signature on m is (r, s).

Anybody can verify signature
given m and (r, s) :
Compute $w_{1} \equiv s^{-1} h(m) \bmod \ell$ and $w_{2} \equiv s^{-1} \cdot r \bmod \ell$.
Check whether the y-coordinate of $w_{1} P+w_{2} P_{A}$ equals r modulo ℓ and if so, accept signature.

Alice's signatures are valid:
$w_{1} P+w_{2} P_{A}=$

$$
\begin{aligned}
& \left(s^{-1} h(m)\right) P+\left(s^{-1} \cdot r\right) P_{A}= \\
& \left(s^{-1}(h(m)+r a)\right) P=k P
\end{aligned}
$$

and so the y-coordinate of this expression equals r, the y-coordinate of $k P$.

Attacker's view on signatures

Anybody can produce an $R=k P$. Alice's private key is only used in $s \equiv k^{-1}(h(m)+r \cdot a) \bmod \ell$.

Can fake signatures if one can break the DLP, i.e., if one can compute a from P_{A}.
Most of this course deals with methods for breaking DLPs.
Sometimes attacks are easier. . .

If k is known for some $m,(r, s)$ then $a \equiv(s k-h(m)) / r \bmod \ell$.

If two signatures $m_{1},\left(r, s_{1}\right)$ and $m_{2},\left(r, s_{2}\right)$ have the same value for r : assume $k_{1}=k_{2}$; observe $s_{1}-s_{2}=k_{1}^{-1}\left(h\left(m_{1}\right)+r a-\right.$ $\left.\left(h\left(m_{2}\right)+r a\right)\right)$; compute $k=$ $\left(s_{1}-s_{2}\right) /\left(h\left(m_{1}\right)-h\left(m_{2}\right)\right)$. Continue as above.

If bits of many k 's are known (biased PRNG) can attack $s \equiv k^{-1}(h(m)+r \cdot a) \bmod \ell$ as hidden number problem using lattice basis reduction.

Malicious signer

Alice can set up her public key so that two messages of her choice share the same signature,
ie., she can claim to have
signed m_{1} or m_{2} at will:
$R=\left(x_{1}, y_{1}\right)$ and $-R=\left(-x_{1}, y_{1}\right)$
have the same y-coordinate.
Thus, (r, s) fits $R=k P$,
$s \equiv k^{-1}\left(h\left(m_{1}\right)+r a\right) \bmod \ell$ and
$-R=(-k) P$,
$s \equiv-k^{-1}\left(h\left(m_{2}\right)+r a\right) \bmod \ell$ if
$a \equiv-\left(h\left(m_{1}\right)+h\left(m_{2}\right)\right) / 2 r \bmod \ell$.

Malicious signer

Alice can set up her public key so that two messages of her choice share the same signature,
ie., she can claim to have
signed m_{1} or m_{2} at will:
$R=\left(x_{1}, y_{1}\right)$ and $-R=\left(-x_{1}, y_{1}\right)$
have the same y-coordinate.
Thus, (r, s) fits $R=k P$,
$s \equiv k^{-1}\left(h\left(m_{1}\right)+r a\right) \bmod \ell$ and
$-R=(-k) P$,
$s \equiv-k^{-1}\left(h\left(m_{2}\right)+r a\right) \bmod \ell$ if
$a \equiv-\left(h\left(m_{1}\right)+h\left(m_{2}\right)\right) / 2 r \bmod \ell$.
(Easy tweak: include bit of x_{1}.)

