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NTRU History

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (p, q), p prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x ]/(xp − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q Ip 0
H Ip

)
,

where H corresponds to multiplication by h/3 modulo xp − 1.

(g , f ) is a short vector in the lattice as result of

(k , f )B = (kq + f · h/3, f ) = (g , f )

for some polynomial k (from fh/3 = g − kq).
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Original NTRU

System parameters (p, q), p prime, integer q, gcd(p, q) = 1.

All computations done in ring R = Z[x ]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.
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Why we don’t stick with original NTRU.
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Reason 1: Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Then f ∈ L(df , df −1), r ∈ L(dr , dr ), and g ∈ L(dg , dg ) with dr < dg .

Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients
are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.
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Reason 2: Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr ), so r(1) = 0 and
g ∈ L(dg , dg ), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Original NTRU rejects extreme messages – this is dealt with by
randomizing m via a padding (not mentioned so far).

Could also replace xp − 1 by Φp = (xp − 1)/(x − 1) to avoid attack.
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Reason 3: Mappings to subrings

Consider Rq = (Z/q)[x ]/(xp − 1).

Can possibly get more information on m from homomorphism
ψ : Rq → T , for some ring T .

Typical choice in original NTRU: q = 2048 leads to natural ring maps
from (Z/2048)[x ]/(xp − 1) to

I (Z/2)[x ]/(xp − 1),
I (Z/4)[x ]/(xp − 1),
I (Z/8)[x ]/(xp − 1), etc.

Unclear whether these can be exploited to get information on m.

Maybe, complicated. [Silverman-Smart-Vercauteren ’04]

If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter ’14,
Elias-Lauter-Ozman-Stange ’15, Chen-Lauter-Stange ’16,
Castryck-Iliashenko-Vercauteren ’16]
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Reasons 4 and 5

Rings of original NTRU also have
I a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de

Valence-van Vredendaal ’17], attack by [Albrecht-Bai-Ducas ’16], and
attack in Bernstein’s 2014 blogpost).

I many easily computable automorphisms (usable to find a fundamental
basis of short units which is used in [Campbell-Groves-Shepherd ’14]
and subsequently [Cramer-Ducas-Peikert-Regev ’15]).

Whether paranoia, or valid panic; what can we do about it?
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NTRU Prime ring

Differences from original NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x ].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x ]/P and (Z/q)[x ]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1.
This has Galois group Sp of size p!.

NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x ]/(xp − x − 1).
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NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x ]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.
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Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1x
p−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1x
p−1 with fi ∈ {−1, 0, 1} and

∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f ) in R/q.

Private key is f and 1/g ∈ R/3.

Difference from original NTRU: more key options, 3 in denominator.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 11

https://ntruprime.cr.yp.to


Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1x
p−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1x
p−1 with fi ∈ {−1, 0, 1} and

∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f ) in R/q.

Private key is f and 1/g ∈ R/3.

Difference from original NTRU: more key options, 3 in denominator.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 11

https://ntruprime.cr.yp.to


Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K ).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.
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Streamlined NTRU Prime: decapsulation

Bob decrypts (C |c):

Reminder h = g/(3f ) in R/q.

Computes 3fc = 3f (hr + m) = gr + 3fm in R/q,
lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Reduces the coefficients modulo 3 to get a = gr ∈ R/3.

Computes r ′ = a/g ∈ R/3, lifts r ′ to R.

Computes hash(r ′) = (C ′|K ′) and c ′ as rounding of hr ′.

Verifies that c ′ = c and C ′ = C .

If all checks verify, K = K ′ is the session key between Alice and Bob and
can be used in a data encapsulation mechanism (DEM).

Choosing q ≥ 32t + 1 means no decryption failures, so r = r ′ and
verification works unless (C |c) was incorrectly generated or tempered with.
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Family picture send m + hr for small m, r and public h in ring R (“NTRU”)

zz yy 


cyclotomic,

power-of-2 index,
split modulus

(“NTRU NTT”)

��

cyclotomic,
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power-of-2 modulus
(“NTRU Classic”)

��
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(“NTRU Prime”)
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��

random m
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random m

��

random m

round hr to m + hr
(“Rounded

NTRU Prime”)

{{
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public G
(“Noisy Product
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Streamlined NTRU Prime: Security

What we know so far:

Original Common Streamlined
NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

# factors of P in R/q > 1 p 1

# proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of original
NTRU.
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Streamlined NTRU Prime: Security

What we know so far:
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Streamlined NTRU Prime Security: parameters

We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm,
algebraic attacks, and sieving.

Streamlined NTRU Prime 4591761 and NTRU LPRime 4591761

both use p = 761 and q = 4591.

The resulting sizes and Haswell speeds show that reducing the attack
surface has very low cost:
Metric Streamlined NTRU

NTRU Prime 4591761 LPRime 4591761

Public-key size 1218 bytes 1047 bytes

Ciphertext size 1047 bytes 1175 bytes

Encapsulation time 59456 cycles 94508 cycles

Decapsulation time 97684 cycles 128316 cycles

Pre-quantum security 248 bits 225 bits

Quantum computers will speed up attacks by less than squareroot.
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Bonus slides: why automorphisms matter

Targets and history:

2014.10 Campbell–Groves–Shepherd describe an ideal-lattice-based
system “Soliloquy”; claim quantum poly-time key recovery.

2010 Smart–Vercauteren system is practically identical to Soliloquy.

2009 Gentry system (simpler version described at STOC) has the
same key-recovery problem.

2012 Garg–Gentry–Halevi multilinear maps have the same
key-recovery problem (and many other security issues).
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Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x ]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.
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How to get a short generator?

Have ideal I of R.

Want short g with gR = I ; have g ′ with g ′R = I .

Know g ′ = ug for some unit u ∈ R∗.

To find u move to log lattice.

Log g ′ = Log u + Log g ,

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:
LogR∗ is a lattice of known dimension.

Finding Log u is a closest-vector problem in this lattice.
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Quote from Campbell–Groves–Shepherd

“A simple generating set for the cyclotomic units is of course known.
The image of O× [here R∗] under the logarithm map forms a lattice.
The determinant of this lattice turns out to be much bigger than the
typical loglength of a private key α [here g ], so it is easy to recover the
causally short private key given any generator of αO [here I ], e.g. via the
LLL lattice reduction algorithm.”
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Automorphisms

x 7→ x3, x 7→ x5, x 7→ x7, etc. are automorphisms of R = Z[x ]/Φ2k .

Easy to see (1− x3)/(1− x) ∈ R∗; for inverse use expansion.

“Cyclotomic units” are defined as

R∗ ∩

{
±xe0

∏
i

(1− x i )ei

}
.

Weber’s conjecture:
All elements of R∗ are cyclotomic units.

Experiments confirm that SV is quickly broken by LLL using, e.g.,
1997 Washington textbook basis for cyclotomic units.

Shortness of basis is critical; this was not highlighted in CGS analysis.
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