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NTRU History

Introduced by Hoffstein–Pipher–Silverman in 1998 paper.

1996 HPS handout already tried using lattices to attack system.

1997 Coppersmith–Shamir improved lattice attack.

System parameters (p, q), p prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x ]/(xp − 1).

Private key: f , g ∈ R fixed-weight with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q Ip 0
H Ip

)
,

where H corresponds to multiplication by h/3 modulo xp − 1.

(g , f ) is a short vector in the lattice as result of

(k , f )B = (kq + f · h/3, f ) = (g , f )

for some polynomial k (from fh/3 = g − kq).
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Original NTRU

System parameters (p, q), p prime, integer q, gcd(p, q) = 1.

All computations done in ring R = Z[x ]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1},
specified number of nonzero coefficients. Additional requirement:
f must be invertible in R modulo q and modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.
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Why we don’t stick with original NTRU.
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Reason 1: Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Then f ∈ L(df , df −1), r ∈ L(dr , dr ), and g ∈ L(dg , dg ) with dr < dg .

Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients
are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.
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Reason 2: Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr ), so r(1) = 0 and
g ∈ L(dg , dg ), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Original NTRU rejects extreme messages – this is dealt with by
randomizing m via a padding (not mentioned so far).

Could also replace xp − 1 by Φp = (xp − 1)/(x − 1) to avoid attack.
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Reason 3: Mappings to subrings

Consider Rq = (Z/q)[x ]/(xp − 1).

Can possibly get more information on m from homomorphism
ψ : Rq → T , for some ring T .

Typical choice in original NTRU: q = 2048 leads to natural ring maps
from (Z/2048)[x ]/(xp − 1) to

I (Z/2)[x ]/(xp − 1),
I (Z/4)[x ]/(xp − 1),
I (Z/8)[x ]/(xp − 1), etc.

Unclear whether these can be exploited to get information on m.

Maybe, complicated. [Silverman-Smart-Vercauteren ’04]

If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter ’14,
Elias-Lauter-Ozman-Stange ’15, Chen-Lauter-Stange ’16,
Castryck-Iliashenko-Vercauteren ’16]
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Reasons 4 and 5

Rings of original NTRU also have
I a large proper subfield (used in attack by [Bauch-Bernstein-De

Valence-Lange-van Vredendaal ’17], attack by [Cheon-Jeong-Lee ’16],
attack by [Albrecht-Bai-Ducas ’16], and attack in Bernstein’s 2014
blogpost).

I many easily computable automorphisms (usable to find a fundamental
basis of short units which is used in [Campbell-Groves-Shepherd ’14]
and subsequently [Cramer-Ducas-Peikert-Regev ’15],
[Cramer-Ducas-Wesolowski ’17]).

Whether paranoia, or valid panic; what can we do about it?
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NTRU Prime ring

Differences from original NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x ].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x ]/P and (Z/q)[x ]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1.
This has Galois group Sp of size p!.

NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x ]/(xp − x − 1).
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NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x ]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.
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Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1x
p−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1x
p−1 with fi ∈ {−1, 0, 1} and

∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f ) in R/q.

Private key is f and 1/g ∈ R/3.

Difference from original NTRU: more key options, 3 in denominator.
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Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K ).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.
(Published May 2016, six months before Lizard patent application.)
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Streamlined NTRU Prime: decapsulation

Bob decrypts (C |c):

Reminder h = g/(3f ) in R/q.

Computes 3fc = 3f (hr + m) = gr + 3fm in R/q,
lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Reduces the coefficients modulo 3 to get a = gr ∈ R/3.

Computes r ′ = a/g ∈ R/3, lifts r ′ to R.

Computes hash(r ′) = (C ′|K ′) and c ′ as rounding of hr ′.

Verifies that c ′ = c and C ′ = C .

If all checks verify, K = K ′ is the session key between Alice and Bob and
can be used in a data encapsulation mechanism (DEM).

Choosing q ≥ 32t + 1 means no decryption failures, so r = r ′ and
verification works unless (C |c) was incorrectly generated or tampered with.
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Family picture send m + hr for small m, r and public h in ring R (“NTRU”)
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Streamlined NTRU Prime: Security

What we know so far:

Original Common Streamlined
NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

# factors of P in R/q > 1 p 1

# proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of original
NTRU.
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Streamlined NTRU Prime Security: parameters

We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm,
algebraic attacks, and sieving.

Streamlined NTRU Prime 4591761 and NTRU LPRime 4591761

both use p = 761 and q = 4591.

The resulting sizes and Haswell speeds show that reducing the attack
surface has very low cost:
Metric Streamlined NTRU

NTRU Prime 4591761 LPRime 4591761

Public-key size 1218 bytes 1047 bytes

Ciphertext size 1047 bytes 1175 bytes

Encapsulation time 59456 cycles 94508 cycles

Decapsulation time 97684 cycles 128316 cycles

Pre-quantum security ≥248 bits ≥225 bits

Quantum computers will speed up attacks by less than squareroot.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 16

https://ntruprime.cr.yp.to


Position in NIST post-quantum competition

20 lattice-based encryption submissions:

Broken: Compact LWE.

Not secure against chosen-ciphertext attacks: Ding; HILA5.

Power-of-2 cyclotomics: EMBLEM R options; KCL; KINDI;
Kyber; LAC; LIMA power-of-2 options; Lizard R options;
NewHope; Round2 RLWR options; SABER.

Non-power-of-2 cyclotomics: LIMA “safe prime” options
such as Φ1019, “more conservative choice of field”;
NTRU-HRSS-KEM3 using Φ701; NTRUEncrypt using, e.g., Φ743.

Non-cyclotomic: EMBLEM non-R options; Frodo;
Lizard non-R options; LOTUS; NTRU Prime3;
Odd Manhattan3; Round2 LWR options; Titanium.

“3” means no decryption failures.
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What’s left if cyclotomics are broken?

8 lattice-based encryption submissions have non-cyclotomic options.

One example from each submission, public-key size + ciphertext size:

Streamlined NTRU Prime 4591761: 1218 bytes + 1047 bytes.

LOTUS 128: 658944 bytes + 1144 bytes.

Titanium CCA lite: 14720 bytes + 3008 bytes.

Round2 n1 l1: 3455 bytes + 4837 bytes.

Frodo 640: 9616 bytes + 9736 bytes.

EMBLEM II.c: 10016 bytes + 14792 bytes.

Lizard N663: 1390592 bytes + 10896 bytes.

Odd Manhattan 128: 1626240 bytes + 180224 bytes.
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