NTRU Prime

A field-based system that reduces (potential) attack surface, while still being fast and compact

<u>Daniel J. Bernstein</u>, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal

29 June 2018

Bernstein, Chuengsatiansup, Lange, van Vredendaal

https://ntruprime.cr.yp.to

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998 paper.
- 1996 HPS handout already tried using lattices to attack system.
- 1997 Coppersmith-Shamir improved lattice attack.
- System parameters (p, q), p prime, integer q, gcd(3, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$.

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998 paper.
- 1996 HPS handout already tried using lattices to attack system.
- 1997 Coppersmith-Shamir improved lattice attack.
- System parameters (p, q), p prime, integer q, gcd(3, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$.
- Private key: $f, g \in R$ fixed-weight with coefficients in $\{-1, 0, 1\}$. Additional requirement: f must be invertible in R modulo q.
- Public key $h = 3g/f \mod q$.
- Can see this as lattice with basis matrix

$$B = \left(\begin{array}{cc} q I_p & 0 \\ H & I_p \end{array}\right),$$

where *H* corresponds to multiplication by h/3 modulo $x^p - 1$.

• (g, f) is a short vector in the lattice as result of

$$(k,f)B = (kq + f \cdot h/3, f) = (g, f)$$

for some polynomial k (from fh/3 = g - kq).

Original NTRU

- System parameters (p, q), p prime, integer q, gcd(p, q) = 1.
- All computations done in ring R = Z[x]/(x^p 1), some use additional reduction modulo q, ring denoted by R_q.

Original NTRU

- System parameters (p, q), p prime, integer q, gcd(p, q) = 1.
- All computations done in ring R = Z[x]/(x^p 1), some use additional reduction modulo q, ring denoted by R_q.
- Private key: f, g ∈ R with coefficients in {-1,0,1}, specified number of nonzero coefficients. Additional requirement: f must be invertible in R modulo q and modulo 3.

• Public key
$$h = 3g/f \mod q$$
.

Original NTRU

- System parameters (p, q), p prime, integer q, gcd(p, q) = 1.
- All computations done in ring R = Z[x]/(x^p 1), some use additional reduction modulo q, ring denoted by R_q.
- Private key: f, g ∈ R with coefficients in {-1, 0, 1}, specified number of nonzero coefficients. Additional requirement: f must be invertible in R modulo q and modulo 3.

• Public key
$$h = 3g/f \mod q$$
.

Encryption of message m ∈ R, coefficients in {−1,0,1}:
Pick random r ∈ R, same sample space as f; compute:

$$c = r \cdot h + m \mod q.$$

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then *a* equals 3rg + fm in *R* and $m = a/f \mod 3$.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

https://ntruprime.cr.yp.to

Why we don't stick with original NTRU.

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then *a* equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then *a* equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

Let

 $\begin{aligned} \mathcal{L}(d,t) = & \{ F \in \mathcal{R} | F \text{ has } d \text{ coefficients equal to } 1 \\ & \text{ and } t \text{ coefficients equal to } -1, \text{all others } 0 \}. \end{aligned}$

- Then $f \in L(d_f, d_f 1)$, $r \in L(d_r, d_r)$, and $g \in L(d_g, d_g)$ with $d_r < d_g$.
- Then 3rg + fm has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then *a* equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

Let

 $\begin{aligned} L(d,t) = & \{F \in \mathcal{R} | F \text{ has } d \text{ coefficients equal to } 1 \\ & \text{ and } t \text{ coefficients equal to } -1, \text{all others } 0 \}. \end{aligned}$

- Then $f \in L(d_f, d_f 1)$, $r \in L(d_r, d_r)$, and $g \in L(d_g, d_g)$ with $d_r < d_g$.
- Then 3rg + fm has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

which is larger than q/2 for typical parameters. Such large coefficients are highly unlikely – but annoying for applications and guarantees.

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then *a* equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

Let

 $\begin{aligned} L(d,t) = & \{F \in \mathcal{R} | F \text{ has } d \text{ coefficients equal to } 1 \\ & \text{ and } t \text{ coefficients equal to } -1, \text{all others } 0 \}. \end{aligned}$

- Then $f \in L(d_f, d_f 1)$, $r \in L(d_r, d_r)$, and $g \in L(d_g, d_g)$ with $d_r < d_g$.
- Then 3rg + fm has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

which is larger than q/2 for typical parameters. Such large coefficients are highly unlikely – but annoying for applications and guarantees.

• Security decreases with large q; reduction is important.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

https://ntruprime.cr.yp.to

Reason 2: Evaluation-at-1 attack

- Ciphertext equals c = rh + m and $r \in L(d_r, d_r)$, so r(1) = 0 and $g \in L(d_g, d_g)$, so h(1) = g(1)/f(1) = 0.
- This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if |m(1)| is large.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals c = rh + m and $r \in L(d_r, d_r)$, so r(1) = 0 and $g \in L(d_g, d_g)$, so h(1) = g(1)/f(1) = 0.
- This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if |m(1)| is large.

 For other choices of r and h, such as L(dr, dr − 1) or such, one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Bernstein, Chuengsatiansup, Lange, van Vredendaal

Reason 2: Evaluation-at-1 attack

- Ciphertext equals c = rh + m and $r \in L(d_r, d_r)$, so r(1) = 0 and $g \in L(d_g, d_g)$, so h(1) = g(1)/f(1) = 0.
- This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if |m(1)| is large.

- For other choices of r and h, such as L(dr, dr − 1) or such, one knows r(1) and h is public, so evaluation at 1 leaks m(1).
- Original NTRU rejects extreme messages this is dealt with by randomizing *m* via a padding (not mentioned so far).
- Could also replace $x^p 1$ by $\Phi_p = (x^p 1)/(x 1)$ to avoid attack.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

Reason 3: Mappings to subrings

• Consider
$$R_q = (\mathbf{Z}/q)[x]/(x^p - 1)$$
.

- Can possibly get more information on *m* from homomorphism $\psi: R_q \to T$, for some ring *T*.
- Typical choice in original NTRU: q = 2048 leads to natural ring maps from (Z/2048)[x]/(x^p - 1) to

•
$$(\mathbf{Z}/2)[x]/(x^p-1)$$
,

•
$$(\mathbf{Z}/4)[x]/(x^p-1)$$
,

Bernstein, Chuengsatiansup, Lange, van Vredendaal

Reason 3: Mappings to subrings

- Consider $R_q = (\mathbf{Z}/q)[x]/(x^p 1)$.
- Can possibly get more information on *m* from homomorphism $\psi: R_q \to T$, for some ring *T*.
- Typical choice in original NTRU: q = 2048 leads to natural ring maps from (Z/2048)[x]/(x^p - 1) to

•
$$(\mathbf{Z}/2)[x]/(x^p-1)$$
,

- $(\mathbf{Z}/4)[x]/(x^p-1)$,
- ► (Z/8)[x]/(x^p 1), etc.
- Unclear whether these can be exploited to get information on *m*.
- Maybe, complicated. [Silverman-Smart-Vercauteren '04]
- If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter '14, Elias-Lauter-Ozman-Stange '15, Chen-Lauter-Stange '16, Castryck-Iliashenko-Vercauteren '16]

Bernstein, Chuengsatiansup, Lange, van Vredendaal

Reasons 4 and 5

- Rings of original NTRU also have
 - a large proper subfield (used in attack by [Bauch-Bernstein-De Valence-Lange-van Vredendaal '17], attack by [Cheon-Jeong-Lee '16], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
 - many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15], [Cramer-Ducas-Wesolowski '17]).

Reasons 4 and 5

- Rings of original NTRU also have
 - a large proper subfield (used in attack by [Bauch-Bernstein-De Valence-Lange-van Vredendaal '17], attack by [Cheon-Jeong-Lee '16], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
 - many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15], [Cramer-Ducas-Wesolowski '17]).
- Whether paranoia, or valid panic; what can we do about it?

NTRU Prime ring

• Differences from original NTRU: prime degree, large Galois group, inert modulus.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R} = \mathbf{Z}[x]/P$ and $(\mathbf{Z}/q)[x]/P$ is a field.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R} = \mathbf{Z}[x]/P$ and $(\mathbf{Z}/q)[x]/P$ is a field.
- Further choose P of prime degree p with large Galois group.
- Specifically, set P = x^p x 1. This has Galois group S_p of size p!.
- NTRU Prime works over the NTRU Prime field

$$\mathcal{R}/q = (\mathbf{Z}/q)[x]/(x^p - x - 1).$$

Bernstein, Chuengsatiansup, Lange, van Vredendaal

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

- → Only subfields of Q[x]/P are itself and Q. Avoids structures used by, e.g., multiquad attack.
- → Large Galois group means no easy to compute automorphisms. Roots of P live in degree-p! extension. Avoids structures used by Campbell–Groves–Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
- No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen–Lauter–Stange attack.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

- → Only subfields of Q[x]/P are itself and Q. Avoids structures used by, e.g., multiquad attack.
- → Large Galois group means no easy to compute automorphisms. Roots of P live in degree-p! extension. Avoids structures used by Campbell–Groves–Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
- No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies padding.

Streamlined NTRU Prime: private and public key

- System parameters (p, q, t), p, q prime, $q \ge 32t + 1$.
- Pick g small in \mathcal{R}

$$g = g_0 + \cdots + g_{p-1} x^{p-1}$$
 with $g_i \in \{-1, 0, 1\}$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R}/3$.

• Pick *t*-small $f \in \mathcal{R}$

$$f = f_0 + \dots + f_{p-1} x^{p-1}$$
 with $f_i \in \{-1, 0, 1\}$ and $\sum |f_i| = 2t$

Since \mathcal{R}/q is a field, f is invertible.

- Compute public key h = g/(3f) in \mathcal{R}/q .
- Private key is f and $1/g \in \mathcal{R}/3$.

Streamlined NTRU Prime: private and public key

- System parameters (p, q, t), p, q prime, $q \ge 32t + 1$.
- Pick g small in $\mathcal R$

$$g = g_0 + \cdots + g_{p-1} x^{p-1}$$
 with $g_i \in \{-1, 0, 1\}$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R}/3$.

• Pick *t*-small $f \in \mathcal{R}$

$$f = f_0 + \dots + f_{p-1} x^{p-1}$$
 with $f_i \in \{-1, 0, 1\}$ and $\sum |f_i| = 2t$

Since \mathcal{R}/q is a field, f is invertible.

- Compute public key h = g/(3f) in \mathcal{R}/q .
- Private key is f and $1/g \in \mathcal{R}/3$.
- Difference from original NTRU: more key options, 3 in denominator.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_i \in \{-1, 0, 1\}, \sum |r_i| = 2t$).
- Computes hr in \mathcal{R}/q , lifts coefficients to $\mathbf{Z} \cap [-(q-1)/2, (q-1)/2]$.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_i \in \{-1, 0, 1\}, \sum |r_i| = 2t$).
- Computes hr in \mathcal{R}/q , lifts coefficients to $\mathbf{Z} \cap [-(q-1)/2, (q-1)/2]$.
- Rounds each coefficient to the nearest multiple of 3 to get c.
- Computes hash(r) = (C|K).
- Sends (C|c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m. (Published May 2016, six months before Lizard patent application.)

Streamlined NTRU Prime: decapsulation

Bob decrypts (C|c):

- Reminder h = g/(3f) in \mathcal{R}/q .
- Computes 3fc = 3f(hr + m) = gr + 3fm in \mathcal{R}/q , lifts coefficients to $\mathbf{Z} \cap [-(q-1)/2, (q-1)/2]$.
- Reduces the coefficients modulo 3 to get $a = gr \in \mathcal{R}/3$.
- Computes $r' = a/g \in \mathcal{R}/3$, lifts r' to \mathcal{R} .
- Computes hash(r') = (C'|K') and c' as rounding of hr'.
- Verifies that c' = c and C' = C.

If all checks verify, K = K' is the session key between Alice and Bob and can be used in a data encapsulation mechanism (DEM).

Choosing $q \ge 32t + 1$ means no decryption failures, so r = r' and verification works unless (C|c) was incorrectly generated or tampered with.

Streamlined NTRU Prime: Security

• What we know so far:

	Original NTRU	Common R-IWF	Streamlined
Polynomial P	$x^{p} - 1$	$x^{p} + 1$	$x^{p} - x - 1$
Degree <i>p</i>	prime	power of 2	prime
Modulus <i>q</i>	2 ^d	prime	prime
$\#$ factors of P in \mathcal{R}/q	> 1	p	1
<pre># proper subfields</pre>	> 1	many	1
Every <i>m</i> encryptable	×	1	1
No decryption failures	×	×	1

Streamlined NTRU Prime: Security

• What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial <i>P</i>	$x^{p} - 1$	$x^p + 1$	$x^p - x - 1$
Degree <i>p</i>	prime	power of 2	prime
Modulus <i>q</i>	2 ^d	prime	prime
# factors of P in \mathcal{R}/q	> 1	p	1
<pre># proper subfields</pre>	> 1	many	1
Every <i>m</i> encryptable	×	1	✓
No decryption failures	×	×	✓

 Because of the last 2 ✓'s the analysis is simpler than that of original NTRU.

Streamlined NTRU Prime Security: parameters

- We investigated security against the strongest known attacks; meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, algebraic attacks, and sieving.
- Streamlined NTRU Prime 4591⁷⁶¹ and NTRU LPRime 4591⁷⁶¹ both use p = 761 and q = 4591.
- The resulting sizes and Haswell speeds show that reducing the attack surface has very low cost:

Metric	Streamlined	NTRU
	NTRU Prime 4591 ⁷⁶¹	LPRime 4591 ⁷⁶¹
Public-key size	1218 bytes	1047 bytes
Ciphertext size	1047 bytes	1175 bytes
Encapsulation time	59456 cycles	94508 cycles
Decapsulation time	97684 cycles	128316 cycles
Pre-quantum security	\geq 248 bits	\geq 225 bits

• Quantum computers will speed up attacks by less than squareroot.

Position in NIST post-quantum competition

20 lattice-based encryption submissions:

- Broken: Compact LWE.
- Not secure against chosen-ciphertext attacks: Ding; HILA5.
- Power-of-2 cyclotomics: EMBLEM R options; KCL; KINDI; Kyber; LAC; LIMA power-of-2 options; Lizard R options; NewHope; Round2 RLWR options; SABER.
- Non-power-of-2 cyclotomics: LIMA "safe prime" options such as Φ₁₀₁₉, "more conservative choice of field"; NTRU-HRSS-KEM√ using Φ₇₀₁; NTRUEncrypt using, e.g., Φ₇₄₃.
- Non-cyclotomic: EMBLEM non-R options; Frodo; Lizard non-R options; LOTUS; NTRU Prime√; Odd Manhattan√; Round2 LWR options; Titanium.
- "" means no decryption failures.

What's left if cyclotomics are broken?

8 lattice-based encryption submissions have non-cyclotomic options.

One example from each submission, public-key size + ciphertext size:

- Streamlined NTRU Prime 4591⁷⁶¹:
- LOTUS 128:
- Titanium CCA lite:
- Round2 n1 l1:
- Frodo 640:
- EMBLEM II.c:
- Lizard N663:
- Odd Manhattan 128:

1218 bytes + 1047 bytes. 658944 bytes + 1144 bytes. 14720 bytes + 3008 bytes. 3455 bytes + 4837 bytes. 9616 bytes + 9736 bytes. 10016 bytes + 14792 bytes. 1390592 bytes + 10896 bytes. 1626240 bytes + 180224 bytes.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

https://ntruprime.cr.yp.to 18