NTRU Prime

A field-based system
that reduces (potential) attack surface, while still being fast and compact

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal

29 June 2018

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998 paper.
- 1996 HPS handout already tried using lattices to attack system.
- 1997 Coppersmith-Shamir improved lattice attack.
- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(3, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$.

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998 paper.
- 1996 HPS handout already tried using lattices to attack system.
- 1997 Coppersmith-Shamir improved lattice attack.
- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(3, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$.
- Private key: $f, g \in R$ fixed-weight with coefficients in $\{-1,0,1\}$. Additional requirement: f must be invertible in R modulo q.
- Public key $h=3 g / f \bmod q$.
- Can see this as lattice with basis matrix

$$
B=\left(\begin{array}{ll}
q I_{p} & 0 \\
H & I_{p}
\end{array}\right)
$$

where H corresponds to multiplication by $h / 3$ modulo $x^{p}-1$.

- (g, f) is a short vector in the lattice as result of

$$
(k, f) B=(k q+f \cdot h / 3, f)=(g, f)
$$

for some polynomial k (from $f h / 3=g-k q$).

Original NTRU

- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(p, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$, some use additional reduction modulo q, ring denoted by R_{q}.

Original NTRU

- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(p, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$, some use additional reduction modulo q, ring denoted by R_{q}.
- Private key: $f, g \in R$ with coefficients in $\{-1,0,1\}$, specified number of nonzero coefficients. Additional requirement: f must be invertible in R modulo q and modulo 3 .
- Public key $h=3 g / f \bmod q$.

Original NTRU

- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(p, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$, some use additional reduction modulo q, ring denoted by R_{q}.
- Private key: $f, g \in R$ with coefficients in $\{-1,0,1\}$, specified number of nonzero coefficients. Additional requirement: f must be invertible in R modulo q and modulo 3 .
- Public key $h=3 g / f \bmod q$.
- Encryption of message $m \in R$, coefficients in $\{-1,0,1\}$: Pick random $r \in R$, same sample space as f; compute:

$$
c=r \cdot h+m \bmod q .
$$

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2$]. If everything is small enough then a equals $3 r g+f m$ in R and $m=a / f \bmod 3$.

Why we don't stick with original NTRU.

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

- Let

$$
L(d, t)=\{F \in \mathcal{R} \mid F \text { has } d \text { coefficients equal to } 1
$$ and t coefficients equal to -1 , all others 0$\}$.

- Then $f \in L\left(d_{f}, d_{f}-1\right), r \in L\left(d_{r}, d_{r}\right)$, and $g \in L\left(d_{g}, d_{g}\right)$ with $d_{r}<d_{g}$.
- Then $3 r g+f m$ has coefficients of size at most

$$
3 \cdot 2 d_{r}+2 d_{f}-1
$$

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

- Let

$$
L(d, t)=\{F \in \mathcal{R} \mid F \text { has } d \text { coefficients equal to } 1
$$ and t coefficients equal to -1 , all others 0$\}$.

- Then $f \in L\left(d_{f}, d_{f}-1\right), r \in L\left(d_{r}, d_{r}\right)$, and $g \in L\left(d_{g}, d_{g}\right)$ with $d_{r}<d_{g}$.
- Then $3 r g+f m$ has coefficients of size at most

$$
3 \cdot 2 d_{r}+2 d_{f}-1
$$

which is larger than $q / 2$ for typical parameters. Such large coefficients are highly unlikely - but annoying for applications and guarantees.

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

- Let

$$
L(d, t)=\{F \in \mathcal{R} \mid F \text { has } d \text { coefficients equal to } 1
$$ and t coefficients equal to -1 , all others 0$\}$.

- Then $f \in L\left(d_{f}, d_{f}-1\right), r \in L\left(d_{r}, d_{r}\right)$, and $g \in L\left(d_{g}, d_{g}\right)$ with $d_{r}<d_{g}$.
- Then $3 r g+f m$ has coefficients of size at most

$$
3 \cdot 2 d_{r}+2 d_{f}-1
$$

which is larger than $q / 2$ for typical parameters. Such large coefficients are highly unlikely - but annoying for applications and guarantees.

- Security decreases with large q; reduction is important.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals $c=r h+m$ and $r \in L\left(d_{r}, d_{r}\right)$, so $r(1)=0$ and $g \in L\left(d_{g}, d_{g}\right)$, so $h(1)=g(1) / f(1)=0$.
- This implies

$$
c(1)=r(1) h(1)+m(1)=m(1)
$$

which gives information about m, in particular if $|m(1)|$ is large.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals $c=r h+m$ and $r \in L\left(d_{r}, d_{r}\right)$, so $r(1)=0$ and $g \in L\left(d_{g}, d_{g}\right)$, so $h(1)=g(1) / f(1)=0$.
- This implies

$$
c(1)=r(1) h(1)+m(1)=m(1)
$$

which gives information about m, in particular if $|m(1)|$ is large.

- For other choices of r and h, such as $L\left(d_{r}, d_{r}-1\right)$ or such, one knows $r(1)$ and h is public, so evaluation at 1 leaks $m(1)$.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals $c=r h+m$ and $r \in L\left(d_{r}, d_{r}\right)$, so $r(1)=0$ and $g \in L\left(d_{g}, d_{g}\right)$, so $h(1)=g(1) / f(1)=0$.
- This implies

$$
c(1)=r(1) h(1)+m(1)=m(1)
$$

which gives information about m, in particular if $|m(1)|$ is large.

- For other choices of r and h, such as $L\left(d_{r}, d_{r}-1\right)$ or such, one knows $r(1)$ and h is public, so evaluation at 1 leaks $m(1)$.
- Original NTRU rejects extreme messages - this is dealt with by randomizing m via a padding (not mentioned so far).
- Could also replace $x^{p}-1$ by $\Phi_{p}=\left(x^{p}-1\right) /(x-1)$ to avoid attack.

Reason 3: Mappings to subrings

- Consider $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$.
- Can possibly get more information on m from homomorphism $\psi: R_{q} \rightarrow T$, for some ring T.
- Typical choice in original NTRU: $q=2048$ leads to natural ring maps from $(\mathbf{Z} / 2048)[x] /\left(x^{p}-1\right)$ to
- (Z/2)[x]/($\left.x^{p}-1\right)$,
- $(\mathbf{Z} / 4)[x] /\left(x^{p}-1\right)$,
- $(\mathbf{Z} / 8)[x] /\left(x^{p}-1\right)$, etc.

Reason 3: Mappings to subrings

- Consider $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$.
- Can possibly get more information on m from homomorphism $\psi: R_{q} \rightarrow T$, for some ring T.
- Typical choice in original NTRU: $q=2048$ leads to natural ring maps from $(\mathbf{Z} / 2048)[x] /\left(x^{p}-1\right)$ to
- (Z/2)[x]/($\left.x^{p}-1\right)$,
- (Z/4)[x]/($x^{p}-1$),
- $(\mathbf{Z} / 8)[x] /\left(x^{p}-1\right)$, etc.
- Unclear whether these can be exploited to get information on m.
- Maybe, complicated. [Silverman-Smart-Vercauteren '04]
- If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter '14, Elias-Lauter-Ozman-Stange '15, Chen-Lauter-Stange '16, Castryck-lliashenko-Vercauteren '16]

Reasons 4 and 5

- Rings of original NTRU also have
- a large proper subfield (used in attack by [Bauch-Bernstein-De Valence-Lange-van Vredendaal '17], attack by [Cheon-Jeong-Lee '16], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
- many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15], [Cramer-Ducas-Wesolowski '17]).

Reasons 4 and 5

- Rings of original NTRU also have
- a large proper subfield (used in attack by [Bauch-Bernstein-De Valence-Lange-van Vredendaal '17], attack by [Cheon-Jeong-Lee '16], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
- many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15], [Cramer-Ducas-Wesolowski '17]).
- Whether paranoia, or valid panic; what can we do about it?

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R}=\mathbf{Z}[x] / P$ and $(\mathbf{Z} / q)[x] / P$ is a field.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R}=\mathbf{Z}[x] / P$ and $(\mathbf{Z} / q)[x] / P$ is a field.
- Further choose P of prime degree p with large Galois group.
- Specifically, set $P=x^{p}-x-1$.

This has Galois group S_{p} of size p !.

- NTRU Prime works over the NTRU Prime field

$$
\mathcal{R} / q=(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)
$$

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
\rightarrow Only subfields of $\mathbf{Q}[x] / P$ are itself and \mathbf{Q}. Avoids structures used by, e.g., multiquad attack.
\rightarrow Large Galois group means no easy to compute automorphisms. Roots of P live in degree- p ! extension. Avoids structures used by Campbell-Groves-Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
\rightarrow No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen-Lauter-Stange attack.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
\rightarrow Only subfields of $\mathbf{Q}[x] / P$ are itself and \mathbf{Q}. Avoids structures used by, e.g., multiquad attack.
\rightarrow Large Galois group means no easy to compute automorphisms. Roots of P live in degree- p ! extension. Avoids structures used by Campbell-Groves-Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
\rightarrow No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen-Lauter-Stange attack.
Irreducibility also avoids the evaluation-at-1 attack which simplifies padding.

Streamlined NTRU Prime: private and public key

- System parameters $(p, q, t), p, q$ prime, $q \geq 32 t+1$.
- Pick g small in \mathcal{R}

$$
g=g_{0}+\cdots+g_{p-1} x^{p-1} \text { with } g_{i} \in\{-1,0,1\}
$$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R} / 3$.

- Pick t-small $f \in \mathcal{R}$

$$
f=f_{0}+\cdots+f_{p-1} x^{p-1} \text { with } f_{i} \in\{-1,0,1\} \text { and } \sum\left|f_{i}\right|=2 t
$$

Since \mathcal{R} / q is a field, f is invertible.

- Compute public key $h=g /(3 f)$ in \mathcal{R} / q.
- Private key is f and $1 / g \in \mathcal{R} / 3$.

Streamlined NTRU Prime: private and public key

- System parameters $(p, q, t), p, q$ prime, $q \geq 32 t+1$.
- Pick g small in \mathcal{R}

$$
g=g_{0}+\cdots+g_{p-1} x^{p-1} \text { with } g_{i} \in\{-1,0,1\}
$$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R} / 3$.

- Pick t-small $f \in \mathcal{R}$

$$
f=f_{0}+\cdots+f_{p-1} x^{p-1} \text { with } f_{i} \in\{-1,0,1\} \text { and } \sum\left|f_{i}\right|=2 t
$$

Since \mathcal{R} / q is a field, f is invertible.

- Compute public key $h=g /(3 f)$ in \mathcal{R} / q.
- Private key is f and $1 / g \in \mathcal{R} / 3$.
- Difference from original NTRU: more key options, 3 in denominator.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_{i} \in\{-1,0,1\}, \sum\left|r_{i}\right|=2 t$).
- Computes $h r$ in \mathcal{R} / q, lifts coefficients to $\mathbf{Z} \cap[-(q-1) / 2,(q-1) / 2]$.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_{i} \in\{-1,0,1\}, \sum\left|r_{i}\right|=2 t$).
- Computes $h r$ in \mathcal{R} / q, lifts coefficients to $\mathbf{Z} \cap[-(q-1) / 2,(q-1) / 2]$.
- Rounds each coefficient to the nearest multiple of 3 to get c.
- Computes hash $(r)=(C \mid K)$.
- Sends $(C \mid c)$, uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m. (Published May 2016, six months before Lizard patent application.)

Streamlined NTRU Prime: decapsulation

Bob decrypts $(C \mid c)$:

- Reminder $h=g /(3 f)$ in \mathcal{R} / q.
- Computes $3 f c=3 f(h r+m)=g r+3 f m$ in \mathcal{R} / q, lifts coefficients to $\mathbf{Z} \cap[-(q-1) / 2,(q-1) / 2]$.
- Reduces the coefficients modulo 3 to get $a=g r \in \mathcal{R} / 3$.
- Computes $r^{\prime}=a / g \in \mathcal{R} / 3$, lifts r^{\prime} to \mathcal{R}.
- Computes hash $\left(r^{\prime}\right)=\left(C^{\prime} \mid K^{\prime}\right)$ and c^{\prime} as rounding of $h r^{\prime}$.
- Verifies that $c^{\prime}=c$ and $C^{\prime}=C$.

If all checks verify, $K=K^{\prime}$ is the session key between Alice and Bob and can be used in a data encapsulation mechanism (DEM).

Choosing $q \geq 32 t+1$ means no decryption failures, so $r=r^{\prime}$ and verification works unless $(C \mid c)$ was incorrectly generated or tampered with.

Family picture

send $m+h r$ for small m, r and public h in ring \mathcal{R} ("NTRU")
cyclotomic, power-of-2 index, split modulus ("NTRU NTT")

Streamlined NTRU Prime: Security

- What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p}-1$	$x^{p}+1$	$x^{p}-x-1$
Degree p	prime	power of 2	prime
Modulus q	2^{d}	prime	prime
\# factors of P in \mathcal{R} / q	>1	p	1
\# proper subfields	>1	many	1
Every m encryptable	X	\checkmark	\checkmark
No decryption failures	X	X	\checkmark

Streamlined NTRU Prime: Security

- What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p}-1$	$x^{p}+1$	$x^{p}-x-1$
Degree p	prime	power of 2	prime
Modulus q	2^{d}	prime	prime
\# factors of P in \mathcal{R} / q	>1	p	1
\# proper subfields	>1	many	1
Every m encryptable	X	\checkmark	\checkmark
No decryption failures	X	X	\checkmark

- Because of the last $2 \sqrt{ }$'s the analysis is simpler than that of original NTRU.

Streamlined NTRU Prime Security: parameters

- We investigated security against the strongest known attacks; meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, algebraic attacks, and sieving.
- Streamlined NTRU Prime 45911^{761} and NTRU LPRime 45911^{761} both use $p=761$ and $q=4591$.
- The resulting sizes and Haswell speeds show that reducing the attack surface has very low cost:

Metric	Streamlined NTRU Prime 4591^{761}	NTRU LPRime 4591^{761}
Public-key size	1218 bytes	1047 bytes
Ciphertext size	1047 bytes	1175 bytes
Encapsulation time	59456 cycles	94508 cycles
Decapsulation time	97684 cycles	128316 cycles
Pre-quantum security	≥ 248 bits	≥ 225 bits

- Quantum computers will speed up attacks by less than squareroot.

Position in NIST post-quantum competition

20 lattice-based encryption submissions:

- Broken: Compact LWE.
- Not secure against chosen-ciphertext attacks: Ding; HILA5.
- Power-of-2 cyclotomics: EMBLEM R options; KCL; KINDI; Kyber; LAC; LIMA power-of-2 options; Lizard R options; NewHope; Round2 RLWR options; SABER.
- Non-power-of-2 cyclotomics: LIMA "safe prime" options such as Φ_{1019}, "more conservative choice of field"; NTRU-HRSS-KEM \checkmark using Φ_{701}; NTRUEncrypt using, e.g., Φ_{743}.
- Non-cyclotomic: EMBLEM non-R options; Frodo; Lizard non-R options; LOTUS; NTRU Prime $\sqrt{\text {; }}$ Odd Manhattan $\sqrt{ }$; Round2 LWR options; Titanium.
" \checkmark " means no decryption failures.

What's left if cyclotomics are broken?

8 lattice-based encryption submissions have non-cyclotomic options.
One example from each submission, public-key size + ciphertext size:

- Streamlined NTRU Prime 45911^{761} :
- LOTUS 128:
- Titanium CCA lite:
- Round2 n1 I1:
- Frodo 640:
- EMBLEM II.c:
- Lizard N663:
- Odd Manhattan 128:

1218 bytes +1047 bytes.
658944 bytes +1144 bytes.
14720 bytes +3008 bytes.
3455 bytes +4837 bytes.
9616 bytes +9736 bytes.
10016 bytes +14792 bytes.
1390592 bytes +10896 bytes.
1626240 bytes +180224 bytes.

