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Cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.
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Cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

//

Untrustworthy network
“Eve”

//

Receiver
“Bob”

I Literal meaning of cryptography: “secret writing”.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.
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Symmetric cryptography
I Alice and Bob share a secret key.

I They use this key for encryption:
both parties can encrypt and decrypt.

I Stream ciphers encrypt streams of bits: Salsa20, ChaCha20, (RC4),
. . .

I Block ciphers encrypt messages of fixed length: AES, Serpent,
(DES), . . .
Longer messages are encrypted using modes of operations to chain
the blocks: CBC, CTR, . . .

I They use this key for authentication and integrity protection: each
party is convinced that a message comes from the respective other
party and that it has not been modified.

I Message authentication codes (MACs) add such a checksum: GCM,
HMAC, Poly1305, . . .

I Typically a combination is needed, e.g., AES-GCM,
ChaCha20-Poly1305, . . .

I Hash functions map strings of arbitrary length to strings of fixed
length. Even though there is no secret they are typically considered
part of symmetric cryptography.
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Public key cryptography

I Alice a pair of keys: her public key and her private key.

I The key parts are linked by some mathematical function so that
computing the private key from the public key should be hard.

I Anybody can see and use Alice’s public key (Bob, Charlie, Eve, . . . )

I Only Alice knows her private key.

I Anybody can use Alice’s public key to encrypt to her;
only she can decrypt (using the private key).

I Messages satisfy some mathematical properties, e.g., integer < n.
point on an elliptic curve, . . .

I Examples are RSA, Diffie-Hellman in finite fields, ECDH, . . .

I Alice uses her private key to sign a message; anybody can verify the
signature using her public key.

I Signatures ensure authenticity and integrity:
anybody is convinced that the message comes from Alice and that it
has not been modified.

I Examples are RSA, DSA, ECDSA.
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Security assumptions

I Hardness assumptions at the basis of all public-key and essentially
all symmetric-key systems result from (failed) attempts at breaking
systems.
Security proofs are built only on top of those assumptions.

I A solid symmetric system is required to be as strong as exhaustive
key search.

I For public-key systems the best attacks are faster than exhaustive
key search.
Parameters are chosen to ensure that the best attack is infeasible.
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Key size recommendations
Future System Use

Parameter Legacy Near Term Long Term
Symmetric Key Size k 80 128 256

Hash Function Output Size m 160 256 512
MAC Output Size? m 80 128 256

RSA Problem `(n) ≥ 1024 3072 15360
Finite Field DLP `(pn) ≥ 1024 3072 15360

`(p), `(q) ≥ 160 256 512
ECDLP `(q) ≥ 160 256 512

I Hardness assumptions at the basis of all public-key and essentially
all symmetric-key systems result from (failed) attack attempts.
Security proofs are built only on top of those assumptions.

I A solid symmetric system is required to be as strong as exhaustive
key search.

I For public-key systems the best attacks are faster than exhaustive
key search. Parameters are chosen to ensure that the best attack
known today is infeasible.

I Attacker power limited to 2128 operations (280 for legacy).
I Source: ECRYPT-CSA “Algorithms, Key Size and Protocols Report”

Tanja Lange Code-Based Cryptography 6

http://www.ecrypt.eu.org/csa/publications.html






Cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

//

Untrustworthy network
“Eve”

//

Receiver
“Bob”

I Literal meaning of cryptography: “secret writing”.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.

I Post-quantum cryptography adds to the model that Eve has a
quantum computer.
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Post-quantum cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

//

“Eve”
with a quantum computer

//

Receiver
“Bob”

I Literal meaning of cryptography: “secret writing”.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.

I Post-quantum cryptography adds to the model that Eve has a
quantum computer.
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Post-quantum cryptography:
Cryptography designed

under the assumption that
the attacker (not the user!)
has a large quantum computer.
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Effects of large universal quantum computers

I Massive research effort. Tons of progress summarized in, e.g.,
https:

//en.wikipedia.org/wiki/Timeline_of_quantum_computing.

I Mark Ketchen, IBM Research, 2012, on quantum computing:
“We’re actually doing things that are making us think like, ‘hey this
isn’t 50 years off, this is maybe just 10 years off, or 15 years off.’ It’s
within reach.”

I Fast-forward to 2022, or 2027. Universal quantum computers exist.

I Shor’s algorithm solves in polynomial time:
I Integer factorization. RSA is dead.
I The discrete-logarithm problem in finite fields. DH is dead.
I The discrete-logarithm problem on elliptic curves. ECC is dead.

I This breaks all current public-key cryptography on the Internet!

I Also, Grover’s algorithm speeds up brute-force searches.

I Example: Only 264 quantum operations to break AES-128;
2128 quantum operations to break AES-256.
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National Academy of Sciences (US)

4 December 2018: Report on quantum computing

Don’t panic. “Key Finding 1: Given the current state of quantum
computing and recent rates of progress, it is highly unexpected that a
quantum computer that can compromise RSA 2048 or comparable
discrete logarithm-based public key cryptosystems will be built within the
next decade.”

Panic. “Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the hazard of
such a machine is high enough—and the time frame for transitioning to a
new security protocol is sufficiently long and uncertain—that
prioritization of the development, standardization, and deployment of
post-quantum cryptography is critical for minimizing the chance of a
potential security and privacy disaster.”
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Systems expected to survive

I Code-based encryption and signatures.

I Hash-based signatures.

I Isogeny-based encryption.

I Lattice-based encryption and signatures.

I Multivariate-quadratic encryption and signatures.

I Symmetric encryption and authentication.

This list is based on the best known attacks (as always).

These are categories of mathematical problems;
individual systems may be totally insecure if the problem is not used
correctly.
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Short summaries

I Code-based encryption: short ciphertexts and large public keys.
More in a moment.

I Hash-based signatures: very solid security and small public keys.
Require only a secure hash function (hard to find second preimages).

I Isogeny-based encryption: new kid on the block, promising short keys
and ciphertexts and non-interactive key exchange. Systems rely on
hardness of finding isogenies between elliptic curves over finite fields.

I Lattice-based encryption and signatures: possibility for balanced
sizes. Security relies on finding short vectors in some (typically
special) lattice.

I Multivariate-quadratic signatures: short signatures and large public
keys. Systems rely on hardness of solving systems of multi-variate
equations over finite fields.

Tanja Lange Code-Based Cryptography 14



Code-based encryption

I 1971 Goppa: Fast decoders for many matrices H.

I 1978 McEliece: Use Goppa codes for public-key crypto.
I Original parameters designed for 264 security.
I 2008 Bernstein–Lange–Peters: broken in ≈260 cycles.
I Easily scale up for higher security.

I 1986 Niederreiter: Simplified and smaller version of McEliece.

I 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.
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Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988 Leon;

1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman; 1990 van

Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier; 2008

Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van Tilborg; 2009

Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov; 2016

Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum); 2017

Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).
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Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.

Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.
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The McEliece cryptosystem I

I Let C be a length-n binary Goppa code Γ of dimension k with
minimum distance 2t + 1 where t ≈ (n − k)/ log2(n); original
parameters (1978) n = 1024, k = 524, t = 50.

I The McEliece secret key consists of a generator matrix G for Γ, an
efficient t-error correcting decoding algorithm for Γ; an n × n
permutation matrix P and a nonsingular k × k matrix S .

I n, k, t are public; but Γ, P, S are randomly generated secrets.

I The McEliece public key is the k × n matrix G ′ = SGP.
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The McEliece cryptosystem II

I Encrypt: Compute mG ′ and add a random error vector e of weight t
and length n. Send y = mG ′ + e.

I Decrypt: Compute yP−1 = mG ′P−1 + eP−1 = (mS)G + eP−1.
This works because eP−1 has the same weight as e

because P is a permutation matrix.
Use fast decoding to find mS and m.

I Attacker is faced with decoding y to nearest codeword mG ′ in the
code generated by G ′.
This is general decoding if G ′ does not expose any structure.

I Wrote attack software against original McEliece parameters,
decoding 50 errors in a [1024, 524] code.

I Attack on a single computer with a 2.4GHz Intel Core 2 Quad
Q6600 CPU would need, on average, 1400 days (258 CPU cycles) to
complete the attack.

I Running the software on 200 such computers would reduce the
average time to one week.
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The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the McEliece
cryptosystem. This is the schoolbook version.

I Use parity-check matrix H instead of generator matrix.

I Use n × n permutation matrix P, n − k × n − k invertible matrix S .

I Public Key: a scrambled parity-check matrix K = SHP ∈ F
(n−k)×n
2 .

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption: Find a n-bit vector e with wt(e) = t such that s = Ke.

I The passive attacker is facing a t-error correcting problem for the
public key, which seems to be random.
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The Niederreiter cryptosystem II

I Public Key: a scrambled parity-check matrix K = SHP.

I Encryption: The plaintext e is an n-bit vector of weight t. The
ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption using secret key: Compute

S−1s = S−1Ke = S−1(SHP)e

= H(Pe)

and observe that wt(Pe) = t, because P permutes.

I Use efficient syndrome decoder for H to find e′ = Pe and thus
e = P−1e′.
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Note on codes

I McEliece proposed to use binary Goppa codes.
These are still used today.

I Niederreiter described his scheme using Reed-Solomon codes.
These were broken in 1992 by Sidelnikov and Chestakov.

I More corpses on the way: concatenated codes, Reed-Muller codes,
several Algebraic Geometry (AG) codes, Gabidulin codes, several
LDPC codes, cyclic codes.

I Some other constructions look OK (for now).
NIST competition has several entries on QCMDPC and rank-metric
codes.
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How to hide nice code?

I Let q = 2m. A binary Goppa code is defined by
I a list L = (a1, . . . , an) of n distinct elements in Fq,

called the support.
I a square-free polynomial g(x) ∈ Fq[x ] of degree t such that g(a) 6= 0

for all a ∈ L. g(x) is called the Goppa polynomial.
I E.g. choose g(x) irreducible over Fq.

I Use secret g(x) and secret permutation of the ai , this corresponds
to secret permutation of the n positions; this replaces P.

I Secret key is polynomial g and support L = (a1, . . . , an).
Can generate both by expanding a small seed.

I Use systematic form K = (K ′|I ) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Public key size decreased to (n − k)× k.
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Do not use the schoolbook versions!
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Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

I Assume that the decoding algorithm decodes up to t errors,
i. e. it decodes y = c + e to c if wt(e) ≤ t.

I Eve intercepts ciphertext y = mG ′ + e.
Eve poses as Alice towards Bob and sends him tweaks of y.
She uses Bob’s reactions (success of failure to decrypt) to recover m.

I Assume wt(e) = t. (Else flip more bits till Bob fails).

I Eve sends yi = y + ei for ei the i-th unit vector.
If Bob returns error, position i in e is 0 (so the number of errors has
increased to t + 1 and Bob fails).
Else position i in e is 1.

I After k steps Eve knows the first k positions of mG ′ without error.
Invert the k × k submatrix of G ′ to get m

assuming it is invertible.

I Proper attack: figure out invertible submatrix of G ′ at beginning;
recover matching k coordinates.

I This attack has Eve send Bob variations of the same ciphertext; so
Bob will think that Alice is sloppy.
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Towards non-schoolbook version

I Attack also works on Niederreiter version:

Bitflip cooresponds to sending si = s + Ki ,
where Ki is the i-th column of K .

I More involved but doable (for McEliece and Niederreiter)
if decryption requires exactly t errors.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transform) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to encrypt and
authenticate (for McEliece or Niederreiter).

I Can prove security under the assumption that McEliece/Niederreiter
are One-Way Encryption (OWE) schemes.
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Classic McEliece highlights

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Short ciphertexts.

I Efficient and straightforward conversion of OW-CPA PKE
into IND-CCA2 KEM.

I Constant-time software implementations.

I FPGA implementation of full cryptosystem.

I Open-source (public domain) implementations.

I No patents.

Metric mceliece6960119 mceliece8192128
Public-key size 1047319 bytes 1357824 bytes
Secret-key size 13908 bytes 14080 bytes
Ciphertext size 226 bytes 240 bytes
Key-generation time 1108833108 cycles 1173074192 cycles
Encapsulation time 153940 cycles 188520 cycles
Decapsulation time 318088 cycles 343756 cycles

See https://classic.mceliece.org for more details.
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Conference advertisement

http://www.singacom.uva.es/~edgar/CCC/index.html
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We’re hiring!

https://jobs.tue.nl/nl/vacature/

tt-assistant-professor-coding-theory-449061.html
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Links and more upcoming events
I 18 & 19 May 7th Code-Based Cryptography Workshop
I 1 & 2 July 2019: Executive summer school on post-quantum

cryptography in Eindhoven.
I https://pqcrypto.eu.org: PQCRYPTO EU project.

I Expert recommendations.
I Free software libraries (libpqcrypto, pqm4, pqhw).
I Lots of reports, scientific papers, (overview) presentations.

I https://2017.pqcrypto.org/school: PQCRYPTO summer
school with 21 lectures on video + slides + exercises.

I https://2017.pqcrypto.org/exec: Executive school (12
lectures), less math, more overview. So far slides, soon videos.

I PQCrypto 2018 & PQCrypto 2017 conferences.
I PQCrypto 2016 with slides and videos from lectures + school.
I https://pqcrypto.org: Survey site by D.J. Bernstein and me.

I Many pointers: e.g., PQCrypto conference series.
I Bibliography for 4 major PQC systems.

I https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions:
NIST PQC competition.
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https://pqcrypto.eu.org
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https://github.com/mupq/pqhw
https://2017.pqcrypto.org/school
https://2017.pqcrypto.org/exec
http://www.math.fau.edu/pqcrypto2018/
https://2017.pqcrypto.org/conference/index.html
https://pqcrypto2016.jp/
https://pqcrypto.org
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