Quantum algorithms
for the subset-sum problem

Tanja Lange

Technische Universiteit Eindhoven
Joint work with:
D. J. Bernstein

University of Illinois at Chicago \& Technische Universiteit Eindhoven

Stacey Jeffery
University of Waterloo
Alexander Meurer
Ruhr-Universität Bochum
cr.yp.to/qsubsetsum.html

Subset-sum example:
Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608,
$4688,5989,6385,7353,7650,9413)$
having sum 36634 ?
Many variations: e.g.,
find such a subsequence
if one exists;
find such a subsequence knowing that one exists; allow range of sums; coefficients outside $\{0,1\}$; etc. "Subset-sum problem"; "knapsack problem"; etc.

The lattice connection

Define $x_{1}=499, \ldots, x_{12}=9413$.
Define $L \subseteq \mathbf{Z}^{12}$ as
$\left\{v: v_{1} x_{1}+\cdots+v_{12} x_{12}=0\right\}$.
Define $u \in \mathbf{Z}^{12}$ as
(70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
If $J \subseteq\{1,2, \ldots, 12\}$
and $\sum_{i \in J} x_{i}=36634$ then
$v \in L$ where $v_{i}=u_{i}-[i \in J]$.
v is very close to u.
Reasonable to hope that v is the closest vector in L to u.
Subset-sum algorithms \approx
codimension-1 CVP algorithms.

The coding connection

A weight-w subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, $4688,5989,6385,7353,7650,9413)$ having length w and sum 36634 ?

The coding connection

A weight-w subset-sum problem:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,
$4688,5989,6385,7353,7650,9413)$ having length w and sum 36634?

Replace \mathbf{Z} with $(\mathbf{Z} / 2)^{m}$:
Is there a subsequence of
(499, 852, 1927, 2535, 3596, 3608,
$4688,5989,6385,7353,7650,9413)$
having length w and xor 1060?
This is the central algorithmic problem in coding theory.

Recent asymptotic news

Eurocrypt 2010
Howgrave-Graham-Joux:
subset-sum exponent ≈ 0.337.
(Incorrect claim: ≈ 0.311.)
Eurocrypt 2011
Becker-Coron-Joux:
subset-sum exponent ≈ 0.291.
Adaptations to decoding:
Asiacrypt 2011 May-Meurer-
Thomae, Eurocrypt 2012
Becker-Joux-May-Meurer.

Post-quantum subset sum

Claimed in TCC 2010
Lyubashevsky-Palacio-Segev
"Public-key cryptographic
primitives provably
as secure as subset sum":
There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best quantum subset-sum exponent?

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

Generic brute-force search
finds this root using
$\approx 2^{n}$ evaluations of f.
1996 Grover method
finds this root using
$\approx 2^{0.5 n}$ quantum evaluations of f on superpositions of inputs.

Cost of quantum evaluation of f \approx cost of evaluation of f
if cost counts qubit "operations".

Easily adapt to handle

different \# of roots,
and \# not known in advance. Faster if \# is large, but typically \# is not very large. Most interesting: $\# \in\{0,1\}$.

Easily adapt to handle
different \# of roots,
and \# not known in advance.
Faster if \# is large,
but typically $\#$ is not very large.
Most interesting: $\# \in\{0,1\}$.
Apply to the function
$J \mapsto \Sigma(J)-t$ where
$\Sigma(J)=\sum_{i \in J} x_{i}$.
Cost $2^{0.5 n}$ to find root (i.e., to find indices of subsequence of x_{1}, \ldots, x_{n} with sum t) or to decide that no root exists.

We suppress poly factors in cost.

Algorithm details for unique root:
Represent $J \subseteq\{1, \ldots, n\}$ as an integer between 0 and $2^{n}-1$.
n bits are enough space to store one such integer.
n quits store much more, a superposition over sets J : 2^{n} complex amplitudes
$a_{0}, \ldots, a_{2} n_{-1}$ with
$\left|a_{0}\right|^{2}+\cdots+\left|a_{2 n-1}\right|^{2}=1$.
Measuring these n quits
has chance $\left|a_{J}\right|^{2}$ to produce J.
Start from uniform superposition, ie., $a_{J}=1 / 2^{n / 2}$ for all J.

Step 1: Set $a \leftarrow b$ where
$b_{J}=-a_{J}$ if $\Sigma(J)=t$,
$b_{J}=a_{J}$ otherwise.
This is about as easy
as computing Σ.
Step 2: "Grover diffusion".
Set $a \leftarrow b$ where
$b_{J}=-a_{J}+\left(2 / 2^{n}\right) \sum_{l} a_{l}$.
This is also easy.
Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5 n}$ times.

Measure the n quits.
With high probability this finds the unique J such that $\Sigma(J)=t$.

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after 0 steps:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after Step 1:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after Step $1+$ Step 2:

1.0
0.5

Graph of $J \mapsto a_{J}$

for 36634 example with $n=12$ after Step $1+$ Step $2+$ Step 1 : | 1.0 |
| :--- |
| 0.5 |
| |
| 0.0 |

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $2 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $3 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $4 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $5 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $6 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $7 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $8 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $9 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $10 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $11 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $12 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $13 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $14 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $15 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $16 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $17 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $18 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $19 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $20 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $25 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $30 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $35 \times($ Step $1+$ Step 2$)$:

Good moment to stop, measure.

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $40 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $45 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $50 \times($ Step $1+$ Step 2$)$:

Traditional stopping point.

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $60 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $70 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $80 \times($ Step $1+$ Step 2):

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $90 \times($ Step $1+$ Step 2$)$:

Graph of $J \mapsto a_{J}$
for 36634 example with $n=12$ after $100 \times($ Step $1+$ Step 2$)$:

Very bad stopping point.
$J \mapsto a_{J}$ is completely described by a vector of two numbers (with fixed multiplicities):
(1) a_{J} for roots J;
(2) a_{J} for non-roots J.

Step $1+$ Step 2
act linearly on this vector.
Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm.
\Rightarrow Probability is ≈ 1
after $\approx(\pi / 4) 2^{0.5 n}$ iterations.

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2 \mathbf{Z}$.
1974 Horowitz-Sahni:
Sort list of $\Sigma\left(J_{1}\right)$
for all $J_{1} \subseteq\{1, \ldots, n / 2\}$
and list of $t-\Sigma\left(J_{2}\right)$
for all $J_{2} \subseteq\{n / 2+1, \ldots, n\}$.
Merge to find collisions
$\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$,
i.e., $\Sigma\left(J_{1} \cup J_{2}\right)=t$.

Cost $2^{0.5 n}$ for sorting, merging.
We assign cost 1 to RAM.
e.g. 36634 as sum of
(499, 852, 1927, 2535, 3596, 3608,
4688, 5989, 6385, 7353, 7650, 9413):
Sort the 64 sums
$0,499,852,499+852, \ldots$,
$499+852+1927+\cdots+3608$
and the 64 differences
$36634-0,36634-4688, \ldots$,
$36634-4688-\cdots-9413$
to see that
$499+852+2535+3608=$
$36634-5989-6385-7353-9413$.

Moduli (0.5)

For simplicity assume $n \in \mathbf{4 Z}$.
Choose $M \approx 2^{0.25 n}$.
Choose $t_{1} \in\{0,1, \ldots, M-1\}$.
Define $t_{2}=t-t_{1}$.
Find all $J_{1} \subseteq\{1, \ldots, n / 2\}$
such that $\Sigma\left(J_{1}\right) \equiv t_{1} \quad(\bmod M)$.
How? Split J_{1} as $J_{11} \cup J_{12}$.
Find all $J_{2} \subseteq\{n / 2+1, \ldots, n\}$ such that $\Sigma\left(J_{2}\right) \equiv t_{2}(\bmod M)$.

Sort and merge to find all collisions $\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$, ie., $\Sigma\left(J_{1} \cup J_{2}\right)=t$.

Finds J eff $\Sigma\left(J_{1}\right) \equiv t_{1}$.
There are $\approx 2^{0.25 n}$ choices of t_{1}.
Each choice costs $2^{0.25 n}$.
Total cost $2^{0.5 n}$.
Not visible in cost metric: this uses space only $2^{0.25 n}$, assuming typical distribution.

Algorithm has been introduced at least twice:
2006 Elsenhans-Jahnel;
2010 Howgrave-Graham-Joux.
Different technique
for similar space reduction:
1981 Schroeppel-Shamir.
e.g. $M=8, t=36634, x=$ (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Try each $t_{1} \in\{0,1, \ldots, 7\}$.
In particular try $t_{1}=6$.
There are 12 subsequences of
(499, 852, 1927, 2535, 3596, 3608)
with sum 6 modulo 8 .
There are 6 subsequences of
(4688, 5989, 6385, $7353,7650,9413$)
with sum $36634-6$ modulo 8 .
Sort and merge to find
$499+852+2535+3608=$
$36634-5989-6385-7353-9413$.

Quantum left-right split (0.333 . . .)

Cost $2^{n / 3}$, imitating
1998 Brassard-Høyer-Tapp:
For simplicity assume $n \in 3 \mathbf{Z}$.
Compute $\Sigma\left(J_{1}\right)$ for all
$J_{1} \subseteq\{1,2, \ldots, n / 3\}$.
Sort $L=\left\{\Sigma\left(J_{1}\right)\right\}$.
Can now efficiently compute
$J_{2} \mapsto\left[t-\Sigma\left(J_{2}\right) \notin L\right]$
for $J_{2} \subseteq\{n / 3+1, \ldots, n\}$.
Recall: we assign cost 1 to RAM.
Use Grover's method to see whether this function has a root.

Quantum walk

Unique-collision-finding problem:
Say f has n-bit inputs,
exactly one collision $\{p, q\}$:
ie., $p \neq q, f(p)=f(q)$.
Problem: find this collision.
Cost 2^{n} : Define S as
the set of n-bit strings.
Compute $f(S)$, sort.
Generalize to cost r,
success probability $\approx\left(r / 2^{n}\right)^{2}$:
Choose a set S of size r.
Compute $f(S)$, sort.

Data structure $D(S)$ capturing the generalized computation: the set S; the multiset $f(S)$; the number of collisions in S.

Very efficient to move from $D(S)$ to $D(T)$ if T is an adjacent set:
$\# S=\# T=r, \#(S \cap T)=r-1$.
2003 Ambainis, simplified 2007 Magniez-Nayak-Roland-Santha:
Create superposition of states
$(D(S), D(T))$ with adjacent S, T.
By a quantum walk
find S containing a collision.

How the quantum walk works:

Start from uniform superposition.
Repeat $\approx 0.6 \cdot 2^{n} / r$ times:
Negate $a_{S, T}$
if S contains collision.
Repeat $\approx 0.7 \cdot \sqrt{r}$ times:
For each T :
Diffuse $a_{S, T}$ across all S.
For each S :
Diffuse $a_{S, T}$ across all T.
Now high probability that T contains collision.
Cost $r+2^{n} / \sqrt{r}$. Optimize: $2^{2 n / 3}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

0 negations and 0 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.938 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.060 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.001 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 1 negation and 46 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.935 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.057 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;-$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.008 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

2 negations and 92 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.918 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.059 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.022 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

3 negations and 138 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.897 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.058 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.042 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

4 negations and 184 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.873 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.054 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.070 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 5 negations and 230 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.838 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.054 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.003 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.104 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

6 negations and 276 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.800 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.051 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.141 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

7 negations and 322 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.758 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.047 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.184 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 8 negations and 368 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.708 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.003 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.046 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.234 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

9 negations and 414 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.658 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.003 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.042 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.009 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.287 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 10 negations and 460 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.606 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.003 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.002 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.037 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.013 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.338 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 11 negations and 506 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.547 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.004 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.003 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.036 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.015 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.394 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 12 negations and 552 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.491 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.004 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.003 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.032 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.014 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.455 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 13 negations and 598 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.436 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.005 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.003 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.026 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.017 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.513 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 14 negations and 644 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.377 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.004 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.025 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.022 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.566 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 15 negations and 690 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.322 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.005 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.004 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.021 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.023 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.623 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 16 negations and 736 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.270 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.005 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.017 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.022 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.680 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 17 negations and 782 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.218 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.005 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.015 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.024 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.730 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 18 negations and 828 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.172 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.006 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.005 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.011 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.029 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.775 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 19 negations and 874 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.131 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.006 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.008 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.030 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.816 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 20 negations and 920 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.093 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.007 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.027 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.857 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

21 negations and 966 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.062 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.006 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.004 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.030 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.890 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 22 negations and 1012 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.037 ;+$ $\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$ $\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$ $\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.002 ;+$ $\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.034 ;+$ $\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$ $\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.910 ;+$

Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 23 negations and 1058 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.017 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.034 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.930 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

24 negations and 1104 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.005 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.030 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.948 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

25 negations and 1150 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.008 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.000 ;+$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.031 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.001 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.952 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after 26 negations and 1196 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.002 ;-$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.008 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.008 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.000 ;-$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.035 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.002 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.945 ;+$
Right column is sign of $a_{S, T}$.

Classify (S, T) according to $(\#(S \cap\{p, q\}), \#(T \cap\{p, q\}))$; reduce a to low-dim vector. Analyze evolution of this vector.
e.g. $n=15, r=1024$, after

27 negations and 1242 diffusions:
$\operatorname{Pr}[\operatorname{class}(0,0)] \approx 0.011 ;-$
$\operatorname{Pr}[\operatorname{class}(0,1)] \approx 0.007 ;+$
$\operatorname{Pr}[\operatorname{class}(1,0)] \approx 0.007 ;-$
$\operatorname{Pr}[\operatorname{class}(1,1)] \approx 0.001 ;-$
$\operatorname{Pr}[\operatorname{class}(1,2)] \approx 0.034 ;+$
$\operatorname{Pr}[\operatorname{class}(2,1)] \approx 0.003 ;+$
$\operatorname{Pr}[\operatorname{class}(2,2)] \approx 0.938 ;+$
Right column is sign of $a_{S, T}$.

Subset-sum walk (0.333 ...)
Consider f defined by
$f\left(1, J_{1}\right)=\Sigma\left(J_{1}\right)$
for $J_{1} \subseteq\{1, \ldots, n / 2\}$;
$f\left(2, J_{2}\right)=t-\Sigma\left(J_{2}\right)$
for $J_{2} \subseteq\{n / 2+1, \ldots, n\}$.
Good chance of unique
collision $\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$.
$n / 2+1$ bits of input, so quantum walk costs $2^{n / 3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma\left(J_{1}\right)=\Sigma\left(J_{1}^{\prime}\right)$, etc.

Generalized moduli

Choose M, t_{1}, r with $M \approx r$.
(Original moduli algorithm
is the special case $r=2^{n / 4}$.)
Take set $S_{11}, \# S_{11}=r$, where
$J_{11} \in S_{11} \Rightarrow J_{11} \subseteq\{1, \ldots, n / 4\}$.
(Original algorithm: S_{11} is the set
of all $J_{11} \subseteq\{1, \ldots, n / 4\}$.)
Compute $\Sigma\left(J_{11}\right) \bmod M$
for each $J_{11} \in S_{11}$.
Similarly take a set S_{12} of r subsets of $\{n / 4+1, \ldots, n / 2\}$.
Compute $t_{1}-\Sigma\left(J_{12}\right) \bmod M$
for each $J_{12} \in S_{12}$.

Find all collisions
$\Sigma\left(J_{11}\right) \equiv t_{1}-\Sigma\left(J_{12}\right)$,
i.e., $\Sigma\left(J_{1}\right) \equiv t_{1} \quad(\bmod M)$
where $J_{1}=J_{11} \cup J_{12}$.
Compute each $\Sigma\left(J_{1}\right)$.
Similarly $S_{21}, S_{22} \Rightarrow$
list of J_{2} with $\Sigma\left(J_{2}\right) \equiv t-t_{1}$ \Rightarrow each $t-\Sigma\left(J_{2}\right)$.

Find collisions $\Sigma\left(J_{1}\right)=t-\Sigma\left(J_{2}\right)$.
Success probability $r^{4} / 2^{n}$ at finding any particular J with $\Sigma(J)=t, \Sigma\left(J_{1}\right) \equiv t_{1} \quad(\bmod M)$.

Assuming typical distribution:
cost r, since $M \approx r$.

Quantum moduli (0.3)

Capture execution of
generalized moduli algorithm as data structure
$D\left(S_{11}, S_{12}, S_{21}, S_{22}\right)$.
Easy to move
from $S_{i j}$ to adjacent $T_{i j}$.
Convert into quantum walk:
cost $r+\sqrt{r} 2^{n / 2} / r^{2}$.
$2^{0.2 n}$ for $r \approx 2^{0.2 n}$.
Use "amplitude amplification" to search for correct t_{1}. Total cost $2^{0.3 n}$.

Quantum reps (0.241...)

Central result of the paper:
Combine quantum walk
with "representations" idea of
2010 Howgrave-Graham-Joux.
Subset-sum exponent $0.241 \ldots$; new record.

Lower-level improvement:
Ambainis uses ad-hoc "combination of a hash table and a skip list" to ensure history-independence.
We use radix trees.
Much easier, presumably faster.

