Quantum algorithms for the subset-sum problem

Tanja Lange Technische Universiteit Eindhoven

Joint work with:

D. J. Bernstein
University of Illinois at Chicago &
Technische Universiteit Eindhoven

Stacey Jeffery University of Waterloo

Alexander Meurer Ruhr-Universität Bochum

cr.yp.to/qsubsetsum.html

Subset-sum example: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having sum 36634?

Many variations: e.g., find such a subsequence *if* one exists; find such a subsequence *knowing that* one exists; allow range of sums; coefficients outside {0, 1}; etc.

"Subset-sum problem"; "knapsack problem"; etc.

The lattice connection

Define $x_1 = 499, \ldots, x_{12} = 9413$. Define $L \subset \mathbf{Z}^{12}$ as $\{v: v_1x_1 + \cdots + v_{12}x_{12} = 0\}.$ Define $u \in \mathbf{Z}^{12}$ as (70, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).If $J \subset \{1, 2, ..., 12\}$ and $\sum_{i \in J} x_i = 36634$ then $v \in L$ where $v_i = u_i - [i \in J]$. v is very close to u. Reasonable to hope that v is the closest vector in L to u. Subset-sum algorithms pproxcodimension-1 CVP algorithms.

The coding connection

A weight-*w* subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length *w* and sum 36634?

The coding connection

A weight-*w* subset-sum problem: Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413) having length *w* and sum 36634?

Replace **Z** with $(\mathbf{Z}/2)^m$:

Is there a subsequence of (499, 852, 1927, 2535, 3596, 3608,

4688, 5989, 6385, 7353, 7650, 9413) having length *w* and xor 1060?

This is the central algorithmic problem in coding theory.

Recent asymptotic news

Eurocrypt 2010 Howgrave-Graham–Joux: subset-sum exponent \approx 0.337. (Incorrect claim: \approx 0.311.)

Eurocrypt 2011 Becker–Coron–Joux: subset-sum exponent ≈0.291. Adaptations to decoding: Asiacrypt 2011 May–Meurer–

Thomae, Eurocrypt 2012 Becker–Joux–May–Meurer.

Post-quantum subset sum

Claimed in TCC 2010 Lyubashevsky–Palacio–Segev "Public-key cryptographic primitives provably as secure as subset sum":

There are "currently no known quantum algorithms that perform better than classical ones on the subset sum problem".

Hmmm. What's the best *quantum* subset-sum exponent?

Quantum search (0.5)

Assume that function f has n-bit input, unique root.

- Generic brute-force search finds this root using $\approx 2^n$ evaluations of f.
- 1996 Grover method finds this root using $\approx 2^{0.5n}$ quantum evaluations of fon superpositions of inputs.

Cost of quantum evaluation of $f \approx \text{cost}$ of evaluation of fif cost counts qubit "operations". Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$. Easily adapt to handle different # of roots, and # not known in advance. Faster if # is large, but typically # is not very large. Most interesting: $\# \in \{0, 1\}$.

Apply to the function $J \mapsto \Sigma(J) - t$ where $\Sigma(J) = \sum_{i \in J} x_i$.

Cost $2^{0.5n}$ to find root (i.e., to find indices of subsequence of x_1, \ldots, x_n with sum t) or to decide that no root exists. We suppress poly factors in cost. Algorithm details for unique root:

Represent $J \subseteq \{1, \ldots, n\}$ as an integer between 0 and $2^n - 1$.

n bits are enough space to store one such integer.

n qubits store much more, a superposition over sets *J*: 2^n complex amplitudes a_0, \ldots, a_{2^n-1} with $|a_0|^2 + \cdots + |a_{2^n-1}|^2 = 1$. Measuring these *n* qubits has chance $|a_J|^2$ to produce *J*.

Start from uniform superposition, i.e., $a_J = 1/2^{n/2}$ for all J.

Step 1: Set $a \leftarrow b$ where $b_J = -a_J$ if $\Sigma(J) = t$, $b_J = a_J$ otherwise. This is about as easy as computing Σ .

Step 2: "Grover diffusion". Set $a \leftarrow b$ where $b_J = -a_J + (2/2^n) \sum_I a_I$. This is also easy.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds the unique J such that $\Sigma(J) = t$.

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 0 steps:

Graph of $J \mapsto a_J$ for 36634 example with n = 12after Step 1:

Graph of $J \mapsto a_J$ for 36634 example with n = 12after Step 1 + Step 2:

Graph of $J \mapsto a_J$ for 36634 example with n = 12after Step 1 + Step 2 + Step 1:

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 2 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 3 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 4 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 5 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 6 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 7 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 8 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 9 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 10 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 11 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after $12 \times (\text{Step } 1 + \text{Step } 2)$:

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 13 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 14 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 15 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 16 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 17 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 18 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 19 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 20 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 25 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 30 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 35 × (Step 1 + Step 2):

Good moment to stop, measure.

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 40 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 45 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 50 × (Step 1 + Step 2):

Traditional stopping point.

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 60 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 70 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 80 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 90 × (Step 1 + Step 2):

Graph of $J \mapsto a_J$ for 36634 example with n = 12after 100 × (Step 1 + Step 2):

Very bad stopping point.

 $J \mapsto a_J$ is completely described by a vector of two numbers (with fixed multiplicities): (1) a_J for roots J; (2) a_J for non-roots J.

Step 1 + Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Left-right split (0.5)

Don't need quantum computers to achieve exponent 0.5.

For simplicity assume $n \in 2\mathbb{Z}$.

1974 Horowitz–Sahni: Sort list of $\Sigma(J_1)$ for all $J_1 \subseteq \{1, \ldots, n/2\}$ and list of $t - \Sigma(J_2)$ for all $J_2 \subseteq \{n/2 + 1, \ldots, n\}$. Merge to find collisions $\Sigma(J_1) = t - \Sigma(J_2)$, i.e., $\Sigma(J_1 \cup J_2) = t$. Cost $2^{0.5n}$ for sorting, merging. We assign cost 1 to RAM.

e.g. 36634 as sum of (499, 852, 1927, 2535, 3596, 3608, 4688, 5989, 6385, 7353, 7650, 9413):

Sort the 64 sums $0, 499, 852, 499 + 852, \ldots,$ $499 + 852 + 1927 + \cdots + 3608$ and the 64 differences $36634 - 0, 36634 - 4688, \ldots,$ $36634 - 4688 - \cdots - 9413$ to see that 499 + 852 + 2535 + 3608 =36634 - 5989 - 6385 - 7353 - 9413.

<u>Moduli (0.5)</u>

For simplicity assume $n \in 4\mathbb{Z}$. Choose $M \approx 2^{0.25n}$. Choose $t_1 \in \{0, 1, \dots, M - 1\}$. Define $t_2 = t - t_1$.

Find all $J_1 \subseteq \{1, \ldots, n/2\}$ such that $\Sigma(J_1) \equiv t_1 \pmod{M}$. How? Split J_1 as $J_{11} \cup J_{12}$.

Find all $J_2 \subseteq \{n/2+1,\ldots,n\}$ such that $\Sigma(J_2) \equiv t_2 \pmod{M}$.

Sort and merge to find all collisions $\Sigma(J_1) = t - \Sigma(J_2)$, i.e., $\Sigma(J_1 \cup J_2) = t$. Finds J iff $\Sigma(J_1) \equiv t_1$. There are $\approx 2^{0.25n}$ choices of t_1 . Each choice costs $2^{0.25n}$. Total cost $2^{0.5n}$.

Not visible in cost metric: this uses space only 2^{0.25n}, assuming typical distribution.

Algorithm has been introduced at least twice: 2006 Elsenhans–Jahnel; 2010 Howgrave-Graham–Joux. Different technique for similar space reduction: 1981 Schroeppel–Shamir.

e.g. M = 8, t = 36634, x =(499, 852, 1927, 2535, 3596, 3608,4688, 5989, 6385, 7353, 7650, 9413): Try each $t_1 \in \{0, 1, ..., 7\}$. In particular try $t_1 = 6$. There are 12 subsequences of (499, 852, 1927, 2535, 3596, 3608)with sum 6 modulo 8. There are 6 subsequences of (4688, 5989, 6385, 7353, 7650, 9413)with sum 36634 – 6 modulo 8. Sort and merge to find 499 + 852 + 2535 + 3608 =36634 - 5989 - 6385 - 7353 - 9413.

Quantum left-right split (0.333...)

Cost $2^{n/3}$, imitating 1998 Brassard–Høyer–Tapp: For simplicity assume $n \in 3\mathbb{Z}$.

Compute $\Sigma(J_1)$ for all $J_1 \subseteq \{1, 2, \ldots, n/3\}.$ Sort $L = \{\Sigma(J_1)\}.$

Can now efficiently compute $J_2 \mapsto [t - \Sigma(J_2) \notin L]$ for $J_2 \subseteq \{n/3 + 1, ..., n\}$. Recall: we assign cost 1 to RAM.

Use Grover's method to see whether this function has a root.

<u>Quantum walk</u>

Unique-collision-finding problem: Say f has n-bit inputs, exactly one collision $\{p, q\}$: i.e., $p \neq q$, f(p) = f(q). Problem: find this collision.

Cost 2^n : Define S as the set of n-bit strings. Compute f(S), sort.

Generalize to cost r, success probability $\approx (r/2^n)^2$: Choose a set S of size r. Compute f(S), sort. Data structure D(S) capturing the generalized computation: the set S; the multiset f(S); the number of collisions in S.

Very efficient to move from D(S)to D(T) if T is an **adjacent** set: $\#S = \#T = r, \ \#(S \cap T) = r - 1.$

2003 Ambainis, simplified 2007 Magniez–Nayak–Roland–Santha: Create superposition of states (D(S), D(T)) with adjacent S, T. By a quantum walk find S containing a collision. How the quantum walk works:

Start from uniform superposition. Repeat $\approx 0.6 \cdot 2^n / r$ times: Negate $a_{S,T}$ if S contains collision. Repeat $\approx 0.7 \cdot \sqrt{r}$ times: For each T: Diffuse $a_{S,T}$ across all S. For each S: Diffuse $a_{S,T}$ across all T. Now high probability

that T contains collision.

Cost $r+2^n/\sqrt{r}$. Optimize: $2^{2n/3}$.

e.g. n = 15, r = 1024, after 0 negations and 0 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.938; + \\ & \Pr[\text{class } (0,1)] \approx 0.000; + \\ & \Pr[\text{class } (1,0)] \approx 0.000; + \\ & \Pr[\text{class } (1,1)] \approx 0.060; + \\ & \Pr[\text{class } (1,2)] \approx 0.000; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.001; + \end{aligned}$

e.g. n = 15, r = 1024, after 1 negation and 46 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.935; + \\ & \Pr[\text{class } (0,1)] \approx 0.000; + \\ & \Pr[\text{class } (1,0)] \approx 0.000; - \\ & \Pr[\text{class } (1,1)] \approx 0.057; + \\ & \Pr[\text{class } (1,2)] \approx 0.000; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; - \\ & \Pr[\text{class } (2,2)] \approx 0.008; + \end{aligned}$

e.g. n = 15, r = 1024, after 2 negations and 92 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.918; + \\ & \Pr[\text{class } (0,1)] \approx 0.001; + \\ & \Pr[\text{class } (1,0)] \approx 0.000; - \\ & \Pr[\text{class } (1,1)] \approx 0.059; + \\ & \Pr[\text{class } (1,2)] \approx 0.001; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; - \\ & \Pr[\text{class } (2,2)] \approx 0.022; + \end{aligned}$

e.g. n = 15, r = 1024, after

3 negations and 138 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.897; + \\ & \Pr[\text{class } (0,1)] \approx 0.001; + \\ & \Pr[\text{class } (1,0)] \approx 0.000; - \\ & \Pr[\text{class } (1,1)] \approx 0.058; + \\ & \Pr[\text{class } (1,2)] \approx 0.002; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.042; + \end{aligned}$

e.g. n = 15, r = 1024, after 4 negations and 184 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.873; + \\ & \Pr[\text{class } (0,1)] \approx 0.001; + \\ & \Pr[\text{class } (1,0)] \approx 0.000; - \\ & \Pr[\text{class } (1,1)] \approx 0.054; + \\ & \Pr[\text{class } (1,2)] \approx 0.002; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.070; + \end{aligned}$

e.g. n = 15, r = 1024, after 5 negations and 230 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.838; + \\ & \Pr[\text{class } (0,1)] \approx 0.001; + \\ & \Pr[\text{class } (1,0)] \approx 0.001; - \\ & \Pr[\text{class } (1,1)] \approx 0.054; + \\ & \Pr[\text{class } (1,2)] \approx 0.003; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.104; + \end{aligned}$

e.g. n = 15, r = 1024, after 6 negations and 276 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.800; + \\ & \Pr[\text{class } (0,1)] \approx 0.001; + \\ & \Pr[\text{class } (1,0)] \approx 0.001; - \\ & \Pr[\text{class } (1,1)] \approx 0.051; + \\ & \Pr[\text{class } (1,2)] \approx 0.006; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.141; + \end{aligned}$

e.g. n = 15, r = 1024, after 7 negations and 322 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.758; + \\ & \Pr[\text{class } (0,1)] \approx 0.002; + \\ & \Pr[\text{class } (1,0)] \approx 0.001; - \\ & \Pr[\text{class } (1,1)] \approx 0.047; + \\ & \Pr[\text{class } (1,2)] \approx 0.007; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.184; + \end{aligned}$

e.g. n = 15, r = 1024, after 8 negations and 368 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.708; + \\ & \Pr[\text{class } (0,1)] \approx 0.003; + \\ & \Pr[\text{class } (1,0)] \approx 0.001; - \\ & \Pr[\text{class } (1,1)] \approx 0.046; + \\ & \Pr[\text{class } (1,2)] \approx 0.007; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.234; + \end{aligned}$

e.g. n = 15, r = 1024, after

9 negations and 414 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.658; + \\ & \Pr[\text{class } (0,1)] \approx 0.003; + \\ & \Pr[\text{class } (1,0)] \approx 0.001; - \\ & \Pr[\text{class } (1,1)] \approx 0.042; + \\ & \Pr[\text{class } (1,2)] \approx 0.009; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.287; + \end{aligned}$

e.g. n = 15, r = 1024, after 10 negations and 460 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.606; + \\ & \Pr[\text{class } (0,1)] \approx 0.003; + \\ & \Pr[\text{class } (1,0)] \approx 0.002; - \\ & \Pr[\text{class } (1,1)] \approx 0.037; + \\ & \Pr[\text{class } (1,2)] \approx 0.013; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.338; + \end{aligned}$

e.g. n = 15, r = 1024, after 11 negations and 506 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.547; + \\ & \Pr[\text{class } (0,1)] \approx 0.004; + \\ & \Pr[\text{class } (1,0)] \approx 0.003; - \\ & \Pr[\text{class } (1,1)] \approx 0.036; + \\ & \Pr[\text{class } (1,2)] \approx 0.015; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.394; + \end{aligned}$

e.g. n = 15, r = 1024, after 12 negations and 552 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.491; + \\ & \Pr[\text{class } (0,1)] \approx 0.004; + \\ & \Pr[\text{class } (1,0)] \approx 0.003; - \\ & \Pr[\text{class } (1,1)] \approx 0.032; + \\ & \Pr[\text{class } (1,2)] \approx 0.014; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.455; + \end{aligned}$

e.g. n = 15, r = 1024, after 13 negations and 598 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.436; + \\ & \Pr[\text{class } (0,1)] \approx 0.005; + \\ & \Pr[\text{class } (1,0)] \approx 0.003; - \\ & \Pr[\text{class } (1,1)] \approx 0.026; + \\ & \Pr[\text{class } (1,2)] \approx 0.017; + \\ & \Pr[\text{class } (2,1)] \approx 0.000; + \\ & \Pr[\text{class } (2,2)] \approx 0.513; + \end{aligned}$

e.g. n = 15, r = 1024, after

14 negations and 644 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.377; + \\ & \Pr[\text{class } (0,1)] \approx 0.006; + \\ & \Pr[\text{class } (1,0)] \approx 0.004; - \\ & \Pr[\text{class } (1,1)] \approx 0.025; + \\ & \Pr[\text{class } (1,2)] \approx 0.022; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.566; + \end{aligned}$

e.g. n = 15, r = 1024, after 15 negations and 690 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.322; + \\ & \Pr[\text{class } (0,1)] \approx 0.005; + \\ & \Pr[\text{class } (1,0)] \approx 0.004; - \\ & \Pr[\text{class } (1,1)] \approx 0.021; + \\ & \Pr[\text{class } (1,2)] \approx 0.023; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.623; + \end{aligned}$

e.g. n = 15, r = 1024, after 16 negations and 736 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.270; + \\ & \Pr[\text{class } (0,1)] \approx 0.006; + \\ & \Pr[\text{class } (1,0)] \approx 0.005; - \\ & \Pr[\text{class } (1,1)] \approx 0.017; + \\ & \Pr[\text{class } (1,2)] \approx 0.022; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.680; + \end{aligned}$

e.g. n = 15, r = 1024, after 17 negations and 782 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.218; + \\ & \Pr[\text{class } (0,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,0)] \approx 0.005; - \\ & \Pr[\text{class } (1,1)] \approx 0.015; + \\ & \Pr[\text{class } (1,2)] \approx 0.024; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.730; + \end{aligned}$

e.g. n = 15, r = 1024, after 18 negations and 828 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.172; + \\ & \Pr[\text{class } (0,1)] \approx 0.006; + \\ & \Pr[\text{class } (1,0)] \approx 0.005; - \\ & \Pr[\text{class } (1,1)] \approx 0.011; + \\ & \Pr[\text{class } (1,2)] \approx 0.029; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.775; + \end{aligned}$

e.g. n = 15, r = 1024, after 19 negations and 874 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.131; + \\ & \Pr[\text{class } (0,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,0)] \approx 0.006; - \\ & \Pr[\text{class } (1,1)] \approx 0.008; + \\ & \Pr[\text{class } (1,2)] \approx 0.030; + \\ & \Pr[\text{class } (2,1)] \approx 0.002; + \\ & \Pr[\text{class } (2,2)] \approx 0.816; + \end{aligned}$

e.g. n = 15, r = 1024, after 20 negations and 920 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.093; + \\ & \Pr[\text{class } (0,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,0)] \approx 0.007; - \\ & \Pr[\text{class } (1,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,2)] \approx 0.027; + \\ & \Pr[\text{class } (2,1)] \approx 0.002; + \\ & \Pr[\text{class } (2,2)] \approx 0.857; + \end{aligned}$

e.g. n = 15, r = 1024, after 21 negations and 966 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.062; + \\ & \Pr[\text{class } (0,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,0)] \approx 0.006; - \\ & \Pr[\text{class } (1,1)] \approx 0.004; + \\ & \Pr[\text{class } (1,2)] \approx 0.030; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.890; + \end{aligned}$

e.g. n = 15, r = 1024, after 22 negations and 1012 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.037; + \\ & \Pr[\text{class } (0,1)] \approx 0.008; + \\ & \Pr[\text{class } (1,0)] \approx 0.007; - \\ & \Pr[\text{class } (1,1)] \approx 0.002; + \\ & \Pr[\text{class } (1,2)] \approx 0.034; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.910; + \end{aligned}$

e.g. n = 15, r = 1024, after 23 negations and 1058 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.017; + \\ & \Pr[\text{class } (0,1)] \approx 0.008; + \\ & \Pr[\text{class } (1,0)] \approx 0.007; - \\ & \Pr[\text{class } (1,1)] \approx 0.002; + \\ & \Pr[\text{class } (1,2)] \approx 0.034; + \\ & \Pr[\text{class } (2,1)] \approx 0.002; + \\ & \Pr[\text{class } (2,2)] \approx 0.930; + \end{aligned}$

e.g. n = 15, r = 1024, after 24 negations and 1104 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.005; + \\ & \Pr[\text{class } (0,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,0)] \approx 0.007; - \\ & \Pr[\text{class } (1,1)] \approx 0.000; + \\ & \Pr[\text{class } (1,2)] \approx 0.030; + \\ & \Pr[\text{class } (2,1)] \approx 0.002; + \\ & \Pr[\text{class } (2,2)] \approx 0.948; + \end{aligned}$

e.g. n = 15, r = 1024, after 25 negations and 1150 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.000; + \\ & \Pr[\text{class } (0,1)] \approx 0.008; + \\ & \Pr[\text{class } (1,0)] \approx 0.008; - \\ & \Pr[\text{class } (1,1)] \approx 0.000; + \\ & \Pr[\text{class } (1,2)] \approx 0.031; + \\ & \Pr[\text{class } (2,1)] \approx 0.001; + \\ & \Pr[\text{class } (2,2)] \approx 0.952; + \end{aligned}$

e.g. n = 15, r = 1024, after 26 negations and 1196 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.002; - \\ & \Pr[\text{class } (0,1)] \approx 0.008; + \\ & \Pr[\text{class } (1,0)] \approx 0.008; - \\ & \Pr[\text{class } (1,1)] \approx 0.000; - \\ & \Pr[\text{class } (1,2)] \approx 0.035; + \\ & \Pr[\text{class } (2,1)] \approx 0.002; + \\ & \Pr[\text{class } (2,2)] \approx 0.945; + \end{aligned}$

e.g. n = 15, r = 1024, after 27 negations and 1242 diffusions:

 $\begin{aligned} & \Pr[\text{class } (0,0)] \approx 0.011; - \\ & \Pr[\text{class } (0,1)] \approx 0.007; + \\ & \Pr[\text{class } (1,0)] \approx 0.007; - \\ & \Pr[\text{class } (1,1)] \approx 0.001; - \\ & \Pr[\text{class } (1,2)] \approx 0.034; + \\ & \Pr[\text{class } (2,1)] \approx 0.003; + \\ & \Pr[\text{class } (2,2)] \approx 0.938; + \end{aligned}$

Subset-sum walk (0.333...)

Consider f defined by $f(1, J_1) = \Sigma(J_1)$ for $J_1 \subseteq \{1, \dots, n/2\};$ $f(2, J_2) = t - \Sigma(J_2)$ for $J_2 \subseteq \{n/2 + 1, \dots, n\}.$

Good chance of unique collision $\Sigma(J_1) = t - \Sigma(J_2)$.

n/2 + 1 bits of input, so quantum walk costs $2^{n/3}$.

Easily tweak quantum walk to handle more collisions, ignore $\Sigma(J_1) = \Sigma(J'_1)$, etc.

<u>Generalized moduli</u>

Choose M, t_1 , r with $M \approx r$. (Original moduli algorithm is the special case $r = 2^{n/4}$.)

Take set S_{11} , $\#S_{11} = r$, where $J_{11} \in S_{11} \Rightarrow J_{11} \subseteq \{1, \ldots, n/4\}$. (Original algorithm: S_{11} is the set of all $J_{11} \subseteq \{1, \ldots, n/4\}$.) Compute $\Sigma(J_{11}) \mod M$ for each $J_{11} \in S_{11}$.

Similarly take a set S_{12} of rsubsets of $\{n/4 + 1, ..., n/2\}$. Compute $t_1 - \Sigma(J_{12}) \mod M$ for each $J_{12} \in S_{12}$. Find all collisions $\Sigma(J_{11}) \equiv t_1 - \Sigma(J_{12}),$ i.e., $\Sigma(J_1) \equiv t_1 \pmod{M}$ where $J_1 = J_{11} \cup J_{12}.$ Compute each $\Sigma(J_1).$

Similarly S_{21} , $S_{22} \Rightarrow$ list of J_2 with $\Sigma(J_2) \equiv t - t_1$ \Rightarrow each $t - \Sigma(J_2)$.

Find collisions $\Sigma(J_1) = t - \Sigma(J_2)$.

Success probability $r^4/2^n$ at finding any particular J with $\Sigma(J) = t, \Sigma(J_1) \equiv t_1 \pmod{M}.$

Assuming typical distribution: cost r, since $M \approx r$.

Quantum moduli (0.3)

Capture execution of generalized moduli algorithm as data structure $D(S_{11}, S_{12}, S_{21}, S_{22})$. Easy to move from S_{ij} to adjacent T_{ij} .

Convert into quantum walk: $\cot r + \sqrt{r}2^{n/2}/r^2$. $2^{0.2n}$ for $r \approx 2^{0.2n}$.

Use "amplitude amplification" to search for correct t_1 . Total cost $2^{0.3n}$.

<u>Quantum reps (0.241...)</u>

Central result of the paper: Combine quantum walk with "representations" idea of 2010 Howgrave-Graham–Joux. Subset-sum exponent 0.241...; new record.

Lower-level improvement: Ambainis uses ad-hoc "combination of a hash table and a skip list" to ensure history-independence. We use radix trees. Much easier, presumably faster.