
Factorization: state of the art

1. Batch NFS

2. Factoring into coprimes

3. ECM

D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven



Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.



Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.



Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd
�
611; 14 � 64 � 75� 24325472

	
= 47.

611 = 47 � 13.



Why did this find a factor of 611?

Was it just blind luck:

gcdf611; randomg = 47?

No.

By construction 611 divides s2�t2
where s = 14 � 64 � 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s� t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s� t

and the other divided s+ t.



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.



This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+1)15(n+15)49(n+49)

is a square.



Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i 2 �1; 2; 3; : : : ; y2
	

into products of primes � y.

Look for nonempty set of i’s

with i(n+ i) completely factored

and with
Q
i
i(n+ i) square.

Compute gcdfn; s� tg where

s =
Q
i
i and t =

rQ
i
i(n+ i).



How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u�u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n � u(1+o(1))u2

;

here o(1) is as u!1.



More generally, if y 2
exp

q�
1
2c + o(1)

�
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r�
(c+1)2+o(1)

2c

�
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.



Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i � y2 than for i � y.

Crude analysis: i(n+ i) grows.

� yn if i � y;

� y2n if i � y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i � y,

only 30% chance for i � y2.

Can we select congruences

to avoid this degradation?



Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q � (n mod q),

2q � (n mod q), 3q � (n mod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q � (n mod q) etc.

Try many large q’s.

Rare for i’s to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i 2 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311



Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q�(n mod q))
n+q�(n mod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q � n1=2 have

i � (n+ i)=q � n1=2 � yu=2

so smoothness chance is roughly

(u=2)�u=2(u=2)�u=2 = 2u=uu,

2u times larger than before.



Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 � n with i � pn;

have i2 � n � n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 � n)=q.

But still � n1=2.

“Number-field sieve” (NFS)

achieves no(1).



Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) � 64(675) � 75(686)

= 44100002.

gcdf611; 14 � 64 � 75� 4410000g
= 47.



The Q(
p

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
p

14j)

for several pairs (i; j):

(�11 + 3 � 25)(�11 + 3
p

14)

� (3 + 25)(3 +
p

14)

= (112� 16
p

14)2.

Compute

s = (�11 + 3 � 25) � (3 + 25),

t = 112� 16 � 25,

gcdf611; s� tg = 13.



Why does this work?

Answer: Have ring morphism

Z[
p

14]! Z=611,
p

14 7! 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(�11 + 3 � 25)(�11 + 3 � 25)

� (3 + 25)(3 + 25)

= (112� 16 � 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.



Generalize from (x2 � 14; 25)

to (f;m) with irred f 2 Z[x],

m 2 Z, f(m) 2 nZ.

Write d = deg f ,

f = fdx
d + � � �+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick � 2 C, root of f .

Then fd� is a root of

monic g = fd�1
d f(x=fd) 2 Z[x].

Q(�) O Z[fd�]
fd� 7!fdm�������!Z=n



Build square in Q(�) from

congruences (i� jm)(i� j�)

with iZ + jZ = Z and j > 0.

Could replace i� jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)2S(i� jm)(i� j�)

in Q(�); now what?



Q
(i� jm)(i� j�)f2

d

is a square in O,

ring of integers of Q(�).

Multiply by g0(fd�)2,

putting square root into Z[fd�]:

compute r with r2 = g0(fd�)2�Q
(i� jm)(i� j�)f2

d .

Then apply the ring morphism

' : Z[fd�]! Z=n taking

fd� to fdm. Compute gcdfn;
'(r)� g0(fdm)

Q
(i� jm)fdg.

In Z=n have '(r)2 =

g0(fdm)2
Q

(i� jm)2f2
d .



How to find square product

of congruences (i� jm)(i� j�)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i� jm and

y-smooth fd norm(i� j�) =

fdi
d + � � �+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.



Sublattices

Consider a sublattice

of pairs (i; j) where

q divides jdf(i=j).

Assume squarish lattice.

(i� jm)jdf(i=j)

expands by factor q(d+1)=2

before division by q.

Number of sublattice elements

within any particular bound

on (i� jm)jdf(i=j)

is proportional to q�(d�1)=(d+1).



Compared to just using q = 1,

conjecturally obtain y4=(d+1)+o(1)

times as many congruences

by using sublattices for

all y-smooth integers q � y2.

Separately consider

i� jm and jdf(i=j)=q

for more precise analysis.

Limit congruences accordingly,

increasing smoothness chances.



Multiple number fields

Assume that f + x�m 2 Z[x]

is also irred.

Pick � 2 C, root of f + x�m.

Two congruences for (i; j):

(i�jm)(i�j�); (i�jm)(i�j�).

Expand exponent vectors to

handle both Q(�) and Q(�).

Merge smoothness tests

by testing i� jm first,

aborting if i� jm not smooth.

Can use many number fields:

f + 2(x�m) etc.



Optimizing NFS

Finding smooth congruences

is always a bottleneck.

“What if it’s much faster

than linear algebra?”

Answer: If it is, trivially

save time by decreasing y.



Optimizing NFS

Finding smooth congruences

is always a bottleneck.

“What if it’s much faster

than linear algebra?”

Answer: If it is, trivially

save time by decreasing y.

Main job of NFS implementor:

speed up smoothness detection.



Optimizing NFS

Finding smooth congruences

is always a bottleneck.

“What if it’s much faster

than linear algebra?”

Answer: If it is, trivially

save time by decreasing y.

Main job of NFS implementor:

speed up smoothness detection.

Other ways to speed up NFS:

optimize set of pairs (i; j),

choice of f , etc. Fun: e.g.,

compute
R
1

�1

dx
((x�m)f)2=(d+1) .



1977 Schroeppel “linear sieve,”

forerunner of QS and NFS:

Factor n � s2 using congruences

(s+ i)(s+ j)((s+ i)(s+ j)� n).

Sieve these congruences.

1996 Pomerance:

“The time for doing this is

unbelievably fast compared with

trial dividing each candidate

number to see if it is Y -smooth.

If the length of the interval is N,

the number of steps is only about

N log log Y , or about log log Y

steps on average per candidate.”



Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)�1=3

2 1:40 : : :+ o(1).



Choose integer m � n1=d.

Write n as

md + fd�1m
d�1 + � � �+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i� jm

for all coprime pairs (i; j)

with 1 � i; j � L0:95:::+o(1),

using primes � L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i� jm.



Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i� jm,

test smoothness of i� j�

and i� j� and so on,

using primes � L0:82:::+o(1).

L1:77:::+o(1) tests.

Each jjdf(i=j)j �m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.



Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i� jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 � logm;

balancing norms with m

forces d log y � logm;

and d logm � logn.



Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i� jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.



Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)�1=3

2 1:10 : : :+ o(1).

Primes � L0:82:::+o(1).

1 � i; j � L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i� jm.

L1:64:::+o(1) operations

for each target n.



Batch NFS for RSA-3072

Expand n in base m = 2384:

n = n7m
7 + n6m

6 + � � �+ n0

with 0 � n0; n1; : : : ; n7 < m.

Assume irreducibility of

n7x
7 + n6x

6 + � � �+ n0.

Choose height H = 262+261+257:

consider pairs (a; b) 2 Z� Z such

that �H � a � H, 0 < b � H,

and gcdfa; bg = 1.

Choose smoothness bound

y = 266 + 255.



There are about

12H2=�2 � 2125:51

pairs (a; b).

Find all pairs (a; b) with

y-smooth (a� bm)c where

c = n7a
7 + n6a

6b+ � � �+ n0b
7.

Combine these congruences

into a factorization of n,

if there are enough congruences.

Number of congruences needed

� 2y= log y � 262:06.



Heuristic approximation:

a � bm has same y-smoothness

chance as a uniform random

integer in [1; Hm],

and this chance is u�u

where u = (log(Hm))= log y.

Have u � 6:707

and u�u � 2�18:42,

so there are about

2107:09 pairs (a; b)

such that a� bm is smooth.



Heuristic approximation:

c has same y-smoothness chance

as a uniform random integer in

[1; 8H7m],

and this chance is v�v

where v = (log(8H7m))= log y.

Have v � 12:395

and v�v � 2�45:01,

so there are about

262:08 pairs (a; b) such that

a� bm and c are both smooth.

Safely above 262:06.



Biggest step in computation:

Check 2125:51 pairs (a; b)

to find the 2107:09 pairs

where a� bm is smooth.

This step is independent of N,

reused by many integers N.



Biggest step in computation:

Check 2125:51 pairs (a; b)

to find the 2107:09 pairs

where a� bm is smooth.

This step is independent of N,

reused by many integers N.

Biggest step depending on N:

Check 2107:09 pairs (a; b)

to see whether c is smooth.

This is much less

computation! : : : or is it?



The 2107:09 pairs (a; b)

do not form a lattice,

so no easy way to sieve

for prime divisors of c.



The 2107:09 pairs (a; b)

do not form a lattice,

so no easy way to sieve

for prime divisors of c.

Fix:

“Factoring into coprimes”;

next topic today.



The 2107:09 pairs (a; b)

do not form a lattice,

so no easy way to sieve

for prime divisors of c.

Fix:

“Factoring into coprimes”;

next topic today.

A different fix:

ECM; this afternoon.



Better smoothness estimates

Consider a uniform random

integer in [1; 2400].

What is the chance that the

integer is 1000000-smooth, i.e.,

factors into primes � 1000000?

“Objection: The integers in NFS

are not uniform random integers!”

True; will generalize later.



Traditional answer:

Dickman’s � function is fast.

A uniform random integer in

[1; yu] has chance � �(u)

of being y-smooth.

If u is small then chance/�(u) is

1 +O(log log y= log y) for y !1.

Flaw #1 in traditional answer:

Not a very good approximation.

Flaw #2 in traditional answer:

Not easy to generalize.



Another traditional answer,

trivial to generalize:

Check smoothness of many

independent uniform random

integers.

Can accurately estimate

smoothness probability p

after inspecting 10000=p integers;

typical error � 1%.

But this answer is very slow.



Here’s a better answer.

(starting point: 1998 Bernstein)

Define S as the set of

1000000-smooth integers n � 1.

The Dirichlet series for S

is
P

[n 2 S]xlgn =

(1 + xlg 2 + x2 lg 2 + x3 lg 2 + � � �)
(1 + xlg 3 + x2 lg 3 + x3 lg 3 + � � �)
(1 + xlg 5 + x2 lg 5 + x3 lg 5 + � � �)
� � �
(1 + xlg 999983 + x2 lg 999983 + � � �).



Replace primes

2; 3; 5; 7; : : : ; 999983

with slightly larger real numbers

2 = 1:18, 3 = 1:112, 5 = 1:117,

: : : , 999983 = 1:1145.

Replace each 2a3b � � � in S with

2
a
3
b � � �, obtaining multiset S.

The Dirichlet series for S

is
P

[n 2 S]xlgn =

(1 + xlg 2 + x2 lg 2 + x3 lg 2 + � � �)
(1 + xlg 3 + x2 lg 3 + x3 lg 3 + � � �)
(1 + xlg 5 + x2 lg 5 + x3 lg 5 + � � �)
� � �
(1 + xlg 999983 + x2 lg 999983 + � � �).



This is simply a power series

s0z
0 + s1z

1 + � � � =
(1 + z8 + z2�8 + z3�8 + � � �)
(1 + z12 + z2�12 + z3�12 + � � �)
(1 + z17 + z2�17 + z3�17 + � � �)
� � � (1 + z145 + z2�145 + � � �)
in the variable z = xlg 1:1.

Compute series mod (e.g.) z2910;

i.e., compute s0; s1; : : : ; s2909.

S has s0 + � � �+ s2909 elements

� 1:12909 < 2400, so S has

at least s0 + � � �+ s2909

elements < 2400.



So have guaranteed lower bound

on number of 1000000-smooth

integers in [1; 2400].

Can compute an upper bound to

check looseness of lower bound.

If looser than desired,

move 1:1 closer to 1.

Achieve any desired accuracy.

2007 Parsell–Sorenson: Replace

big primes with RH bounds,

faster to compute.



NFS smoothness is much more

complicated than smoothness of

uniform random integers.

Most obvious issue: NFS doesn’t

use all integers in [�H;H];

it uses only values f(c; d)

of a specified polynomial f .

Traditional reaction

(1979 Schroeppel, et al.):

replace H by “typical” f value,

heuristically adjusted for

roots of f mod small primes.



Can compute smoothness chance

much more accurately.

No need for “typical” values.

We’ve already computed series

s0z
0 + s1z

1 + � � �+ s2909z
2909

such that there are

� s0 smooth�1:10,

� s0+s1 smooth�1:11,

� s0+s1+s2 smooth�1:12,
...,

�s0+ � � �+s2909 smooth�1:12909.

Approximations are very close.



Number of f(c; d) values in

[�H;H] is � (3=�2)H2=deg fQ(f).

Can quickly compute Q(f).

For each i � 2909,

number of smooth jf(c; d)j values

in [1:1i�1; 1:1i] is approximately

3Q(f)si
�2

1:12i=deg f � 1:12(i�1)=deg f

1:1i � 1:1i�1
.

Add to see total number of

smooth f(c; d) values.



Approximation so far

has ignored roots of f .

Fix: Smoothness chance in Q(�)

for c� �d is, conjecturally, very

close to smoothness chance for

ideals of the same size as c� �d.

Dirichlet series for smooth ideals:

simply replace

1 + xlg p + x2 lg p + � � � with

1 + xlgP + x2 lgP + � � �
where P is norm of prime ideal.

Same computations as before.

Should also be easy to adapt

Parsell–Sorenson to ideals.



Typically f(c; d) is product

(c�md) � norm of (c� �d).

Smoothness chance in Q�Q(�)

for (c�md; c� �d) is,

conjecturally, close to smoothness

chance for ideals of the same size.

Can account in various ways for

correlations and anti-correlations

between c�md and c� �d,

but these effects seem small.



Dirichlet-series computations

easily handle early aborts

and other complications

in the notion of smoothness.

Example: Which integers are

1000000-smooth integers < 2400

times one prime in [106; 109]?

Multiply s0z
0 + � � �+ s2909z

2909

by xlg 1000003 + � � �+ xlg 999999937.



Polynomial selection

Many f ’s possible for n.

How to find f that

minimizes NFS time?

General strategy:

Enumerate many f ’s.

For each f , estimate time using

information about f arithmetic,

distribution of ddeg ff(c=d),

distribution of smooth numbers.



Let’s restrict attention to f(x) =

(x�m)(f5x
5 + f4x

4 + � � �+ f0).

Take m near n1=6.

Expand n in base m:

n = f5m
5 + f4m

4 + � � �+ f0.

Can use negative coefficients.

Have f5 � n1=6.

Typically all the fi’s

are on scale of n1=6.

(1993 Buhler Lenstra Pomerance)



To reduce f values by factor B:

Enumerate many possibilities

for m near B0:25n1=6.

Have f5 � B�1:25n1=6.

f4; f3; f2; f1; f0 could be

as large as B0:25n1=6.

Hope that they are smaller,

on scale of B�1:25n1=6.

Conjecturally this happens

within roughly B7:5 trials.

Then (c� dm)(f5c
5 + � � �+ f0d

5)

is on scale of B�1R6n2=6

for c; d on scale of R.



Can force f4 to be small.

Say n = f5m
5 + f4m

4 + � � �+ f0.

Choose integer k � f4=5f5.

Write n in base m+ k:

n = f5(m+ k)5

+ (f4� 5kf5)(m+ k)4 + � � �.
Now degree-4 coefficient

is on same scale as f5.

Hope for small f3; f2; f1; f0.

Conjecturally this happens

within roughly B6 trials.



Improvement:

Skew the coefficients.

(1999 Murphy, without analysis)

Enumerate many possibilities

for m near Bn1=6.

Have f5 � B�5n1=6.

f4; f3; f2; f1; f0 could be

as large as Bn1=6.

Force small f4. Hope for

f3 on scale of B�2n1=6,

f2 on scale of B�0:5n1=6.



Conjecturally this happens

within roughly B4:5 trials:

(2 + 1) + (0:5 + 1) = 4:5.

For c on scale of B0:75R

and d on scale of B�0:75R, have

c�md on scale of B0:25Rn1=6

and f5c
5 + f4c

4d+ � � �+ f0d
5

on scale of B�1:25R5n1=6.

Product B�1R6n2=6.

Similar effect of B on Q(f);

can afford to compute Q

for many attractive f ’s.



Can we do better? Yes!

The following algorithm:

only about B3:5 trials,

conjecturally.

Each trial is fairly expensive,

using four-dimensional

integer-relation finding,

but worthwhile for large B.

This is so fast that

we should start searching

(m2x�m1)(c5x
5+c4x

4+� � �+c0).



Say n = f5m
5 + f4m

4 + � � �+ f0.

Choose integer k � f4=5f5

and integer ` �m=5f5.

Find all short vectors

in lattice generated by

(m=B3; 0; 0; 10f5k
2 � 4f4k + f3),

(0;m=B4; 0; 20f5k`� 4f4`),

(0; 0;m=B5; 10f5`
2),

(0; 0; 0 ;m).



Hope for j below B1

with (10f5k
2 � 4f4k + f3)

+ (20f5k`� 4f4`)j

+ (10f5`
2)j2

below m=B3 modulo m.

Write n in base m+ k + j`.

Obtain degree-5 coefficient

on scale of B�5n1=6;

degree-4 coefficient

on scale of B�4n1=6;

degree-3 coefficient

on scale of B�2n1=6.

Hope for good degree 2.



Bad news, part 1:

All known search methods,

including this one,

become ineffective

as degree increases.

Bad news, part 2:

In batch-NFS context,

searching large m pool

requires scaling up # targets.


