Factorization: state of the art

1. Batch NFS

2. Factoring into coprimes
3. ECM
D. J. Bernstein University of Illinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven

Sieving small integers $i>0$ using primes $2,3,5,7$:

	2	
		3
	22	
		5
	2	3
	222	
9		33
10	2	5
11		
12	22	3
13		
14	2	
15		3
16	2222	
17		
18	2	33
19		
	22	5

etc.

Sieving i and $611+i$ for small i using primes $2,3,5,7$:

612	22	33		
613				
614	2			
615		3	5	
616	222			7
617				
618	2	3		
619				
620	22		5	
621		333		
622	2			
623				7
624	2222			
625				
626	2			
627		3		
628	22			
629				
630	2	33	5	7
631				

Have complete factorization of the "congruences" $i(611+i)$ for some i 's.
$14 \cdot 625=2^{1} 3^{0} 5^{4} 7^{1}$.
$64 \cdot 675=2^{6} 3^{3} 5^{2} 7^{0}$.
$75 \cdot 686=2^{1} 3^{1} 5^{2} 7^{3}$.
$14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686$
$=2^{8} 3^{4} 5^{8} 7^{4}=\left(2^{4} 3^{2} 5^{4} 7^{2}\right)^{2}$.
$\operatorname{gcd}\left\{611,14 \cdot 64 \cdot 75-2^{4} 3^{2} 5^{4} 7^{2}\right\}$
$=47$.
$611=47 \cdot 13$.

Why did this find a factor of 611?
Was it just blind luck:
$\operatorname{gcd}\{611$, random $\}=47 ?$
No.
By construction 611 divides $s^{2}-t^{2}$ where $s=14 \cdot 64 \cdot 75$ and $t=2^{4} 3^{2} 5^{4} 7^{2}$.

So each prime >7 dividing 611 divides either $s-t$ or $s+t$.

Not terribly surprising
(but not guaranteed in advance!)
that one prime divided $s-t$ and the other divided $s+t$.

Why did the first three completely factored congruences have square product?
Was it just blind luck?
Yes. The exponent vectors
$(1,0,4,1),(6,3,2,0),(1,1,2,3)$
happened to have sum 0 mod 2 .
But we didn't need this luck!
Given long sequence of vectors, easily find nonempty subsequence with sum $0 \bmod 2$.

This is linear algebra over \mathbf{F}_{2}.
Guaranteed to find subsequence if number of vectors exceeds length of each vector.
e.g. for $n=671$:
$1(n+1)=2^{5} 3^{1} 5^{0} 7^{1}$;
$4(n+4)=2^{2} 3^{3} 5^{2} 7^{0}$;
$15(n+15)=2^{1} 3^{1} 5^{1} 7^{3}$;
$49(n+49)=2^{4} 3^{2} 5^{1} 7^{2}$;
$64(n+64)=2^{6} 3^{1} 5^{1} 7^{2}$.
F_{2}-kernel of exponent matrix is gen by (01011) and (10110); e.g., $1(n+1) 15(n+15) 49(n+49)$
is a square.

Plausible conjecture: \mathbf{Q} sieve can separate the odd prime divisors of any n, not just 611 .

Given n and parameter y :
Try to completely factor $i(n+i)$
for $i \in\left\{1,2,3, \ldots, y^{2}\right\}$ into products of primes $\leq y$.

Look for nonempty set of i 's with $i(n+i)$ completely factored and with $\prod_{i} i(n+i)$ square.

Compute $\operatorname{gcd}\{n, s-t\}$ where
$s=\prod_{i} i$ and $t=\sqrt{\prod_{i} i(n+i)}$.

How large does y have to be for this to find a square?

Uniform random integer in $[1, n]$ has $n^{1 / u_{-s m o o t h n e s s ~ c h a n c e ~}}$ roughly u^{-u}.

Plausible conjecture:
Q sieve succeeds
with $y=\left\lfloor n^{1 / u}\right\rfloor$
for all $n \geq u^{(1+o(1)) u^{2}}$;
here $o(1)$ is as $u \rightarrow \infty$.

More generally, if $y \in$
$\exp \sqrt{\left(\frac{1}{2 c}+o(1)\right) \log n \log \log n}$,
conjectured y-smoothness chance is $1 / y^{c+o(1)}$.

Find enough smooth congruences by changing the range of i 's:
replace y^{2} with $y^{c+1+o(1)}=$
$\exp \sqrt{\left(\frac{(c+1)^{2}+o(1)}{2 c}\right) \log n \log \log n \text {. }}$
Increasing c past 1
increases number of i 's but reduces linear-algebra cost.
So linear algebra never dominates when y is chosen properly.

Improving smoothness chances

Smoothness chance of $i(n+i)$ degrades as i grows.
Smaller for $i \approx y^{2}$ than for $i \approx y$.
Crude analysis: $i(n+i)$ grows.
$\approx y n$ if $i \approx y$;
$\approx y^{2} n$ if $i \approx y^{2}$.
More careful analysis:
$n+i$ doesn't degrade, but i is always smooth for $i \leq y$, only 30% chance for $i \approx y^{2}$.

Can we select congruences to avoid this degradation?

Choose q, square of large prime. Choose a " q-sublattice" of i 's: arithmetic progression of i 's where q divides each $i(n+i)$. e.g. progression $q-(n \bmod q)$, $2 q-(n \bmod q), 3 q-(n \bmod q)$, etc.

Check smoothness of generalized congruence $i(n+i) / q$ for i 's in this sublattice. e.g. check whether $i,(n+i) / q$ are smooth for $i=q-(n \bmod q)$ etc.

Try many large q's.
Rare for i 's to overlap.
e.g. $n=314159265358979323$:

Original \mathbf{Q} sieve:

$$
\begin{array}{ll}
i & n+i \\
1 & 314159265358979324 \\
2 & 314159265358979325 \\
3 & 314159265358979326
\end{array}
$$

Use 997^{2}-sublattice,
$i \in 802458+994009 Z$:

$$
\begin{array}{rl}
i & (n+i) / 997^{2} \\
802458 & 316052737309 \\
1796467 & 316052737310 \\
2790476 & 316052737311
\end{array}
$$

Crude analysis: Sublattices eliminate the growth problem. Have practically unlimited supply of generalized congruences
$(q-(n \bmod q)) \frac{n+q-(n \bmod q)}{q}$ between 0 and n.

More careful analysis: Sublattices are even better than that!
For $q \approx n^{1 / 2}$ have
$i \approx(n+i) / q \approx n^{1 / 2} \approx y^{u / 2}$ so smoothness chance is roughly $(u / 2)^{-u / 2}(u / 2)^{-u / 2}=2^{u} / u^{u}$, 2^{u} times larger than before.

Even larger improvements

from changing polynomial $i(n+i)$.
"Quadratic sieve" (QS) uses
$i^{2}-n$ with $i \approx \sqrt{n}$;
have $i^{2}-n \approx n^{1 / 2+o(1)}$,
much smaller than n.
"MPQS" improves o(1)
using sublattices: $\left(i^{2}-n\right) / q$.
But still $\approx n^{1 / 2}$.
"Number-field sieve" (NFS)
achieves $n^{o(1)}$.

Generalizing beyond \mathbf{Q}

The \mathbf{Q} sieve is a special case of the number-field sieve.

Recall how the \mathbf{Q} sieve factors 611:

Form a square as product of $i(i+611 j)$
for several pairs (i, j) :
14(625) $\cdot 64(675) \cdot 75(686)$
$=4410000^{2}$.
$\operatorname{gcd}\{611,14 \cdot 64 \cdot 75-4410000\}$
$=47$.

The $\mathbf{Q}(\sqrt{14})$ sieve
factors 611 as follows:

Form a square

as product of $(i+25 j)(i+\sqrt{14} j)$
for several pairs (i, j) :
$(-11+3 \cdot 25)(-11+3 \sqrt{14})$
$\cdot(3+25)(3+\sqrt{14})$
$=(112-16 \sqrt{14})^{2}$.
Compute
$s=(-11+3 \cdot 25) \cdot(3+25)$,
$t=112-16 \cdot 25$,
$\operatorname{gcd}\{611, s-t\}=13$.

Why does this work?

Answer: Have ring morphism $\mathbf{Z}[\sqrt{14}] \rightarrow \mathbf{Z} / 611, \sqrt{14} \mapsto 25$, since $25^{2}=14$ in $\mathbf{Z} / 611$.

Apply ring morphism to square:
$(-11+3 \cdot 25)(-11+3 \cdot 25)$
$\cdot(3+25)(3+25)$
$=(112-16 \cdot 25)^{2}$ in $\mathbf{Z} / 611$.
i.e. $s^{2}=t^{2}$ in $\mathbf{Z} / 611$.

Unsurprising to find factor.

Generalize from $\left(x^{2}-14,25\right)$ to (f, m) with irred $f \in \mathbf{Z}[x]$, $m \in \mathbf{Z}, f(m) \in n \mathbf{Z}$.

Write $d=\operatorname{deg} f$,
$f=f_{d} x^{d}+\cdots+f_{1} x^{1}+f_{0} x^{0}$.
Can take $f_{d}=1$ for simplicity, but larger f_{d} allows better parameter selection.

Pick $\alpha \in \mathbf{C}$, root of f.
Then $f_{d} \alpha$ is a root of monic $g=f_{d}^{d-1} f\left(x / f_{d}\right) \in \mathbf{Z}[x]$.
$\mathbf{Q}(\alpha) \leftarrow \mathcal{O} \leftarrow \mathbf{Z}\left[f_{d} \alpha\right] \xrightarrow{f_{d} \alpha \mapsto f_{d} m} \mathbf{Z} / n$

Build square in $\mathbf{Q}(\alpha)$ from

 congruences $(i-j m)(i-j \alpha)$ with $i \mathbf{Z}+j \mathbf{Z}=\mathbf{Z}$ and $j>0$.Could replace $i-j x$ by higher-deg irred in $\mathbf{Z}[x]$; quadratics seem fairly small for some number fields. But let's not bother.

Say we have a square

$$
\begin{aligned}
& \prod_{(i, j) \in S}(i-j m)(i-j \alpha) \\
& \text { in } \mathbf{Q}(\alpha) ; \text { now what? }
\end{aligned}
$$

$\prod(i-j m)(i-j \alpha) f_{d}^{2}$
is a square in \mathcal{O},
ring of integers of $\mathbf{Q}(\alpha)$.
Multiply by $g^{\prime}\left(f_{d} \alpha\right)^{2}$, putting square root into $\mathbf{Z}\left[f_{d} \alpha\right]$: compute r with $r^{2}=g^{\prime}\left(f_{d} \alpha\right)^{2}$. $\prod(i-j m)(i-j \alpha) f_{d}^{2}$.

Then apply the ring morphism $\varphi: \mathbf{Z}\left[f_{d} \alpha\right] \rightarrow \mathbf{Z} / n$ taking $f_{d} \alpha$ to $f_{d} m$. Compute $\operatorname{gcd}\{n$, $\left.\varphi(r)-g^{\prime}\left(f_{d} m\right) \prod(i-j m) f_{d}\right\}$. In \mathbf{Z} / n have $\varphi(r)^{2}=$
$\left.g^{\prime}\left(f_{d} m\right)^{2}\right\rceil(i-j m)^{2} f_{d}^{2}$.

How to find square product of congruences $(i-j m)(i-j \alpha)$?

Start with congruences for, e.g., y^{2} pairs (i, j).

Look for y-smooth congruences:
y-smooth $i-j m$ and
y-smooth $f_{d} \operatorname{norm}(i-j \alpha)=$
$f_{d} i^{d}+\cdots+f_{0} j^{d}=j^{d} f(i / j)$.
Here " y-smooth" means
"has no prime divisor $>y$."
Find enough smooth congruences.
Perform linear algebra on exponent vectors mod 2.

Sublattices

Consider a sublattice
of pairs (i, j) where
q divides $j^{d} f(i / j)$.
Assume squarish lattice.
$(i-j m) j^{d} f(i / j)$
expands by factor $q^{(d+1) / 2}$
before division by q.
Number of sublattice elements
within any particular bound
on $(i-j m) j^{d} f(i / j)$
is proportional to $q^{-(d-1) /(d+1)}$.

Compared to just using $q=1$, conjecturally obtain $y^{4 /(d+1)+o(1)}$ times as many congruences by using sublattices for all y-smooth integers $q \leq y^{2}$.

Separately consider
$i-j m$ and $j^{d} f(i / j) / q$
for more precise analysis.
Limit congruences accordingly, increasing smoothness chances.

Multiple number fields

Assume that $f+x-m \in \mathbf{Z}[x]$ is also irreg.

Pick $\beta \in \mathbf{C}$, root of $f+x-m$.
Two congruences for (i, j) :
$(i-j m)(i-j \alpha) ;(i-j m)(i-j \beta)$.
Expand exponent vectors to
handle both $\mathbf{Q}(\alpha)$ and $\mathbf{Q}(\beta)$.
Merge smoothness tests
by testing $i-j m$ first,
aborting if $i-j m$ not smooth.
Can use many number fields:
$f+2(x-m)$ etc.

Optimizing NFS

Finding smooth congruences is always a bottleneck.
"What if it's much faster
than linear algebra?"
Answer: If it is, trivially
save time by decreasing y.

Optimizing NFS

Finding smooth congruences is always a bottleneck.
"What if it's much faster
than linear algebra?"
Answer: If it is, trivially
save time by decreasing y.
Main job of NFS implementor:
speed up smoothness detection.

Optimizing NFS

Finding smooth congruences is always a bottleneck.
"What if it's much faster than linear algebra?"
Answer: If it is, trivially save time by decreasing y.

Main job of NFS implementer: speed up smoothness detection.

Other ways to speed up NFS:
optimize set of pairs (i, j), choice of f, etc. Fun: e.g., compute $\int_{-\infty}^{\infty} \frac{d x}{((x-m) f)^{2 /(d+1)}}$.

1977 Schroeppel "linear sieve," forerunner of QS and NFS:
Factor $n \approx s^{2}$ using congruences
$(s+i)(s+j)((s+i)(s+j)-n)$.
Sieve these congruences.
1996 Pomerance:
"The time for doing this is unbelievably fast compared with trial dividing each candidate number to see if it is Y-smooth. If the length of the interval is N, the number of steps is only about $N \log \log Y$, or about $\log \log Y$ steps on average per candidate."

Asymptotic cost exponents

Number of bit operations
in number-field sieve,
with theorists' parameters,
is $L^{1.90 \ldots+o(1)}$ where $L=$
$\exp \left((\log n)^{1 / 3}(\log \log n)^{2 / 3}\right)$.
What are theorists' parameters?
Choose degree d with
$d /(\log n)^{1 / 3}(\log \log n)^{-1 / 3}$
$\in 1.40 \ldots+o(1)$.

Choose integer $m \approx n^{1 / d}$.
Write n as
$m^{d}+f_{d-1} m^{d-1}+\cdots+f_{1} m+f_{0}$
with each f_{k} below $n^{(1+o(1)) / d}$.
Choose f with some randomness
in case there are bad f 's.
Test smoothness of $i-j m$
for all coprime pairs (i, j)
with $1 \leq i, j \leq L^{0.95 \ldots+o(1), ~}$ using primes $\leq L^{0.95 \ldots+o(1)}$.
$L^{1.90 \ldots+o(1)}$ pairs.
Conjecturally $L^{1.65 \ldots+o(1)}$
smooth values of $i-j m$.

Use $L^{0.12 \ldots+o(1)}$ number fields.

For each (i, j)
with smooth $i-j m$,
test smoothness of $i-j \alpha$ and $i-j \beta$ and so on, using primes $\leq L^{0.82 \ldots+o(1)}$.
$L^{1.77 \ldots+o(1)}$ tests.
Each $\left|j^{d} f(i / j)\right| \leq m^{2.86 \ldots+o(1)}$.
Conjecturally $L^{0.95 \ldots+o(1)}$ smooth congruences.
$L^{0.95 \ldots+o(1)}$ components
in the exponent vectors.

Three sizes of numbers here:
$(\log n)^{1 / 3}(\log \log n)^{2 / 3}$ bits:
y, i, j.
$(\log n)^{2 / 3}(\log \log n)^{1 / 3}$ bits:
$m, i-j m, j^{d} f(i / j)$.
$\log n$ bits: n.
Unavoidably $1 / 3$ in exponent:
usual smoothness optimization
forces $(\log y)^{2} \approx \log m$;
balancing norms with m
forces $d \log y \approx \log m$;
and $d \log m \approx \log n$.

Batch NFS

The number-field sieve used $L^{1.90 \ldots+o(1)}$ bit operations
finding smooth $i-j m$; only
$L^{1.77 \ldots+o(1)}$ bit operations
finding smooth $j^{d} f(i / j)$.
Many n 's can share one m; $L^{1.90 \ldots+o(1)}$ bit operations to find squares for all n 's.

Oops, linear algebra hurts; fix by reducing y.
But still end up factoring batch in much less time than factoring each n separately.

Asymptotic batch-NFS
parameters:
$d /(\log n)^{1 / 3}(\log \log n)^{-1 / 3}$
$\in 1.10 \ldots+o(1)$.
Primes $\leq L^{0.82 \ldots+o(1)}$.
$1 \leq i, j \leq L^{1.00 \ldots+o(1)}$.
Computation independent of n finds $L^{1.64 \ldots+o(1)}$
smooth values $i-j m$.
$L^{1.64 \ldots+o(1)}$ operations
for each target n.

Batch NFS for RSA-3072

Expand n in base $m=2^{384}$:
$n=n_{7} m^{7}+n_{6} m^{6}+\cdots+n_{0}$
with $0 \leq n_{0}, n_{1}, \ldots, n_{7}<m$.
Assume irreducibility of $n_{7} x^{7}+n_{6} x^{6}+\cdots+n_{0}$.

Choose height $H=2^{62}+2^{61}+2^{57}$: consider pairs $(a, b) \in \mathbf{Z} \times \mathbf{Z}$ such that $-H \leq a \leq H, 0<b \leq H$, and $\operatorname{gcd}\{a, b\}=1$.

Choose smoothness bound $y=2^{66}+2^{55}$.

There are about
$12 H^{2} / \pi^{2} \approx 2^{125.51}$
pairs (a, b).
Find all pairs (a, b) with
y-smooth $(a-b m) c$ where
$c=n_{7} a^{7}+n_{6} a^{6} b+\cdots+n_{0} b^{7}$.
Combine these congruences into a factorization of n, if there are enough congruences.

Number of congruences needed $\approx 2 y / \log y \approx 2^{62.06}$.

Heuristic approximation:

$a-b m$ has same y-smoothness
chance as a uniform random integer in $[1, H m]$,
and this chance is u^{-u}
where $u=(\log (H m)) / \log y$.
Have $u \approx 6.707$
and $u^{-u} \approx 2^{-18.42}$,
so there are about $2^{107.09}$ pairs (a, b)
such that $a-b m$ is smooth.

Heuristic approximation:

c has same y-smoothness chance
as a uniform random integer in
[$\left.1,8 H^{7} m\right]$,
and this chance is v^{-v}
where $v=\left(\log \left(8 H^{7} m\right)\right) / \log y$.
Have $v \approx 12.395$
and $v^{-v} \approx 2^{-45.01}$,
so there are about $2^{62.08}$ pairs (a, b) such that $a-b m$ and c are both smooth.

Safely above $2^{62.06}$.

Biggest step in computation:
Check $2^{125.51}$ pairs (a, b)
to find the $2^{107.09}$ pairs
where $a-b m$ is smooth.
This step is independent of N, reused by many integers N.

Biggest step in computation:
Check $2^{125.51}$ pairs (a, b)
to find the $2^{107.09}$ pairs
where $a-b m$ is smooth.
This step is independent of N, reused by many integers N.

Biggest step depending on N : Check $2^{107.09}$ pairs (a, b) to see whether c is smooth.

This is much less
computation! ... or is it?

The $2^{107.09}$ pairs (a, b) do not form a lattice, so no easy way to sieve for prime divisors of c.

The $2^{107.09}$ pairs (a, b)
do not form a lattice, so no easy way to sieve for prime divisors of c.

Fix:
"Factoring into coprimes"; next topic today.

The $2^{107.09}$ pairs (a, b)
do not form a lattice,
so no easy way to sieve
for prime divisors of c.
Fix:
"Factoring into coprimes"; next topic today.

A different fix:
ECM; this afternoon.

Better smoothness estimates

Consider a uniform random integer in $\left[1,2^{400}\right]$.

What is the chance that the integer is 1000000-smooth, i.e., factors into primes ≤ 1000000 ?
"Objection: The integers in NFS are not uniform random integers!" True; will generalize later.

Traditional answer:

Dickman's ρ function is fast.
A uniform random integer in
[$\left.1, y^{u}\right]$ has chance $\approx \rho(u)$ of being y-smooth.
If u is small then chance $/ \rho(u)$ is
$1+O(\log \log y / \log y)$ for $y \rightarrow \infty$.
Flaw \#1 in traditional answer:
Not a very good approximation.
Flaw \#2 in traditional answer:
Not easy to generalize.

Another traditional answer, trivial to generalize:

Check smoothness of many
independent uniform random integers.

Can accurately estimate smoothness probability p after inspecting $10000 / p$ integers; typical error $\approx 1 \%$.

But this answer is very slow.

Here's a better answer.
(starting point: 1998 Bernstein)
Define S as the set of
1000000-smooth integers $n \geq 1$.
The Dirichlet series for S
is $\sum[n \in S] x^{\lg n}=$
$\left(1+x^{\lg 2}+x^{2 \lg 2}+x^{3 \lg 2}+\cdots\right)$
$\left(1+x^{\lg 3}+x^{2 \lg 3}+x^{3 \lg 3}+\cdots\right)$
$\left(1+x^{\lg 5}+x^{2 \lg 5}+x^{3 \lg 5}+\cdots\right)$
$\left(1+x^{\lg 999983}+x^{2 \lg 999983}+\cdots\right)$.

Replace primes
2, 3, 5, 7, ..., 999983
with slightly larger real numbers
$\overline{2}=1.1^{8}, \overline{3}=1.1^{12}, \overline{5}=1.1^{17}$,
$\ldots, \overline{999983}=1.1^{145}$.
Replace each $2^{a} 3^{b} \cdots$ in S with $\overline{2}^{a} \overline{3}^{b} \cdots$, obtaining multiset \bar{S}.

The Dirichlet series for \bar{S}
is $\sum[n \in \bar{S}] x^{\lg n}=$
$\left(1+x^{\lg \overline{2}}+x^{2 \lg \overline{2}}+x^{3 \lg \overline{2}}+\cdots\right)$
$\left(1+x^{\lg \overline{3}}+x^{2 \lg \overline{3}}+x^{3 \lg \overline{3}}+\cdots\right)$
$\left(1+x^{\lg \overline{5}}+x^{2 \lg \overline{5}}+x^{3 \lg \overline{5}}+\cdots\right)$
$\left(1+x^{\lg \overline{999983}}+x^{2 \lg \overline{999983}}+\cdots\right)$.

This is simply a power series
$s_{0} z^{0}+s_{1} z^{1}+\cdots=$
$\left(1+z^{8}+z^{2 \cdot 8}+z^{3 \cdot 8}+\cdots\right)$
$\left(1+z^{12}+z^{2 \cdot 12}+z^{3 \cdot 12}+\cdots\right)$
$\left(1+z^{17}+z^{2 \cdot 17}+z^{3 \cdot 17}+\cdots\right)$
$\cdots\left(1+z^{145}+z^{2 \cdot 145}+\cdots\right)$
in the variable $z=x^{\lg 1.1}$.
Compute series mod (egg.) $z^{2910 ; ~}$ ie., compute $s_{0}, s_{1}, \ldots, s_{2909}$.
\bar{S} has $s_{0}+\cdots+s_{2909}$ elements $\leq 1.1^{2909}<2^{400}$, so S has at least $s_{0}+\cdots+s_{2909}$ elements $<2^{400}$.

So have guaranteed lower bound on number of 1000000 -smooth integers in $\left[1,2^{400}\right]$.

Can compute an upper bound to check looseness of lower bound.

If looser than desired, move 1.1 closer to 1.

Achieve any desired accuracy.
2007 Parsell-Sorenson: Replace big primes with RH bounds, faster to compute.

NFS smoothness is much more complicated than smoothness of uniform random integers.

Most obvious issue: NFS doesn't use all integers in $[-H, H]$; it uses only values $f(c, d)$ of a specified polynomial f.

Traditional reaction
(1979 Schroeppel, et al.): replace H by "typical" f value, heuristically adjusted for roots of f mod small primes.

Can compute smoothness chance much more accurately.
No need for "typical" values.
We've already computed series $s_{0} z^{0}+s_{1} z^{1}+\cdots+s_{2909} z^{2909}$ such that there are $\geq s_{0}$ smooth $\leq 1.1^{0}$,
$\geq s_{0}+s_{1}$ smooth $\leq 1.1^{1}$,
$\geq s_{0}+s_{1}+s_{2}$ smooth $\leq 1.1^{2}$,
\vdots,
$\geq s_{0}+\cdots+s_{2909}$ smooth $\leq 1.1^{2909}$. Approximations are very close.

Number of $f(c, d)$ values in $[-H, H]$ is $\approx\left(3 / \pi^{2}\right) H^{2 / \operatorname{deg} f} Q(f)$. Can quickly compute $Q(f)$.

For each $i \leq 2909$,
number of smooth $|f(c, d)|$ values
in $\left[1.1^{i-1}, 1.1^{i}\right]$ is approximately
$\frac{3 Q(f) s_{i}}{\pi^{2}} \frac{1.1^{2 i / \operatorname{deg} f}-1.1^{2(i-1) / \operatorname{deg} f}}{1.1^{i}-1.1^{i-1}}$.
Add to see total number of
smooth $f(c, d)$ values.

Approximation so far
has ignored roots of f.
Fix: Smoothness chance in $\mathbf{Q}(\alpha)$
for $c-\alpha d$ is, conjecturally, very close to smoothness chance for ideals of the same size as $c-\alpha d$.

Dirichlet series for smooth ideals: simply replace
$1+x^{\lg p}+x^{2 \lg p}+\cdots$ with
$1+x^{\lg P}+x^{2 \lg P}+\cdots$
where P is norm of prime ideal.
Same computations as before.
Should also be easy to adapt Parsell-Sorenson to ideals.

Typically $f(c, d)$ is product
$(c-m d) \cdot$ norm of $(c-\alpha d)$.
Smoothness chance in $\mathbf{Q} \times \mathbf{Q}(\alpha)$
for $(c-m d, c-\alpha d)$ is,
conjecturally, close to smoothness
chance for ideals of the same size.
Can account in various ways for correlations and anti-correlations
between $c-m d$ and $c-\alpha d$, but these effects seem small.

Dirichlet-series computations easily handle early aborts and other complications in the notion of smoothness.

Example: Which integers are 1000000 -smooth integers $<2^{400}$ times one prime in $\left[10^{6}, 10^{9}\right]$? Multiply $s_{0} z^{0}+\cdots+s_{2909} z^{2909}$ by $x^{\lg \overline{1000003}}+\cdots+x^{\lg \overline{999999937}}$.

Polynomial selection

Many f 's possible for n.
How to find f that minimizes NFS time?

General strategy:
Enumerate many f's.
For each f, estimate time using information about f arithmetic, distribution of $d^{\operatorname{deg} f} f(c / d)$, distribution of smooth numbers.

Let's restrict attention to $f(x)=$ $(x-m)\left(f_{5} x^{5}+f_{4} x^{4}+\cdots+f_{0}\right)$.

Take m near $n^{1 / 6}$.
Expand n in base m :
$n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
Can use negative coefficients.
Have $f_{5} \approx n^{1 / 6}$.
Typically all the f_{i} 's are on scale of $n^{1 / 6}$.
(1993 Buhler Lenstra Pomerance)

To reduce f values by factor B :
Enumerate many possibilities for m near $B^{0.25} n^{1 / 6}$.

Have $f_{5} \approx B^{-1.25} n^{1 / 6}$.
$f_{4}, f_{3}, f_{2}, f_{1}, f_{0}$ could be as large as $B^{0.25} n^{1 / 6}$.
Hope that they are smaller,
on scale of $B^{-1.25} n^{1 / 6}$.
Conjecturally this happens
within roughly $B^{7.5}$ trials.
Then $(c-d m)\left(f_{5} c^{5}+\cdots+f_{0} d^{5}\right)$
is on scale of $B^{-1} R^{6} n^{2 / 6}$
for c, d on scale of R.

Can force f_{4} to be small.
Say $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
Choose integer $k \approx f_{4} / 5 f_{5}$.
Write n in base $m+k$:
$n=f_{5}(m+k)^{5}$

$$
+\left(f_{4}-5 k f_{5}\right)(m+k)^{4}+\cdots
$$

Now degree-4 coefficient is on same scale as f_{5}.

Hope for small $f_{3}, f_{2}, f_{1}, f_{0}$.
Conjecturally this happens within roughly B^{6} trials.

Improvement:

Skew the coefficients.
(1999 Murphy, without analysis)
Enumerate many possibilities
for m near $B n^{1 / 6}$.
Have $f_{5} \approx B^{-5} n^{1 / 6}$.
$f_{4}, f_{3}, f_{2}, f_{1}, f_{0}$ could be as large as $B n^{1 / 6}$.

Force small f_{4}. Hope for f_{3} on scale of $B^{-2} n^{1 / 6}$, f_{2} on scale of $B^{-0.5} n^{1 / 6}$.

Conjecturally this happens within roughly $B^{4.5}$ trials: $(2+1)+(0.5+1)=4.5$.

For c on scale of $B^{0.75} R$ and d on scale of $B^{-0.75} R$, have $c-m d$ on scale of $B^{0.25} R n^{1 / 6}$ and $f_{5} c^{5}+f_{4} c^{4} d+\cdots+f_{0} d^{5}$ on scale of $B^{-1.25} R^{5} n^{1 / 6}$.

Product $B^{-1} R^{6} n^{2 / 6}$.
Similar effect of B on $Q(f)$; can afford to compute Q
for many attractive f 's.

Can we do better? Yes!

The following algorithm:
only about $B^{3.5}$ trials,
conjecturally.
Each trial is fairly expensive,
using four-dimensional
integer-relation finding,
but worthwhile for large B.
This is so fast that
we should start searching
$\left(m_{2} x-m_{1}\right)\left(c_{5} x^{5}+c_{4} x^{4}+\cdots+c_{0}\right)$.

Say $n=f_{5} m^{5}+f_{4} m^{4}+\cdots+f_{0}$.
Choose integer $k \approx f_{4} / 5 f_{5}$ and integer $\ell \approx m / 5 f_{5}$.

Find all short vectors

in lattice generated by
$\left(m / B^{3}, 0,0,10 f_{5} k^{2}-4 f_{4} k+f_{3}\right)$,
$\left(0, m / B^{4}, 0,20 f_{5} k \ell-4 f_{4} \ell\right)$,
$\left(0,0, m / B^{5}, 10 f_{5} \ell^{2}\right)$,
$(0,0,0 \quad, m)$.

Hope for j below B^{1}
with $\left(10 f_{5} k^{2}-4 f_{4} k+f_{3}\right)$

$$
\begin{aligned}
& +\left(20 f_{5} k \ell-4 f_{4} \ell\right) j \\
& +\left(10 f_{5} \ell^{2}\right) j^{2}
\end{aligned}
$$

below m / B^{3} modulo m.
Write n in base $m+k+j \ell$.
Obtain degrees coefficient on scale of $B^{-5} n^{1 / 6}$;
degree-4 coefficient on scale of $B^{-4} n^{1 / 6}$; degree-3 coefficient on scale of $B^{-2} n^{1 / 6}$. Hope for good degree 2 .

Bad news, part 1:
All known search methods,
including this one, become ineffective as degree increases.

Bad news, part 2:
In batch-NFS context, searching large m pool requires scaling up $\#$ targets.

