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Q sieve

Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.



Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.



Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 · 625 = 21305471.

64 · 675 = 26335270.

75 · 686 = 21315273.

14 · 64 · 75 · 625 · 675 · 686

= 28345874 = (24325472)2.

gcd
˘

611; 14 · 64 · 75− 24325472
¯

= 47.

611 = 47 · 13.



Why did this find a factor of 611?

Was it just blind luck:

gcd{611; random} = 47?

No.

By construction 611 divides s2−t2

where s = 14 · 64 · 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s− t or s+ t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s− t
and the other divided s+ t.



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.



This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n+ 1) = 25315071;

4(n+ 4) = 22335270;

15(n+ 15) = 21315173;

49(n+ 49) = 24325172;

64(n+ 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.



Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n+ i)

for i ∈
˘

1; 2; 3; : : : ; y2
¯

into products of primes ≤ y.

Look for nonempty set I of i’s

with i(n+ i) completely factored

and with
Q
i∈I
i(n+ i) square.

Compute gcd{n; s− t} where

s =
Q
i∈I
i and t =

rQ
i∈I
i(n+ i).



How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u−u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n ≥ u(1+o(1))u2

;

here o(1) is as u→∞.



More generally, if y ∈
exp

q`
1
2c + o(1)

´
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r“
(c+1)2+o(1)

2c

”
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.



Improving smoothness chances

Smoothness chance of i(n+ i)

degrades as i grows.

Smaller for i ≈ y2 than for i ≈ y.

Crude analysis: i(n+ i) grows.

≈ yn if i ≈ y;

≈ y2n if i ≈ y2.

More careful analysis:

n+ i doesn’t degrade, but

i is always smooth for i ≤ y,

only 30% chance for i ≈ y2.

Can we select congruences

to avoid this degradation?



Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n+ i).

e.g. progression q − (nmod q),

2q − (nmod q), 3q − (nmod q),

etc.

Check smoothness of

generalized congruence i(n+ i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q − (nmod q) etc.

Try many large q’s.

Rare for i’s to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

i n+ i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i ∈ 802458 + 994009Z:

i (n+ i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311



Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q−(nmod q))
n+q−(nmod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q ≈ n1=2 have

i ≈ (n+ i)=q ≈ n1=2 ≈ yu=2

so smoothness chance is roughly

(u=2)−u=2(u=2)−u=2 = 2u=uu,

2u times larger than before.



Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 − n with i ≈
√
n;

have i2 − n ≈ n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 − n)=q.

But still ≈ n1=2.

“Number-field sieve” (NFS)

achieves no(1).



Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i+ 611j)

for several pairs (i; j):

14(625) · 64(675) · 75(686)

= 44100002.

gcd{611; 14 · 64 · 75− 4410000}
= 47.



The Q(
√

14) sieve

factors 611 as follows:

Form a square

as product of (i+ 25j)(i+
√

14j)

for several pairs (i; j):

(−11 + 3 · 25)(−11 + 3
√

14)

· (3 + 25)(3 +
√

14)

= (112− 16
√

14)2.

Compute

s = (−11 + 3 · 25) · (3 + 25),

t = 112− 16 · 25,

gcd{611; s− t} = 13.



Why does this work?

Answer: Have ring morphism

Z[
√

14]→ Z=611,
√

14 7→ 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(−11 + 3 · 25)(−11 + 3 · 25)

· (3 + 25)(3 + 25)

= (112− 16 · 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.



Generalize from (x2 − 14; 25)

to (f;m) with irred f ∈ Z[x],

m ∈ Z, f(m) ∈ nZ.

Write d = deg f ,

f = fdx
d + · · ·+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick r ∈ C, root of f .

Then fdr is a root of

monic g = fd−1
d f(x=fd) ∈ Z[x].

Q(r)←O←Z[fdr]
fdr 7→fdm−−−−−−−→Z=n



Build square in Q(r) from

congruences (i− jm)(i− jr)

with iZ + jZ = Z and j > 0.

Could replace i− jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)∈S(i− jm)(i− jr)

in Q(r); now what?



Q
(i− jm)(i− jr)f2

d

is a square in O,

ring of integers of Q(r).

Multiply by g′(fdr)2,

putting square root into Z[fdr]:

compute r with r2 = g′(fdr)2·Q
(i− jm)(i− jr)f2

d .

Then apply the ring morphism

’ : Z[fdr]→ Z=n taking

fdr to fdm. Compute gcd{n;
’(r)− g′(fdm)

Q
(i− jm)fd}.

In Z=n have ’(r)2 =

g′(fdm)2Q(i− jm)2f2
d .



How to find square product

of congruences (i− jm)(i− jr)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i− jm and

y-smooth fdnorm(i− jr) =

fdi
d + · · ·+ f0j

d = jdf(i=j).

Norm covers all d roots r.

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.



Polynomial selection

Many f ’s possible for n.

How to find f that

minimizes NFS time?

General strategy:

Enumerate many f ’s.

For each f , estimate time using

information about f arithmetic,

distribution of jdeg ff(i=j),

distribution of smooth numbers.



Let’s restrict attention to f(x) =

(x−m)(f5x
5 + f4x

4 + · · ·+ f0).

Take m near n1=6.

Expand n in base m:

n = f5m
5 + f4m

4 + · · ·+ f0.

Can use negative coefficients.

Have f5 ≈ n1=6.

Typically all the fi’s

are on scale of n1=6.

(1993 Buhler Lenstra Pomerance)



To reduce f values by factor B:

Enumerate many possibilities

for m near B0:25n1=6.

Have f5 ≈ B−1:25n1=6.

f4; f3; f2; f1; f0 could be

as large as B0:25n1=6.

Hope that they are smaller,

on scale of B−1:25n1=6.

Conjecturally this happens

within roughly B7:5 trials.

Then (i− jm)(f5i
5 + · · ·+ f0j

5)

is on scale of B−1R6n2=6

for i; j on scale of R.

Several more ways; depends on n.



Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)−1=3

∈ 1:40 : : :+ o(1).



Choose integer m ≈ n1=d.

Write n as

md + fd−1m
d−1 + · · ·+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i− jm
for all coprime pairs (i; j)

with 1 ≤ i; j ≤ L0:95:::+o(1),

using primes ≤ L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i− jm.



Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i− jm,

test smoothness of i− jr
and i− j˛ and so on,

using primes ≤ L0:82:::+o(1).

L1:77:::+o(1) tests.

Each |jdf(i=j)| ≤m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.



Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i− jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 ≈ logm;

balancing norms with m

forces d log y ≈ logm;

and d logm ≈ logn.



Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i− jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.



Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)−1=3

∈ 1:10 : : :+ o(1).

Primes ≤ L0:82:::+o(1).

1 ≤ i; j ≤ L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i− jm.

L1:64:::+o(1) operations

for each target n.



Batch NFS for RSA-3072

Expand n in base m = 2384:

n = n7m
7 + n6m

6 + · · ·+ n0

with 0 ≤ n0; n1; : : : ; n7 < m.

Assume irreducibility of

n7x
7 + n6x

6 + · · ·+ n0.

Choose height H = 262+261+257:

consider pairs (a; b) ∈ Z× Z such

that −H ≤ a ≤ H, 0 < b ≤ H,

and gcd{a; b} = 1.

Choose smoothness bound

y = 266 + 255.



There are about

12H2=ı2 ≈ 2125:51

pairs (a; b).

Find all pairs (a; b) with

y-smooth (a− bm)c where

c = n7a
7 + n6a

6b+ · · ·+ n0b
7.

Combine these congruences

into a factorization of n,

if there are enough congruences.

Number of congruences needed

≈ 2y= log y ≈ 262:06.



Heuristic approximation:

a − bm has same y-smoothness

chance as a uniform random

integer in [1; Hm],

and this chance is u−u

where u = (log(Hm))= log y.

Have u ≈ 6:707

and u−u ≈ 2−18:42,

so there are about

2107:09 pairs (a; b)

such that a− bm is smooth.



Heuristic approximation:

c has same y-smoothness chance

as a uniform random integer in

[1; 8H7m],

and this chance is v−v

where v = (log(8H7m))= log y.

Have v ≈ 12:395

and v−v ≈ 2−45:01,

so there are about

262:08 pairs (a; b) such that

a− bm and c are both smooth.

Safely above 262:06.



Biggest step in computation:

Check 2125:51 pairs (a; b)

to find the 2107:09 pairs

where a− bm is smooth.

This step is independent of N,

reused by many integers N.



Biggest step in computation:

Check 2125:51 pairs (a; b)

to find the 2107:09 pairs

where a− bm is smooth.

This step is independent of N,

reused by many integers N.

Biggest step depending on N:

Check 2107:09 pairs (a; b)

to see whether c is smooth.

This is much less

computation! : : : or is it?



The 2107:09 pairs (a; b)

are not consecutive,

so no easy way to sieve

for prime divisors of c.



The 2107:09 pairs (a; b)

are not consecutive,

so no easy way to sieve

for prime divisors of c.

Fix: factor each number

separately:

start with trial division,

then Pollard rho,

then Pollard p− 1,

then ECM.



The 2107:09 pairs (a; b)

are not consecutive,

so no easy way to sieve

for prime divisors of c.

Fix: factor each number

separately:

start with trial division,

then Pollard rho,

then Pollard p− 1,

then ECM.

Most of them covered in

http://facthacks.cr.yp.to/



The rho method

Define 0 = 0, k+1 = 2
k + 11.

Every prime ≤ 220 divides S =

(1 − 2)(2 − 4)(3 − 6)

· · · (3575 − 7150).

Also many larger primes.

Can compute gcd{c; S} using

≈ 214 multiplications mod c,

very little memory.

Compare to ≈ 216 divisions

for trial division up to 220.



More generally: Choose z.

Compute gcd{c; S} where S =

(1 − 2)(2 − 4) · · · (z − 2z).

How big does z have to be

for all primes ≤ y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

1 mod p; 2 mod p; : : :.

If i mod p = j mod p

then k mod p = 2k mod p

for k ∈ (j − i)Z ∩ [i;∞] ∩ [j;∞].



The p− 1 method

S1 = 2232792560 − 1 has prime

divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes ≤ 103;

156 of the 1229 primes ≤ 104;

296 of the 9592 primes ≤ 105;

470 of the 78498 primes ≤ 106;

etc.



An odd prime p

divides 2232792560 − 1

iff order of 2 in the

multiplicative group F∗p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcm{1; 2; 3; 4; 5; : : : ; 20}
= 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19.



Can compute 2232792560 − 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, −, ·.

This computation: 1; 2 = 1 + 1;

22 = 2 · 2; 23 = 22 · 2; 26 = 23 · 23;

212 = 26·26; 213 = 212·2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560−1.



Given positive integer n,

can compute 2232792560 − 1 mod c

using 41 operations in Z=c.

Notation: amod b = a− b ba=bc.

e.g. c = 8597231219: : : :

227 mod c = 134217728;

254 mod c = 1342177282 modn

= 935663516;

255 mod c = 1871327032;

2110 mod c = 18713270322 mod c

= 1458876811; : : : ;

2232792560−1 mod c= 5626089344.



Given positive integer n,

can compute 2232792560 − 1 mod c

using 41 operations in Z=c.

Notation: amod b = a− b ba=bc.

e.g. c = 8597231219: : : :

227 mod c = 134217728;

254 mod c = 1342177282 modn

= 935663516;

255 mod c = 1871327032;

2110 mod c = 18713270322 mod c

= 1458876811; : : : ;

2232792560−1 mod c= 5626089344.

Easy extra computation (Euclid):

gcd{5626089344; c} = 991.



This p− 1 method (1974 Pollard)

quickly factored c = 8597231219.

Main work: 27 squarings mod c.

Could instead have checked

c’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod c.

The p− 1 method finds

only 70 of the primes ≤ 1000;

trial division finds all 168 primes.



Scale up to larger exponent

s = lcm{1; 2; 3; 4; 5; : : : ; 100}:
using 136 squarings mod c

find 2317 of the primes ≤ 105.

Is a squaring mod c

faster than 17 trial divisions?

Or

s = lcm{1; 2; 3; 4; 5; : : : ; 1000}:
using 1438 squarings mod c

find 180121 of the primes ≤ 107.

Is a squaring mod c

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.



Plausible conjecture: if K is

exp
q`

1
2 + o(1)

´
logH log logH

then p−1 divides lcm{1; 2; : : : ; K}
for H=K1+o(1) primes p ≤ H.

Same if p− 1 is replaced by

order of 2 in F∗p.

So uniform random prime p ≤ H
divides 2lcm{1;2;:::;K} − 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod c

produce 2lcm{1;2;:::;K} − 1 mod c.

Similar time spent on trial division

finds far fewer primes for large H.



Safe primes

This means numbers are easy

to factor if their factors pi
have smooth pi − 1.

To construct hard instances

avoid such factors – that’s it?

ANSI does recommend

using “safe primes”, i.e.,

primes of the form 2p′ + 1

when generating RSA moduli.

This does not help against the

NFS nor against the following

algorithms.



The p+ 1 factorization method

(1982 Williams)

Define (X; Y ) ∈ Q×Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes ≤ 103;

223 of the primes ≤ 104;

455 of the primes ≤ 105;

720 of the primes ≤ 106;

etc.



Given an integer c,

compute 5232792560X mod c

and compute gcd with c,

hoping to factor c.

Many p’s not found by F∗p
are found by Clock(Fp).

If −1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p ≡ 3 (mod 4), so

(4=5 + 3i=5)p = 4=5− 3i=5 and

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp)

so 232792560(3=5; 4=5) = (0; 1).



The elliptic-curve method

Stage 1: Point P on E over Z=c,

compute R = sP for

s = lcm{2; 3; : : : ; B1}.

Stage 2: Small primes

B1 < q1; : : : ; qk ≤ B2

compute Ri = qiR.

If order of P on E=Fpi
(same curve, reduce mod pi)

divides sqi, then

Ri = (0; 1) (using Edwards).

Compute gcd{c;
Q
y(Ri)}.



Good news (for the attacker):

All primes ≤ H found after

reasonable number of curves.

Order of elliptic-curve group

∈ [p+ 1− 2
√
p; p+ 1 + 2

√
p].

If a curve fails, try another.

Plausible conjecture: if B1 is

exp
q`

1
2 + o(1)

´
logH log logH

then, for each prime p ≤ H,

a uniform random curve mod p

has chance ≥ 1=B
1+o(1)
1 to find p.

Find p using, ≤ B1+o(1)
1 curves;

≤ B2+o(1)
1 squarings.

Time subexponential in H.



Bad RSA randomness

2004 Bauer–Laurie:

checked 18000 PGP RSA keys;

found 2 keys sharing a factor.

2012.02.14 Lenstra–Hughes–

Augier–Bos–Kleinjung–Wachter

“Ron was wrong, Whit is right”

(Crypto 2012): checked 7 · 106

SSL/PGP RSA keys; found 6 · 106

distinct keys; factored 12720 of

those,

thanks to shared prime factors.



2012.02.17 Heninger–

Durumeric–Wustrow–Halderman

announcement (USENIX Security

2012):

checked >107 SSL/SSH RSA

keys; factored 24816 SSL keys,

2422 SSH host keys.

“Almost all of the vulnerable keys

were generated by and are used to

secure embedded hardware devices

such as routers and firewalls, not

to secure popular web sites such

as your bank or email provider.”



These computations find q2 in

p1q1; p2q2; p3q3;

p4q2; p5q5; p6q6;

and thus also p2 and p4.

Obvious:GCD computation.

Faster: scaled remainder trees.

Nice follow-up project:

Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on

certified smart cards;

should have good randomness.

But: student broke 103 keys.



Closer look at the 119 primes

p29

p101

p11

p92

p110
p117

p111

p3

p108

p71

p5
p65

p100

p78

p112

p17

p104

p35

p36

p49

p70

p12

p118

p57

p61

p76

p113

p40

p84

p99

p22

p107

p26

p34

p89

p80 p95

p90

p8

p37

p82

p85

p116
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Prime p110 appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9

which is the next prime after

2511 + 2510.

Next up

c9242492249292499249492449242492

24929249924949244924249224929249

92494924492424922492924992494924

492424922492924992494924492424e5

Several other factors exhibit such

a pattern.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.



Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.



Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.

Do this for any pattern:

0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,: : :
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Computing GCDs factored 105

moduli, of which 18 were new.

Breaking RSA-1024

by “trial division”.

Factored 4 more keys using

patterns of length 9.

More factors by studying other

keys and using lattices.

“Factoring RSA keys from

certified smart cards:

Coppersmith in the wild”

(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

http://smartfacts.cr.yp.to/
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Bad RSA randomness 2017 – ROCA

M. Nemec, M. Sys, P. Svenda,

D. Klinec, V. Matyas

All RSA keys generated by some

Infineon smart cards satisfy

nmod 2 = 1

nmod 11 ∈ {1; 10}
nmod 37 ∈ {1; 10; 37}
nmod 97 ∈ {1; 35; 36; 61; 62; 96}
nmod 331 ∈ {1; 330}

These give 1 · 2 · 3 · 6 · 2 = 72

possibilities of nmodL, where

L = 2 · 11 · 37 · 97 · 331, instead of

1 · 10 · 36 · 96 · 330 = 11404800



Worse,

nmod 2 · 11 · 37 · 97 · 331

∈ {1; 65537; 4878941;

8942297; 14367385; 24016035}



Worse,

nmod 2 · 11 · 37 · 97 · 331

∈ {1; 65537; 4878941;

8942297; 14367385; 24016035}

n ∈
˘

65537i modL|i ∈ Z
¯

and 65537 has order 6 modL.



Worse,

nmod 2 · 11 · 37 · 97 · 331

∈ {1; 65537; 4878941;

8942297; 14367385; 24016035}

n ∈
˘

65537i modL|i ∈ Z
¯

and 65537 has order 6 modL.

If n = p · q = 65537i modL

then likely

p; q ∈
˘

65537i modL|i ∈ Z
¯

.



Worse,

nmod 2 · 11 · 37 · 97 · 331

∈ {1; 65537; 4878941;

8942297; 14367385; 24016035}

n ∈
˘

65537i modL|i ∈ Z
¯

and 65537 has order 6 modL.

If n = p · q = 65537i modL

then likely

p; q ∈
˘

65537i modL|i ∈ Z
¯

.

There are more congruences

where this holds.

Actually L =
Q
‘<702;‘prime ‘.
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How do these turn into primes?

log2 L ≈ 971 and log2 p = 1024,

so p = p′ + k · L,

where p ≡ p′modL, and k with

gcd{k; L} = 1 and log2 k ≈ 53

is random so that p is prime.

Same for q.

Lenstra’s “Divisors in Residue

Classes” finds prime factors of

the form p = u+ k · L
efficiently if L ≥ n1=3.

Coppersmith, Howgrave-Graham,

and Nagaraj work for L ≥ n1=4.

log2 L > 970 > 683 > 2048=3.



Full attack

Run Lensta for all p′ ∈˘
65537i modL|i ∈ Z

¯
.

Each run is cheap, but

there are many options for

p′, e.g. 65537i mod 23 ∈
{±1;±2;±3;±4; : : : ;±9;±10;±11}.



Full attack

Run Lensta for all p′ ∈˘
65537i modL|i ∈ Z

¯
.

Each run is cheap, but

there are many options for

p′, e.g. 65537i mod 23 ∈
{±1;±2;±3;±4; : : : ;±9;±10;±11}.

But L is much larger than needed.

So use L′|L which minimizes

number of choices × runtime.



What went wrong here?

It would have been OK to choose

p′ as

p′ ≡ 2r1 mod 3

p′ ≡ 3r2 mod 5

p′ ≡ 3r3 mod 7

p′ ≡ 2r4 mod 11

p′ ≡ 2r5 mod 13

with ri random and p′

reconstructed using CRT.

Note: 2 and 3 are generators,

so this gives

2 · 4 · 6 · 10 · 12 = 5760 options.



It would have OK’ish

but worse

to choose p′ as

p′ ≡ 2r1 mod 3

p′ ≡ 2r2 mod 5

p′ ≡ 2r3 mod 7

p′ ≡ 2r4 mod 11

p′ ≡ 2r5 mod 13

with ri random and p′

reconstructed using CRT.

Note: 2 is not always a generator,

this gives only

2 · 4 · 3 · 10 · 12 = 2880 options.



It is really bad

to replace this by a single

exponentiation and choose p′ as

p′ ≡ 5477r mod 3 · 5 · 7 · 11 · 13

with r random.

Note:

The orders of 5477

modulo 3,5,7,11, and 13

are 2,4,6,2, and 6, but the powers

are linked.

Instead of 2 · 4 · 6 · 2 · 6 = 576

this gives lcm{2; 4; 6; 2; 6} = 12

options.


