
(In-)secure messaging with SCimp

Sebastian R. Verschoor and Tanja Lange
(with many slides and pictures by Sebastian)

University of Waterloo / Eindhoven University of Technology

CryptoAction Symposium 2017
28 March 2017

https://eprint.iacr.org/2016/703

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 1

https://eprint.iacr.org/2016/703

Secure Messaging protocols

EFF ad in Wired magazine (source)

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 2

https://www.eff.org/pages/eff-ad-wired

History of online secure messaging (1/2)

I 1991: Phil Zimmermann creates PGP
I 2004: Nikita Borisov, Ian Goldberg and Eric Brewer create

OTR
I Secure, but requires synchronous environment

I 2011: Gary Belvin introduces SecureSMS (master’s thesis)
I 2012: SCimp (Silent Circle instant messaging protocol)

I By Vinnie Moscaritolo, Gary Belvin and Phil Zimmermann
I SecureSMS for XMPP
I Even copies variable names and equation numbering from

Belvin’s thesis (despite creating internal inconsistencies)

I February 2014: Open Whisper Systems releases TextSecure v2
I Allows offline initial user message
I Later renamed to Signal

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 3

History of online secure messaging (2/2)

I May 2014: Silent Circle updates to SCimp v2
I Allows offline initial user message

I August 2015: Silent Circle releases code for SCimp v2
I Adds more inconsistencies between code and documentation

I September 2015: Silent Circle discontinues SCimp, switches
to Signal-based protocol

I October 2015: Andreas Straub proposes OMEMO
I Multi-device Signal for XMPP

I Oct-Nov 2016: Trevor Perrin and Moxie Marlinspike release
official specification for the Signal protocol

I Dec 7th 2016: OMEMO gets standardized by the XMPP
Standard Foundation: XEP-0384 (experimental)

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 4

Blackphone by Silent Circle

https://web-beta.archive.org/web/20140630155450/https://blackphone.ch/

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 5

https://web-beta.archive.org/web/20140630155450/https://blackphone.ch/

Blackphone by Silent Circle

I Android-based smart phone running Silent OS operating
system.

I Rather expensive (2016: 799 USD); now 599 USD.

I Promise of higher security and privacy: “Blackphone puts
privacy first”.

I The Blackphone 1 (summer 2014) came with service
subscriptions for encrypted phone (Silent Phone) and chat
(Silent Text).

I Silent Text was available as free Apple and Android apps but
subscription fee for servers.

I No public security analysis or code; after intense online
discussion (Wilcox-O’Hearn’s open letter to Phil Zimmermann
and Jon Callas) some source code for on GitHub.

I Callas suggested analysis of SCimp as topic for Verschoor’s
thesis.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 6

Our involvement

I December 2015: Verschoor’s Master’s thesis (at TU/e) on
SCimp

I SCimp v1 is formally verified by ProVerif to be secure
I SCimp v2 contains cryptographic flaws
I the implementation contains many security bugs

I June 2016: Verschoor’s cryptographic report on OMEMO
I Minor bug found in multidevice setting

I Developer patches it the same day as reported

I July 2016: Sebastian Verschoor and I release SCimp preprint
paper

I Some of Silent Circle’s code (copied from SCimp
implementation) still contains bugs that were reported in
Verschoor’s thesis

I Bugs got patched a few days later
I Initial bug report: September 2015

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 7

SCimp v1: Key negotiation
Alice Bob

genKeyPair()
hash(pka)

genKeyPair()
pkb

DH(ska, pkb)
pka,maca

DH(skb, pka)
macb

Keys derived from DH

Confirm SAS

Out of band

Authenticated

SAS: short authentication string
Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 8

SCimp v1: Key negotiation
ECDHE gives shared secret Z , from which are derived:

I ksnd ,0, krcv ,0, isnd ,0, ircv ,0; for message encryption and
authentication

I maca,macb; to confirm knowledge of Z
I SAS; for authentication of identity
I cs; for rekeying

User messages can be sent after four key exchange messages

Alice Bob

genKeyPair()
hash(pka)

genKeyPair()
pkb

DH(ska, pkb)
pka,maca

DH(skb, pka)
macb

Keys derived from DH

Confirm SAS

Out of band

Authenticated

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 9

SCimp v1: Key negotiation
SAS confirms identity all previous communication

I Requires commitment to pka to prevent collision attack

Alice Bob

genKeyPair()
hash(pka)

genKeyPair()
pkb

DH(ska, pkb)
pka,maca

DH(skb, pka)
macb

Keys derived from DH

Confirm SAS

Out of band

Authenticated

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 10

SCimp v1: Rekeying

Alice Bob

Alice and Bob share cs

hash(pka),MACcs(pka)

pkb,MACcs(pkb)
Verify MACcs

pka,maca
Verify MACcs

macb

Keys derived from DH and cs

cs used for key continuity; gets updated at end up rekeying.
Description speaks of “self-healing”.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 11

SCimp v1: Rekeying

I First: store old decryption key (messages might arrive out of
order)

I Optional: SAS comparison only after several rekeyings

I Rekeying ensures future secrecy

I It is not specified when to rekey

I Protocol aborts on error

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 12

SCimp v1: Sending user messages

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 13

SCimp v1: Sending user messages

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 13

SCimp v1: Sending user messages

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 13

SCimp v1: Sending user messages

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 13

Proverif results for SCimp v1

I First key negotiation (if SAS confirmed over authenticated
channel)

X Confidentiality of keys
X Authenticity of keys and other party identity

I Rekeying

X Confidentiality of keys
X Authenticity of keys and other party identity
I Future secrecy

X When attacker misses first rekeying after compromise
X When users reconfirm the SAS

I Sending user message

X Confidentiality of keys
X Strong secrecy of messages
X Authenticity of messages and keys
X Forward secrecy (if keys can be erased)
X Deniability

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 14

SCimp v2: Progressive encryption
Alice Server Bob

pkB

Bob?

pkB

genKeyPairs(): (sk0, pk0), (ska, pka)
Z0 = DH(sk0, pkB)
ct = AESk0

(i0, pt)

pk0, ct; hash(pka)

(Temporary) keys derived from Z0

From here on: regular key negotiation in parallel to user messages

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 15

Proverif results for SCimp v2

I Progressive encryption

× Confidentiality/authenticity of first message
X Confidentiality/authenticity of all messages and keys (after

SAS)

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 16

SCimp

I ProVerif reports that the initial message of SCimp v2 is not
confidential

I This does not impact SCimp v1

I But, ProVerif also verifies that users can detect this when
confirming the SAS later

I To determine the impact of this vulnerability, we had to look
at the source code

We, that means Sebastian.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 17

SCimp

I ProVerif reports that the initial message of SCimp v2 is not
confidential

I This does not impact SCimp v1

I But, ProVerif also verifies that users can detect this when
confirming the SAS later

I To determine the impact of this vulnerability, we had to look
at the source code

We, that means Sebastian.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 17

SCimp

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 18

SCimp

A short example to give a flavor of the code

u n s i g n e d l o n g c t x S t r L e n = 0 ;
s i z e t kdkLen ;
i n t keyLen = s c S C i m p C i p h e r B i t s (c t x−>c i p h e r S u i t e) ;

I ctxStrLen length in bytes (computing function returns size t)

I kdkLen length in bytes

I keyLen function name suggests bit-length, but ksnd is
2 ∗ keyLen bits long

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 19

Stealth MitM in SCimp

I Each message has a plaintext tag identifying the type:
I keying message; or
I user message

I The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM

I The vigilant user might detect this

I But the code contains another bug: the receiver overreacts
when a keying message is received out of order

I only the message tag is inspected
I the receiver deletes all local key material
I thereby annulling any security set up in the past

I The adversary can desynchronize any secure session with a
single out-of-order key message and set up a MitM undetected

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 20

Stealth MitM in SCimp

I Each message has a plaintext tag identifying the type:
I keying message; or
I user message

I The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM

I The vigilant user might detect this
I But the code contains another bug: the receiver overreacts

when a keying message is received out of order

I only the message tag is inspected
I the receiver deletes all local key material
I thereby annulling any security set up in the past

I The adversary can desynchronize any secure session with a
single out-of-order key message and set up a MitM undetected

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 20

Stealth MitM in SCimp

I Each message has a plaintext tag identifying the type:
I keying message; or
I user message

I The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM

I The vigilant user might detect this
I But the code contains another bug: the receiver overreacts

when a keying message is received out of order
I only the message tag is inspected
I the receiver deletes all local key material
I thereby annulling any security set up in the past

I The adversary can desynchronize any secure session with a
single out-of-order key message and set up a MitM undetected

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 20

More on SCimp

Other discrepancies between the model and the implementation
I Group messages have a single symmetric key

I Relies on trust in the SC server
I Subject to a trivial MitM attack

I CCM-mode implementation did not validate authentication
tags

I Problem in LibTomCrypt (fixed)

I Code contains many timing side-channel vulnerabilities

I The message parsing queue has a race condition
I Unchecked function error codes

I Including memory allocations

I State machine based design: good coding style
I and helps in making a model of the code
I in case of SCimp: helps find where specs and code differ
I seemed to have been an add on – state matchine not actually

used in SCimp implementation

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 21

More on SCimp extra features

SCimp file transfer
I Convergent encryption

I key = hash(file)
I send as SCimp message

I ciphertext = AES CCMkey (file)
I upload to cloud

I Known vulnerabilities of CE:
I confirmation of a file
I learn the remaining information

I SCimp: receiver does not check hash(file) = key
I file injection attack
I This attack remained in the code until July 2016, independent

of the upgrade of the messaging protocol

Other features, e.g., group messaging, usually fewer security
guarantees.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 22

More on SCimp extra features

SCimp file transfer
I Convergent encryption

I key = hash(file)
I send as SCimp message

I ciphertext = AES CCMkey (file)
I upload to cloud

I Known vulnerabilities of CE:
I confirmation of a file
I learn the remaining information

I SCimp: receiver does not check hash(file) = key
I file injection attack

I This attack remained in the code until July 2016, independent
of the upgrade of the messaging protocol

Other features, e.g., group messaging, usually fewer security
guarantees.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 22

More on SCimp extra features

SCimp file transfer
I Convergent encryption

I key = hash(file)
I send as SCimp message

I ciphertext = AES CCMkey (file)
I upload to cloud

I Known vulnerabilities of CE:
I confirmation of a file
I learn the remaining information

I SCimp: receiver does not check hash(file) = key
I file injection attack
I This attack remained in the code until July 2016, independent

of the upgrade of the messaging protocol

Other features, e.g., group messaging, usually fewer security
guarantees.

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 22

Further reading

I Sebastian’s homepage including tutorial given at ShmooCon:
https://www.zeroknowledge.me/

I ProVerif models are available:
https://github.com/sebastianv89/scimp-proverif

I Sebastian’s thesis about SCimp:
http://repository.tue.nl/844313

I Preprint about SCimp:
https://eprint.iacr.org/2016/703

I Get Signal (Android/iPhone):
https://whispersystems.org/

I Try OMEMO (on Android):
https://conversations.im/

I OMEMO audit report (by Sebastian):
https://conversations.im/omemo/audit.pdf

Sebastian R. Verschoor and Tanja Lange (In-)secure messaging with SCimp 23

https://www.zeroknowledge.me/
https://github.com/sebastianv89/scimp-proverif
http://repository.tue.nl/844313
https://eprint.iacr.org/2016/703
https://whispersystems.org/
https://conversations.im/
https://conversations.im/omemo/audit.pdf

	Secure Messaging protocols
	History of online secure messaging
	Our involvement

	SCimp
	Version 1
	Proverif results for SCimp v1
	Version 2
	Proverif results for SCimp v2

	More on SCimp

