NTRU Prime

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal

21 June 2018

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998.
- Security related to lattice problems; pre-version cryptanalyzed with LLL by Coppersmith and Shamir.
- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(3, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$.

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998.
- Security related to lattice problems; pre-version cryptanalyzed with LLL by Coppersmith and Shamir.
- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(3, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$.
- Private key: $f, g \in R$ sparse with coefficients in $\{-1,0,1\}$. Additional requirement: f must be invertible in R modulo q.
- Public key $h=3 g / f \bmod q$.
- Can see this as lattice with basis matrix

$$
B=\left(\begin{array}{ll}
q I_{p} & 0 \\
H & I_{p}
\end{array}\right)
$$

where H corresponds to multiplication by $h / 3$ modulo $x^{p}-1$.

- (g, f) is a short vector in the lattice as result of

$$
(k, f) B=(k q+f \cdot h / 3, f)=(g, f)
$$

for some polynomial k (from $f h / 3=g-k q$).

Original NTRU

- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(p, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$, some use additional reduction modulo q, ring denoted by R_{q}.

Original NTRU

- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(p, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$, some use additional reduction modulo q, ring denoted by R_{q}.
- Private key: $f, g \in R$ with coefficients in $\{-1,0,1\}$, almost all coefficients are zero (small fixed number are nonzero). Additional requirement: f must be invertible in R modulo q and modulo 3.
- Public key $h=3 g / f \bmod q$.

Original NTRU

- System parameters $(p, q), p$ prime, integer $q, \operatorname{gcd}(p, q)=1$.
- All computations done in ring $R=\mathbf{Z}[x] /\left(x^{p}-1\right)$, some use additional reduction modulo q, ring denoted by R_{q}.
- Private key: $f, g \in R$ with coefficients in $\{-1,0,1\}$, almost all coefficients are zero (small fixed number are nonzero). Additional requirement: f must be invertible in R modulo q and modulo 3.
- Public key $h=3 g / f \bmod q$.
- Encryption of message $m \in R$, coefficients in $\{-1,0,1\}$:

Pick random, sparse $r \in R$, same sample space as f; compute:

$$
c=r \cdot h+m \bmod q .
$$

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in R and $m=a / f \bmod 3$.

Why we don't stick with original NTRU.

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

- Let

$$
L(d, t)=\{F \in \mathcal{R} \mid F \text { has } d \text { coefficients equal to } 1
$$ and t coefficients equal to -1 , all others 0$\}$.

- Then $f \in L\left(d_{f}, d_{f}-1\right), r \in L\left(d_{r}, d_{r}\right)$, and $g \in L\left(d_{g}, d_{g}\right)$ with $d_{r}<d_{g}$.
- Then $3 r g+f m$ has coefficients of size at most

$$
3 \cdot 2 d_{r}+2 d_{f}-1
$$

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

- Let

$$
L(d, t)=\{F \in \mathcal{R} \mid F \text { has } d \text { coefficients equal to } 1
$$ and t coefficients equal to -1 , all others 0$\}$.

- Then $f \in L\left(d_{f}, d_{f}-1\right), r \in L\left(d_{r}, d_{r}\right)$, and $g \in L\left(d_{g}, d_{g}\right)$ with $d_{r}<d_{g}$.
- Then $3 r g+f m$ has coefficients of size at most

$$
3 \cdot 2 d_{r}+2 d_{f}-1
$$

which is larger than $q / 2$ for typical parameters. Such large coefficients are highly unlikely - but annoying for applications and guarantees.

Reason 1: Decryption failures

- Decryption of $c \in R_{q}$: Compute

$$
a=f \cdot c=f(r h+m) \equiv f(3 r g / f+m) \equiv 3 r g+f m \bmod q,
$$

move all coefficients to $[-q / 2, q / 2]$. If everything is small enough then a equals $3 r g+f m$ in \mathcal{R} and $m=a / f \bmod 3$.

- Let

$$
L(d, t)=\{F \in \mathcal{R} \mid F \text { has } d \text { coefficients equal to } 1
$$ and t coefficients equal to -1 , all others 0$\}$.

- Then $f \in L\left(d_{f}, d_{f}-1\right), r \in L\left(d_{r}, d_{r}\right)$, and $g \in L\left(d_{g}, d_{g}\right)$ with $d_{r}<d_{g}$.
- Then $3 r g+f m$ has coefficients of size at most

$$
3 \cdot 2 d_{r}+2 d_{f}-1
$$

which is larger than $q / 2$ for typical parameters. Such large coefficients are highly unlikely - but annoying for applications and guarantees.

- Security decreases with large q; reduction is important.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals $c=r h+m$ and $r \in L\left(d_{r}, d_{r}\right)$, so $r(1)=0$ and $g \in L\left(d_{g}, d_{g}\right)$, so $h(1)=g(1) / f(1)=0$.
- This implies

$$
c(1)=r(1) h(1)+m(1)=m(1)
$$

which gives information about m, in particular if $|m(1)|$ is large.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals $c=r h+m$ and $r \in L\left(d_{r}, d_{r}\right)$, so $r(1)=0$ and $g \in L\left(d_{g}, d_{g}\right)$, so $h(1)=g(1) / f(1)=0$.
- This implies

$$
c(1)=r(1) h(1)+m(1)=m(1)
$$

which gives information about m, in particular if $|m(1)|$ is large.

- For other choices of r and h, such as $L\left(d_{r}, d_{r}-1\right)$ or such, one knows $r(1)$ and h is public, so evaluation at 1 leaks $m(1)$.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals $c=r h+m$ and $r \in L\left(d_{r}, d_{r}\right)$, so $r(1)=0$ and $g \in L\left(d_{g}, d_{g}\right)$, so $h(1)=g(1) / f(1)=0$.
- This implies

$$
c(1)=r(1) h(1)+m(1)=m(1)
$$

which gives information about m, in particular if $|m(1)|$ is large.

- For other choices of r and h, such as $L\left(d_{r}, d_{r}-1\right)$ or such, one knows $r(1)$ and h is public, so evaluation at 1 leaks $m(1)$.
- Original NTRU rejects extreme messages - this is dealt with by randomizing m via a padding (not mentioned so far).
- Could also replace $x^{p}-1$ by $\Phi_{p}=\left(x^{p}-1\right) /(x-1)$ to avoid attack.

Reason 3: Mappings to subrings

- Consider $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$.
- Can possibly get more information on m from homomorphism $\psi: R_{q} \rightarrow T$, for some ring T.
- Typical choice in original NTRU: $q=2048$ leads to natural ring maps from $(\mathbf{Z} / 2048)[x] /\left(x^{p}-1\right)$ to
- (Z/2)[x]/($\left.x^{p}-1\right)$,
- $(\mathbf{Z} / 4)[x] /\left(x^{p}-1\right)$,
- $(\mathbf{Z} / 8)[x] /\left(x^{p}-1\right)$, etc.

Reason 3: Mappings to subrings

- Consider $R_{q}=(\mathbf{Z} / q)[x] /\left(x^{p}-1\right)$.
- Can possibly get more information on m from homomorphism $\psi: R_{q} \rightarrow T$, for some ring T.
- Typical choice in original NTRU: $q=2048$ leads to natural ring maps from $(\mathbf{Z} / 2048)[x] /\left(x^{p}-1\right)$ to
- (Z/2)[x]/($x^{p}-1$),
- (Z/4)[x]/($x^{p}-1$),
- $(\mathbf{Z} / 8)[x] /\left(x^{p}-1\right)$, etc.
- Unclear whether these can be exploited to get information on m.
- Maybe, complicated. [Silverman-Smart-Vercauteren '04]
- If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter '14, Elias-Lauter-Ozman-Stange '15, Chen-Lauter-Stange '16, Castryck-lliashenko-Vercauteren '16]

Reasons 4 and 5

- Rings of original NTRU also have
- a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de Valence-van Vredendaal '17], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
- many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15, Cramer-Ducas-Wesolowski '17, Alice's talk]).

Reasons 4 and 5

- Rings of original NTRU also have
- a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de Valence-van Vredendaal '17], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
- many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15, Cramer-Ducas-Wesolowski '17, Alice's talk]).
- Whether paranoia, or valid panic; what can we do about it?

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R}=\mathbf{Z}[x] / P$ and $(\mathbf{Z} / q)[x] / P$ is a field.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R}=\mathbf{Z}[x] / P$ and $(\mathbf{Z} / q)[x] / P$ is a field.
- Further choose P of prime degree p with large Galois group.
- Specifically, set $P=x^{p}-x-1$.

This has Galois group S_{p} of size p !.

- NTRU Prime works over the NTRU Prime field

$$
\mathcal{R} / q=(\mathbf{Z} / q)[x] /\left(x^{p}-x-1\right)
$$

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
\rightarrow Only subfields of $\mathbf{Q}[x] / P$ are itself and \mathbf{Q}. Avoids structures used by, e.g., multiquad attack.
\rightarrow Large Galois group means no easy to compute automorphisms. Roots of P live in degree- p ! extension. Avoids structures used by Campbell-Groves-Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
\rightarrow No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen-Lauter-Stange attack.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
\rightarrow Only subfields of $\mathbf{Q}[x] / P$ are itself and \mathbf{Q}. Avoids structures used by, e.g., multiquad attack.
\rightarrow Large Galois group means no easy to compute automorphisms. Roots of P live in degree- p ! extension. Avoids structures used by Campbell-Groves-Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
\rightarrow No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen-Lauter-Stange attack.
Irreducibility also avoids the evaluation-at-1 attack which simplifies padding.

Streamlined NTRU Prime: private and public key

- System parameters $(p, q, t), p, q$ prime, $q \geq 32 t+1$.
- Pick g small in \mathcal{R}

$$
g=g_{0}+\cdots+g_{p-1} x^{p-1} \text { with } g_{i} \in\{-1,0,1\}
$$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R} / 3$.

- Pick t-small $f \in \mathcal{R}$

$$
f=f_{0}+\cdots+f_{p-1} x^{p-1} \text { with } f_{i} \in\{-1,0,1\} \text { and } \sum\left|f_{i}\right|=2 t
$$

Since \mathcal{R} / q is a field, f is invertible.

- Compute public key $h=g /(3 f)$ in \mathcal{R} / q.
- Private key is f and $1 / g \in \mathcal{R} / 3$.

Streamlined NTRU Prime: private and public key

- System parameters $(p, q, t), p, q$ prime, $q \geq 32 t+1$.
- Pick g small in \mathcal{R}

$$
g=g_{0}+\cdots+g_{p-1} x^{p-1} \text { with } g_{i} \in\{-1,0,1\}
$$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R} / 3$.

- Pick t-small $f \in \mathcal{R}$

$$
f=f_{0}+\cdots+f_{p-1} x^{p-1} \text { with } f_{i} \in\{-1,0,1\} \text { and } \sum\left|f_{i}\right|=2 t
$$

Since \mathcal{R} / q is a field, f is invertible.

- Compute public key $h=g /(3 f)$ in \mathcal{R} / q.
- Private key is f and $1 / g \in \mathcal{R} / 3$.
- Difference from original NTRU: more key options, 3 in denominator.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_{i} \in\{-1,0,1\}, \sum\left|r_{i}\right|=2 t$).
- Computes $h r$ in \mathcal{R} / q, lifts coefficients to $\mathbf{Z} \cap[-(q-1) / 2,(q-1) / 2]$.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_{i} \in\{-1,0,1\}, \sum\left|r_{i}\right|=2 t$).
- Computes $h r$ in \mathcal{R} / q, lifts coefficients to $\mathbf{Z} \cap[-(q-1) / 2,(q-1) / 2]$.
- Rounds each coefficient to the nearest multiple of 3 to get c.
- Computes hash $(r)=(C \mid K)$.
- Sends $(C \mid c)$, uses session key K for DEM.

Rounding $h r$ saves bandwidth and adds same entropy as adding ternary m.

Streamlined NTRU Prime: decapsulation

Bob decrypts $(C \mid c)$:

- Reminder $h=g /(3 f)$ in \mathcal{R} / q.
- Computes $3 f c=3 f(h r+m)=g r+3 f m$ in \mathcal{R} / q, lifts coefficients to $\mathbf{Z} \cap[-(q-1) / 2,(q-1) / 2]$.
- Reduces the coefficients modulo 3 to get $a=g r \in \mathcal{R} / 3$.
- Computes $r^{\prime}=a / g \in \mathcal{R} / 3$, lifts r^{\prime} to \mathcal{R}.
- Computes hash $\left(r^{\prime}\right)=\left(C^{\prime} \mid K^{\prime}\right)$ and c^{\prime} as rounding of $h r^{\prime}$.
- Verifies that $c^{\prime}=c$ and $C^{\prime}=C$.

If all checks verify, $K=K^{\prime}$ is the session key between Alice and Bob and can be used in a data encapsulation mechanism (DEM).

Choosing $q \geq 32 t+1$ means no decryption failures, so $r=r^{\prime}$ and verification works unless $(C \mid c)$ was incorrectly generated or tempered with.

Family picture

send $m+h r$ for small m, r and public h in ring \mathcal{R} ("NTRU")
cyclotomic, power-of-2 index, split modulus ("NTRU NTT")

Streamlined NTRU Prime: Security

- What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p}-1$	$x^{p}+1$	$x^{p}-x-1$
Degree p	prime	power of 2	prime
Modulus q	2^{d}	prime	prime
\# factors of P in \mathcal{R} / q	>1	p	1
\# proper subfields	>1	many	1
Every m encryptable	X	\checkmark	\checkmark
No decryption failures	X	X	\checkmark

Streamlined NTRU Prime: Security

- What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p}-1$	$x^{p}+1$	$x^{p}-x-1$
Degree p	prime	power of 2	prime
Modulus q	2^{d}	prime	prime
\# factors of P in \mathcal{R} / q	>1	p	1
\# proper subfields	>1	many	1
Every m encryptable	X	\checkmark	\checkmark
No decryption failures	X	X	\checkmark

- Because of the last $2 \sqrt{ }$'s the analysis is simpler than that of original NTRU.

Streamlined NTRU Prime: Security

- What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p}-1$	$x^{p}+1$	$x^{p}-x-1$
Degree p	prime	power of 2	prime
Modulus q	2^{d}	prime	prime
\# factors of P in \mathcal{R} / q	>1	p	1
\# proper subfields	>1	many	1
Every m encryptable	X	\checkmark	\checkmark
No decryption failures	X	X	\checkmark

- Because of the last $2 \sqrt{ }$'s the analysis is simpler than that of original NTRU.
- But is it still fast?

Polynomial Multiplication

- Main bottleneck is polynomial multiplication
- Classic choices of $x^{p}-1$ and $x^{n}+1$ have very fast reduction.
- NTRU uses $x^{p}-1$ for p prime and $q=2^{N}$.
- Most R-LWE systems use $x^{n}+1$, with $n=2^{t}$; q prime. Typical implementations use the number-theoretic transform (NTT). This requires q to be "NTT-friendly", i.e., $x^{n}+1$ splits into linear factors modulo q, so $q \equiv 1 \bmod 2 n$;
e.g. $n=1024$ and $q=6 \cdot 2048+1$.
- Complete factorization of $x^{n}+1$ modulo q is also used in search-to-decision problem reductions.
- Obvious benefit: NTT is fast.
- Not so obvious downside: NTT friendly combinations are rare - likely to overshoot security targets in some direction.

Multiplication for NTRU Prime

- How to compute efficiently in $\mathbf{Z}[x] /\left(x^{p}-x-1\right)$?
- Reduction is not too bad, but no special tricks for multiplication.
- Multiplication algorithms considered:
- refined Karatsuba,
- arbitrary degree variant of Karatsuba (3-7 levels).

Multiplication for NTRU Prime

- How to compute efficiently in $\mathbf{Z}[x] /\left(x^{p}-x-1\right)$?
- Reduction is not too bad, but no special tricks for multiplication.
- Multiplication algorithms considered:
- refined Karatsuba,
- arbitrary degree variant of Karatsuba (3-7 levels).
- Best operation count obtained so far for 768×768 :
- Toom-6 from 768×768 to 128×128.
- 5-level refined Karatsuba from 128×128 to 4×4.
- Best speed obtained so far for 768×768 :
- 5-level refined Karatsuba from 768×768 to 24×24.
- Half precision: twice as many entries in vectors.

Vectorization

\square

$$
g=\square \square \square
$$

Vectorization

$$
\begin{aligned}
& f=\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l}
& & & & & & & & & & & \\
\hline
\end{array} \\
& g=\square \\
& \hline
\end{aligned}
$$

- Karatsuba
- cut polynomials into smaller parts; independent operations on the parts

Vectorization

$$
\begin{aligned}
& f=\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & & & \\
\hline
\end{array}=\square
\end{aligned}
$$

- Karatsuba
- cut polynomials into smaller parts; independent operations on the parts

- Vectorization
- vectorize across independent multiplications

Odlyzko's meet-in-the-middle attack on NTRU

- Idea: split the possibilities for f in two parts

$$
\begin{aligned}
h & =\left(f_{1}+f_{2}\right)^{-1} g \\
f_{1} \cdot h & =g-f_{2} \cdot h .
\end{aligned}
$$

- If there was no g : collision search in $f_{1} \cdot h$ and $-f_{2} \cdot h$

Odlyzko's meet-in-the-middle attack on NTRU

- Idea: split the possibilities for f in two parts

$$
\begin{aligned}
h & =\left(f_{1}+f_{2}\right)^{-1} g \\
f_{1} \cdot h & =g-f_{2} \cdot h .
\end{aligned}
$$

- If there was no g : collision search in $f_{1} \cdot h$ and $-f_{2} \cdot h$
- Solution: look for collisions in $c\left(f_{1} \cdot h\right)$ and $c\left(-f_{2} \cdot h\right)$ with

$$
c\left(a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1}\right)=\left(\mathbf{1}\left(a_{0}>0\right), \ldots, \mathbf{1}\left(a_{p-1}>0\right)\right)
$$

using that g is small and thus $+g$ often does not change the sign.

- If $c\left(f_{1} \cdot h\right)=c\left(-f_{2} \cdot h\right)$ check whether $h\left(f_{1}+f_{2}\right)$ is in $L\left(d_{g}, d_{g}\right)$. For NTRU Prime check whether $h\left(f_{1}+f_{2}\right)$ is small.
- Basically runs in squareroot of size of search space.

Attackable rotations

- In NTRU, $x^{i} f$ is simply a rotation of f, so it has the same coefficients, just at different positions. This means, $x^{i} f$ also gives a solution in the mitm attack: $h x^{i} f=x^{i} g$ has same sparsity etc., increasing the number of targets. Decryption using $x^{i} f$ works the same as with f for NTRU, so each target is valid.

Attackable rotations

- In NTRU, $x^{i} f$ is simply a rotation of f, so it has the same coefficients, just at different positions. This means, $x^{i} f$ also gives a solution in the mitm attack: $h x^{i} f=x^{i} g$ has same sparsity etc., increasing the number of targets. Decryption using $x^{i} f$ works the same as with f for NTRU, so each target is valid.
- In NTRU Prime $P=x^{p}-x-1$, so reduction modulo P changes density and weight, e.g.

$$
\left(x^{4}-x^{2}+1\right) \cdot x \equiv(x+1)-x^{3}+x=x^{3}+2 x+1 \bmod \left(x^{5}-x-1\right)
$$

- For small i up to $p-1-\operatorname{deg}(f)$ have shifted (valid) target.
- Very unlikely that any $x^{i} f$ for large i produces viable keys; first reduction occurs on average at $i=p /(2 t)$.

Security against Odlyzko's meet-in-the-middle attack

- Number of choices for f is

$$
\binom{p}{2 t} 2^{2 t}
$$

because f is t-small, signs of those $2 t$ coefficients are random.

Security against Odlyzko's meet-in-the-middle attack

- Number of choices for f is

$$
\binom{p}{2 t} 2^{2 t}
$$

because f is t-small, signs of those $2 t$ coefficients are random.

- We (over-)estimate number of viable rotations by $p-t$.
- Running time / memory mitm against Streamlined NTRU Prime

$$
L=\frac{\sqrt{\binom{p}{2 t} 2^{2 t}}}{\sqrt{2(p-t)}}
$$

Security against Odlyzko's meet-in-the-middle attack

- Number of choices for f is

$$
\binom{p}{2 t} 2^{2 t}
$$

because f is t-small, signs of those $2 t$ coefficients are random.

- We (over-)estimate number of viable rotations by $p-t$.
- Running time / memory mitm against Streamlined NTRU Prime

$$
L=\frac{\sqrt{\binom{p}{2 t} 2^{2 t}}}{\sqrt{2(p-t)}}
$$

- Memory requirement can be reduced by [van Vredendaal ANTS 2016].

Security against lattice attacks

Lattice attack setup is same as for NTRU.

- Recall $h=g /(3 f)$ in \mathcal{R} / q.
- This implies that for $k \in \mathcal{R}: f \cdot 3 h+k \cdot q=g$.
- Streamlined NTRU Prime lattice

$$
\left(\begin{array}{ll}
k & f
\end{array}\right)\left(\begin{array}{ll}
q l & 0 \\
H & l
\end{array}\right)=\left(\begin{array}{ll}
g & f
\end{array}\right) .
$$

Security against lattice attacks

Lattice attack setup is same as for NTRU.

- Recall $h=g /(3 f)$ in \mathcal{R} / q.
- This implies that for $k \in \mathcal{R}: f \cdot 3 h+k \cdot q=g$.
- Streamlined NTRU Prime lattice

$$
\left(\begin{array}{ll}
k & f
\end{array}\right)\left(\begin{array}{ll}
q l & 0 \\
H & l
\end{array}\right)=\left(\begin{array}{ll}
g & f
\end{array}\right) .
$$

- Keypair (g, f) is a short vector in this lattice.
- Asymptotically sieving works in $2^{0.292 \cdot d+o(d)}$ using $2^{0.208 \cdot d+o(d)}$ memory in dimension d.
- Crossover point between sieving and enumeration is still unclear.
- Memory is more an issue than time.

Hybrid attack

Howgrave-Graham combines lattice basis reduction and meet-in-the-middle attack.

- Idea: reduce submatrix of the Streamlined NTRU Prime lattice, then perform mitm on the rest.

Hybrid attack

Howgrave-Graham combines lattice basis reduction and meet-in-the-middle attack.

- Idea: reduce submatrix of the Streamlined NTRU Prime lattice, then perform mitm on the rest.
- Use BKZ on submatrix B to get B^{\prime} :

$$
C \cdot\left(\begin{array}{cc}
q I & 0 \\
H & I
\end{array}\right)=\left(\begin{array}{ccc}
q I_{w} & 0 & 0 \\
* & B^{\prime} & 0 \\
* & * & I_{w^{\prime}}
\end{array}\right) .
$$

- Guess options for last w^{\prime} coordinates of f, using collision search (as before).
- If the Hermite factor of B^{\prime} is small enough, then a rounding algorithm can detect collision of halfguesses.

Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.

Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
- Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang [HPSWZ15] published simplfied analysis tool.
- Compute BKZ costs with Chen-Nguyen simulator.
- Estimate the mitm costs by estimating the size of the projected space [HPSWZ15].

Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
- Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang [HPSWZ15] published simplfied analysis tool.
- Compute BKZ costs with Chen-Nguyen simulator.
- Estimate the mitm costs by estimating the size of the projected space [HPSWZ15].
- For detailed formulas and justifications, see our paper https://eprint.iacr.org/2016/461 and NIST submission https://ntruprime.cr.yp.to.

Streamlined NTRU Prime Security: parameters

- We investigated security against the strongest known attacks; meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, algebraic attacks, and sieving.
- Streamlined NTRU Prime 45911^{761} and NTRU LPRime 45911^{761} both use $p=761$ and $q=4591$.
- The resulting sizes and Haswell speeds show that reducing the attack surface has very low cost:

Metric	Streamlined NTRU Prime 4591^{761}	NTRU LPRime 4591^{761}
Public-key size	1218 bytes	1047 bytes
Ciphertext size	1047 bytes	1175 bytes
Encapsulation time	59456 cycles	94508 cycles
Decapsulation time	97684 cycles	128316 cycles
Pre-quantum security	248 bits	225 bits

- Quantum computers will speed up attacks by less than squareroot.

Bonus slides: why automorphisms matter

Targets and history:

- 2014.10 Campbell-Groves-Shepherd describe an ideal-lattice-based system "Soliloquy"; claim quantum poly-time key recovery.
- 2010 Smart-Vercauteren system is practically identical to Soliloquy.
- 2009 Gentry system (simpler version described at STOC) has the same key-recovery problem.
- 2012 Garg-Gentry-Halevi multilinear maps have the same key-recovery problem (and many other security issues).

Smart-Vercauteren; Soliloquy

- Parameter: $k \geq 1$.
- Define $R=\mathbf{Z}[x] / \Phi_{2^{k}}$.
- Public key: prime q and $c \in \mathbf{Z} / q$.
- Secret key: short element $g \in R$ with $g R=q R+(x-c) R$; i.e., short generator of the ideal $q R+(x-c) R$.

Smart-Vercauteren; Soliloquy

- Parameter: $k \geq 1$.
- Define $R=\mathbf{Z}[x] / \Phi_{2^{k}}$.
- Public key: prime q and $c \in \mathbf{Z} / q$.
- Secret key: short element $g \in R$ with $g R=q R+(x-c) R$; i.e., short generator of the ideal $q R+(x-c) R$.
- 1993 Cohen textbook "A course in computational algebraic number theory" explains how to find generators.

Smart-Vercauteren; Soliloquy

- Parameter: $k \geq 1$.
- Define $R=\mathbf{Z}[x] / \Phi_{2^{k}}$.
- Public key: prime q and $c \in \mathbf{Z} / q$.
- Secret key: short element $g \in R$ with $g R=q R+(x-c) R$; i.e., short generator of the ideal $q R+(x-c) R$.
- 1993 Cohen textbook "A course in computational algebraic number theory" explains how to find generators.
- Smart-Vercauteren comment that this would take exponential time.
- But it actually takes subexponential time. Same basic idea as NFS.
- Campbell-Groves-Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.

Smart-Vercauteren; Soliloquy

- Parameter: $k \geq 1$.
- Define $R=\mathbf{Z}[x] / \Phi_{2^{k}}$.
- Public key: prime q and $c \in \mathbf{Z} / q$.
- Secret key: short element $g \in R$ with $g R=q R+(x-c) R$; i.e., short generator of the ideal $q R+(x-c) R$.
- 1993 Cohen textbook "A course in computational algebraic number theory" explains how to find generators.
- Smart-Vercauteren comment that this would take exponential time.
- But it actually takes subexponential time. Same basic idea as NFS.
- Campbell-Groves-Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.
- 2016 Biasse-Song: different algorithm that takes quantum poly time, building on 2014 Eisenträger-Hallgren-Kitaev-Song.

How to get a short generator?

- Have ideal I of R.
- Want short g with $g R=I$; have g^{\prime} with $g^{\prime} R=I$.
- Know $g^{\prime}=u g$ for some unit $u \in R^{*}$.
- To find u move to log lattice.

$$
\log g^{\prime}=\log u+\log g
$$

where Log is Dirichlet's log map.

- Dirichlet's unit theorem:
$\log R^{*}$ is a lattice of known dimension.
- Finding Log u is a closest-vector problem in this lattice.

Quote from Campbell-Groves-Shepherd

"A simple generating set for the cyclotomic units is of course known. The image of \mathcal{O}^{\times}[here R^{*}] under the logarithm map forms a lattice. The determinant of this lattice turns out to be much bigger than the typical loglength of a private key α [here g], so it is easy to recover the causally short private key given any generator of $\alpha \mathcal{O}$ [here I], e.g. via the LLL lattice reduction algorithm."

Automorphisms

- $x \mapsto x^{3}, x \mapsto x^{5}, x \mapsto x^{7}$, etc. are automorphisms of $R=\mathbf{Z}[x] / \Phi_{2^{k}}$.
- Easy to see $\left(1-x^{3}\right) /(1-x) \in R^{*}$; for inverse use expansion.
- "Cyclotomic units" are defined as

$$
R^{*} \cap\left\{ \pm x^{e_{0}} \prod_{i}\left(1-x^{i}\right)^{e_{i}}\right\}
$$

- Weber's conjecture:

All elements of R^{*} are cyclotomic units.

- Experiments confirm that SV is quickly broken by LLL using, e.g., 1997 Washington textbook basis for cyclotomic units.
- Shortness of basis is critical; this was not highlighted in CGS analysis.

