
Never trust a bunny

D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven



The HB(n; �; � 0) protocol

(2001 Hopper–Blum)

Secret s 2 Fn2 .

RFID reader sends random C 2

Fn�n2 .

Tag sends T = Cs + e

where each bit of e is

set with probability � .

Reader checks that

T � Cs has � � 0n bits set.

“Reasonable” parameters:

n = 512, � = 1=8, � 0 = 1=4.



The LPN(n; � ) problem

Computational LPN problem:

compute s given

random R1; R1s + e1;

random R2; R2s + e2; : : :

Equivalently: Compute s given

random r1 2 Fn2 ; r1 � s + e1;

random r2 2 Fn2 ; r2 � s + e2; : : :

Solving computational LPN

breaks HB and all of the

other protocols in this talk.

(Warning: “The LPN problem”

is normally defined as

a decisional problem.)



Breaking HB without solving LPN

Attacker sends to the tag:

C =

0
BBBB@

1 0 0 : : : 0

1 0 0 : : : 0

1 0 0 : : : 0
...

...
...

. . .
...

1 0 0 : : : 0

1
CCCCA

.

Majority vote of tag response

is very likely to be

first bit of s.

Repeat for other bits.

Many subsequent HB variants

try to resist active attacks.



MatrixLapin(n; �; � 0)

Secrets s; s0 2 Fn2 .

Reader sends random C 2 Fn�n2 .

(Improvement: restrict to “nice”

subspace; same in next protocol.)

Tag sends

random invertible R 2 Fn�n2

and T = R(Cs + s0) + e

where each bit of e is

set with probability � .

Reader checks that

R is invertible and that

T �R(Cs+s0) has � � 0n bits set.



Lapin(n; f; �; � 0) where deg f = n

(FSE 2012 Heyse–Kiltz–

Lyubashevsky–Paar–Pietrzak)

Secrets s; s0 2 F2[x]=f .

Reader sends random c2F2[x]=f .

Tag sends

random invertible r 2 F2[x]=f

and t = r(cs + s0) + e

where each bit of e is

set with probability � .

Reader checks that

r is invertible and that

t� r(cs + s0) has � � 0n bits set.



Ring-LPN(n; f; � )

Lapin c and r correspond to

matrices C and R.

Highly non-random matrices!

Saves space and time

but maybe risks attacks.

Computational Ring-LPN problem

(FSE 2012): compute s given

random r1; r1s + e1;

random r2; r2s + e2; : : :

Feed c repeatedly to Lapin tag,

solve Ring-LPN ) cs + s0.

Repeat with c0 where c � c0 is

invertible, obtain s and s0.



2000 Blum–Kalai–Wasserman

Standard attack on LPN.

Main idea: If r1 and r2

have the same starting bits then

r1 + r2 has starting bits 0 and

t1 + t2 = (r1 + r2) � s + (e1 + e2).

Repeat: clear more bits,

obtain (0; 0; : : : ; 0; 1) as a

combination of 2a values ri.

Corresponding t combination

is last bit of s with noise.

Use many combinations

to eliminate noise.



2006 Levieil–Fouque

Same main idea,

but clear fewer bits.

Obtain (0; 0; : : : ; 0; �; : : : ; �)

for every pattern of �; : : : ; �.

Enumerate each possibility

for bits of s at � positions.

Use fast Walsh transform.

Advantage: smaller noise.

Need fewer queries, less memory,

less computation.

With this, attacks on Lapin were

claimed to need at least “277

memory”.



2006 Levieil–Fouque

Same main idea,

but clear fewer bits.

Obtain (0; 0; : : : ; 0; �; : : : ; �)

for every pattern of �; : : : ; �.

Enumerate each possibility

for bits of s at � positions.

Use fast Walsh transform.

Advantage: smaller noise.

Need fewer queries, less memory,

less computation.

With this, attacks on Lapin were

claimed to need at least “277

memory”. Actually � 282 bytes.



2011 Kirchner

Assume matrix R1 is invertible.

Compute R�1
1 and

R2R
�1
1 (R1s + e1) + R2s + e2,

R3R
�1
1 (R1s + e1) + R3s + e3,

R4R
�1
1 (R1s + e1) + R4s + e4, : : :



2011 Kirchner

Assume matrix R1 is invertible.

Compute R�1
1 and

R2R
�1
1 (R1s + e1) + R2s + e2,

R3R
�1
1 (R1s + e1) + R3s + e3,

R4R
�1
1 (R1s + e1) + R4s + e4, : : :

Obtain new LPN(n; � ) problem

R0

2; R0

2e1 + e2;

R0

3; R0

3e1 + e3;

R0

4; R0

4e1 + e4; : : :



2011 Kirchner

Assume matrix R1 is invertible.

Compute R�1
1 and

R2R
�1
1 (R1s + e1) + R2s + e2,

R3R
�1
1 (R1s + e1) + R3s + e3,

R4R
�1
1 (R1s + e1) + R4s + e4, : : :

Obtain new LPN(n; � ) problem

R0

2; R0

2e1 + e2;

R0

3; R0

3e1 + e3;

R0

4; R0

4e1 + e4; : : :

with sparse secret e1.

Guess some bits of e1,

cancel fewer bits;

less noise to deal with.



Our attack on Lapin

Main improvements in paper:

� Use the ring structure

to save time in computations.

� Better guessing strategy.

We break Ring-LPN(512; 1=8) in

<256 bytes of memory,

<238 queries, and

<298 bit operations.



Our attack on Lapin

Main improvements in paper:

� Use the ring structure

to save time in computations.

� Better guessing strategy.

We break Ring-LPN(512; 1=8) in

<256 bytes of memory,

<238 queries, and

<298 bit operations.

Many tradeoffs possible: e.g.,

<278 bytes of memory,

<263 queries, and

<288 bit operations.



What about LPN?

Better guessing strategy

also helps for LPN.

We break LPN(1024; 1=20) in

<221 bytes of memory,

<264 queries, and

<2100 bit operations

(or <293 for Ring-LPN).

Also have a new trick

to reduce # queries.

LPN(1024; 1=20): 10 queries!



Picture taken 2012.04.27 at CWI:


