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Cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.
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Cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

//

Untrustworthy network
“Eve”

//

Receiver
“Bob”

I Literal meaning of cryptography: “secret writing”.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.
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Symmetric cryptography
I Alice and Bob share a secret key.

I They use this key for encryption:
both parties can encrypt and decrypt.

I Stream ciphers encrypt streams of bits: Salsa20, ChaCha20, (RC4),
. . .

I Block ciphers encrypt messages of fixed length: AES, Serpent,
(DES), . . .
Longer messages are encrypted using modes of operations to chain
the blocks: CBC, CTR, . . .

I They use this key for authentication and integrity protection: each
party is convinced that a message comes from the respective other
party and that it has not been modified.

I Message authentication codes (MACs) add such a checksum: GCM,
HMAC, Poly1305, . . .

I Typically a combination is needed, e.g., AES-GCM,
ChaCha20-Poly1305, . . .

I Hash functions map strings of arbitrary length to strings of fixed
length. Even though there is no secret they are typically considered
part of symmetric cryptography.
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Public key cryptography

I Alice a pair of keys: her public key and her private key.

I The key parts are linked by some mathematical function so that
computing the private key from the public key should be hard.

I Anybody can see and use Alice’s public key (Bob, Charlie, Eve, . . . )

I Only Alice knows her private key.

I Anybody can use Alice’s public key to encrypt to her;
only she can decrypt (using the private key).

I Messages satisfy some mathematical properties, e.g., integer < n.
point on an elliptic curve, . . .

I Examples are RSA, Diffie-Hellman in finite fields, ECDH, . . .

I Alice uses her private key to sign a message; anybody can verify the
signature using her public key.

I Signatures ensure authenticity and integrity:
anybody is convinced that the message comes from Alice and that it
has not been modified.

I Examples are RSA, DSA, ECDSA.
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Key-encapsulation mechanisms

I Use public-key crypto to obtain shared key for symmetric crypto,
then use that key to encrypt the message (KEM-DEM methodology).

I Encapsulation takes public key and randomness to generate KEM
ciphertext c and a secret key k .
Decapsulation takes private key and c to compute k.

I Example using RSA:

I Public key is (n, e), private key is (n, d) with ed ≡ 1 mod φ(n).
I Encapsulation:

Pick random integer m < n, compute c ≡ me mod n, k = hash(m).
I Decapsulation: Compute m ≡ cd mod n, k = hash(m).

I For contrast:
Key exchange takes two public keys and produces shared secret key.

I Can build KEM from KE by using one-time public key at sender side.

I Can not necessarily build KE from KEM, at least not non-interactive.

I Example: Diffie-Hellman key exchange in 〈g〉 < F∗p:

Alice posts A = g a, Bob posts B = gb;
they share hash(Ab) = hash(Ba).
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Security assumptions

I Hardness assumptions at the basis of all public-key and essentially
all symmetric-key systems result from (failed) attempts at breaking
systems.
Security proofs are built only on top of those assumptions.

I A solid symmetric system is required to be as strong as exhaustive
key search.

I For public-key systems the best attacks are faster than exhaustive
key search.
Parameters are chosen to ensure that the best attack is infeasible.
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Key size recommendations
Future System Use

Parameter Legacy Near Term Long Term
Symmetric Key Size k 80 128 256

Hash Function Output Size m 160 256 512
MAC Output Size? m 80 128 256

RSA Problem `(n) ≥ 1024 3072 15360
Finite Field DLP `(pn) ≥ 1024 3072 15360

`(p), `(q) ≥ 160 256 512
ECDLP `(q) ≥ 160 256 512

I Hardness assumptions at the basis of all public-key and essentially
all symmetric-key systems result from (failed) attack attempts.
Security proofs are built only on top of those assumptions.

I A solid symmetric system is required to be as strong as exhaustive
key search.

I For public-key systems the best attacks are faster than exhaustive
key search. Parameters are chosen to ensure that the best attack
known today is infeasible.

I Attacker power limited to 2128 operations (280 for legacy).
I Source: ECRYPT-CSA “Algorithms, Key Size and Protocols Report”
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Cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

//

Untrustworthy network
“Eve”

//

Receiver
“Bob”

I Literal meaning of cryptography: “secret writing”.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.

I Post-quantum cryptography adds to the model that Eve has a
quantum computer.
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Post-quantum cryptography

I Motivation #1: Communication channels are spying on our data.

I Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

//

“Eve”
with a quantum computer

//

Receiver
“Bob”

I Literal meaning of cryptography: “secret writing”.

I Security goal #1: Confidentiality despite Eve’s espionage.

I Security goal #2: Integrity, i.e., recognizing Eve’s sabotage.

I Post-quantum cryptography adds to the model that Eve has a
quantum computer.
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Post-quantum cryptography:
Cryptography designed

under the assumption that
the attacker (not the user!)
has a large quantum computer.
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Effects of large universal quantum computers

I See Mike Mosca’s talk for details; this is a quick preview.

I Lots of active development on building quantum computers.

I Quantum computers will have a huge effect on public-key
cryptography.

I Shor’s algorithm solves:
I Integer factorization. RSA is dead.
I The discrete-logarithm problem in finite fields. DSA is dead.
I The discrete-logarithm problem on elliptic curves. ECDHE is dead.

I This breaks all current public-key cryptography on the Internet!

I Also, Grover’s algorithm speeds up brute-force searches.

I Example: Only 264 quantum operations to break AES-128;
2128 quantum operations to break AES-256.
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National Academy of Sciences (US)

4 December 2018: Report on quantum computing

Don’t panic. “Key Finding 1: Given the current state of quantum
computing and recent rates of progress, it is highly unexpected that a
quantum computer that can compromise RSA 2048 or comparable
discrete logarithm-based public key cryptosystems will be built within the
next decade.”

Panic. “Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the hazard of
such a machine is high enough—and the time frame for transitioning to a
new security protocol is sufficiently long and uncertain—that
prioritization of the development, standardization, and deployment of
post-quantum cryptography is critical for minimizing the chance of a
potential security and privacy disaster.”
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Interest builds in post-quantum cryptography

I 2003: djb coins term “post-quantum cryptography”.

I 2005–2015: 10 years of motivating people to work on post-quantum
crypto.

I 2015: Finally even NSA admits that the world needs post-quantum
crypto.

I 2016: Every agency posts something (NCSC UK, NCSC NL, NSA).

I 2016: After public input, NIST calls for submissions to
“Post-Quantum Cryptography Standardization Project”.
Solicits submissions on signatures and encryption.
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A year ago in the NIST competition . . .

21 December 2017: NIST posts 69 submissions from 260 people.

BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key
Exchange. DME. DRS. DualModeMS. Edon-K. EMBLEM and
R.EMBLEM. FALCON. FrodoKEM. GeMSS. Giophantus.
Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17. HQC.
KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard.
LOCKER. LOTUS. LUOV. McNie. Mersenne-756839. MQDSS.
NewHope. NTRUEncrypt. pqNTRUSign. NTRU-HRSS-KEM. NTRU
Prime. NTS-KEM. Odd Manhattan. OKCN/AKCN/CNKE.
Ouroboros-R. Picnic. pqRSA encryption. pqRSA signature. pqsigRM.
QC-MDPC KEM. qTESLA. RaCoSS. Rainbow. Ramstake. RankSign.
RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+. SRTPI.
Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
Merges: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R; LEDAkem
& LEDApkc; NTRUEncrypt &NTRU-HRSS-KEM.
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A year ago . . . there were already attacks

By end of 2017: 8 out of 69 submissions attacked.
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Ouroboros-R. Picnic. pqRSA encryption. pqRSA signature. pqsigRM.
QC-MDPC KEM. qTESLA. RaCoSS. Rainbow. Ramstake. RankSign.
RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+. SRTPI.
Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
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Do cryptographers have any idea what they’re doing?

By end of 2018: 22 out of 69 submissions attacked.
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NIST round two

30 January 2019: 26 candidates retained for second round.

BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key
Exchange. DME. DRS. DualModeMS. Edon-K. EMBLEM and
R.EMBLEM. FALCON. FrodoKEM. GeMSS. Giophantus.
Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17. HQC.
KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard.
LOCKER. LOTUS. LUOV. McNie. Mersenne-756839. MQDSS.
NewHope. NTRUEncrypt. pqNTRUSign. NTRU-HRSS-KEM. NTRU
Prime. NTS-KEM. Odd Manhattan. OKCN/AKCN/CNKE.
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Systems expected to survive

I Code-based encryption and signatures.

I Hash-based signatures.

I Isogeny-based encryption.

I Lattice-based encryption and signatures.

I Multivariate-quadratic encryption and signatures.

I Symmetric encryption and authentication.

This list is based on the best known attacks (as always).

These are categories of mathematical problems;
individual systems may be totally insecure if the problem is not used
correctly.

Target of this workshop: figure out what we really can do with a
quantum computer.
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Short summaries

I Code-based encryption: short ciphertexts and large public keys.
More in a moment.

I Hash-based signatures: very solid security and small public keys.
Require only a secure hash function (hard to find second preimages).

I Isogeny-based encryption: new kid on the block, promising short
keys and ciphertexts and non-interactive key exchange. Systems rely
on hardness of finding isogenies between elliptic curves over finite
fields, see talk by Lorenz.

I Lattice-based encryption and signatures: possibility for balanced
sizes. Security relies on finding short vectors in some (typically
special) lattice; see talk by Elena.

I Multivariate-quadratic signatures: short signatures and large public
keys. Systems rely on hardness of solving systems of multi-variate
equations over finite fields.
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Linear codes
A binary linear code C of length n and dimension k is a k-dimensional
subspace of Fn

2.
C is usually specified as

I the row space of a generating matrix G ∈ Fk×n
2

C = {mG |m ∈ Fk
2}

I the kernel space of a parity-check matrix H ∈ F
(n−k)×n
2

C = {c|Hcᵀ = 0, c ∈ Fn
2}

Leaving out the ᵀ from now on.
I A systematic generator matrix is a generator matrix of the form

(Ik |Q) where Ik is the k × k identity matrix and Q is a k × (n − k)
matrix (redundant part).

I Easy to get parity-check matrix from systematic generator matrix,
use H = (Qᵀ|In−k).

Then

H(mG )ᵀ = HGᵀmᵀ = (Qᵀ|In−k)(Ik |Q)ᵀmᵀ = 0.
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Hamming weight and distance

I The Hamming weight of a word is the number of nonzero
coordinates.

I The Hamming distance between two words in Fn
2 is the number of

coordinates in which they differ.
The Hamming distance between x and y equals the Hamming
weight of x + y.

I The minimum distance of a linear code C is the smallest Hamming
weight of a nonzero codeword in C .

d = min
06=c∈C

{wt(c)} = min
b6=c∈C

{d(b, c)}

I In code with minimum distance d = 2t + 1, any vector x = c + e
with wt(e) ≤ t is uniquely decodable to c;
i. e. there is no closer code word.
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Decoding problem

Decoding problem: find the closest codeword c ∈ C to a given x ∈ Fn
2,

assuming that there is a unique closest codeword. Let x = c + e. Note
that finding e is an equivalent problem.

I If c is t errors away from x, i.e., the Hamming weight of e is t, this
is called a t-error correcting problem.

I There are lots of code families with fast decoding algorithms, e.g.,
Reed–Solomon codes, Goppa codes/alternant codes, etc.

I However, the general decoding problem is hard: Information-set
decoding (see later) takes exponential time.
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Different views on decoding

I The syndrome of x ∈ Fn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ Fn
2 given

s ∈ Fn−k
2 so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:

To decode x with syndrome decoder, compute e from Hx, then
c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).
Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding problem,
unless it has very low weight.
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Code-based encryption
Developed in 1978 by Robert McEliece; syndrome view by Harald
Niederreiter (1986). This is (mostly) KEM version as in Classic McEliece.

I Private key: decoder for chosen Goppa code Γ(L, g).
I Public Key: parity-check matrix in systematic form H = (Q|In−k),

represented by Q.
I Encapsulation: Pick random e ∈ Fn

2 of weight t.
Compute c = He and (C , k) = hash(e). Send (c,C ).

I Decapsulation: Use Goppa decoder on c to compute e.
Compute (C ′, k ′) = hash(e). If C matches C ′, output k ′.
(Else some stuff that makes proofs happy).

I See https://classic.mceliece.org for more details.
I The attacker is facing a t-error correcting problem for the public key.
I Structural attack: find private key from public key.
I Not only Goppa codes, some other constructions look OK (for now).

NIST competition has several more entries (QCMDPC, rank metric).
I Many corpses on the way: Reed-Solomon codes, concatenated

codes, Reed-Muller codes, several Algebraic Geometry (AG) codes,
Gabidulin codes, several LDPC codes, cyclic code.
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Generic attack: Brute force

Given H and c = He, find e with wt(e) = t.

H =

Pick any group of t columns of H, add them and compare with s.

Cost:

(
n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(
n
t

)
additions of 1 column.
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Generic attack: Information-set decoding, 1962 Prange

H ′ =

1

0

1

0

X

•

•
•
•

•

1. Permute columns of H and bring to systematic form H ′ = (X |In−k).
(If this fails, repeat with other permutation).

2. Then H ′ = UHP for some permutation matrix P and U the matrix
that produces systematic form.

3. This updates s to Us.

4. If wt(Us) = t then e′ = (00 . . . 0)||Us.
Output unpermuted version of e′.

5. Else return to 1 to rerandomize.

Cost:

O(
(
n
t

)
/
(
n−k
t

)
) matrix operations.
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Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

1. Permute columns of H and bring to systematic form H ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated.

2. For small p, pick p of the k columns on the left, compute their sum
Xp. (p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.

4. Else return to 2 or return to 1 to rerandomize.

Cost:

O(
(
n
t

)
/(
(
k
p

)(
n−k
t−p

)
) [matrix operations+

(
k
p

)
column additions].
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(If this fails, repeat with other permutation). s is updated.

2. For small p, pick p of the k columns on the left, compute their sum
Xp. (p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.

4. Else return to 2 or return to 1 to rerandomize.

Cost: O(
(
n
t

)
/(
(
k
p

)(
n−k
t−p

)
) [matrix operations+

(
k
p

)
column additions].

Tanja Lange Introduction to post-quantum cryptography 25



Leon’s attack 1

1

ZX

︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

I Setup similar to
Lee-Brickell’s attack.

I Random combinations of
p vectors will be dense,
so have wt(s + Xp) ∼ k/2.

I Idea: Introduce early abort by checking
only ` positions (selected by set Z , green lines in the picture).
This forms `× k matrix XZ , length-` vector sZ .

I Inner loop becomes:

1. Pick p with wt(p) = p.
2. Compute XZp.
3. If sZ + XZp 6= 0 goto 1.
4. Else compute Xp.

4.1 If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.

4.2 Else return to 1 or rerandomize H.

I Note that sZ + XZp = 0 means that there are no ones in the
positions specified by Z . Small loss in success, big speedup.
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Stern’s attack
1

1

X Y Z

A

B

I Setup similar to Leon’s and
Lee-Brickell’s attacks.

I Use the early abort trick,
so specify set Z .

I Improve chances of finding
p with s + XZp = 0:

I Split left part of H ′ into two disjoint subsets X and Y .
I Let A = {a ∈ Fk/2

2 |wt(a) = p}, B = {b ∈ Fk/2
2 |wt(b) = p}.

I Search for words having exactly p ones in X and p ones in Y and
exactly w − 2p ones in the remaining columns.

I Do the latter part as a collision search:
Compute sZ + XZa for all (many) a ∈ A, sort.
Then compute YZb for b ∈ B and look for collisions; expand.

I Iterate until word with wt(s + Xa + Y b) = 2p is found for some
X ,Y ,Z .

I Select p, `, and the subset of A to minimize overall work.
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