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Threat of quantum computers

Shor’s algorithm makes polynomial time:

integer factorization

DLP in finite fields

DLP on elliptic curves

DLP in general class groups

Grover’s algorithm brings faster
simultaneous search in data

some security loss in symmetric
crypto (block and stream ciphers)

some security loss in hash
functions (if not VSH)

Compensate for Grover by doubling key size.
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integer factorization

DLP in finite fields

DLP on elliptic curves

DLP in general class groups

Grover’s algorithm brings faster
simultaneous search in data

some security loss in symmetric
crypto (block and stream ciphers)

some security loss in hash
functions (if not VSH)

Compensate for Grover by doubling key size.

Sorry,
no picture
available
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. . . but 15∗ years from now . . .

*http://horizon-magazine.eu/article/quantum-leap-computing en.html

Large quantum computers might be reality. Then

• RSA is dead.

• DH key exchange is dead.

• DSA is dead.

• XTR is dead.

• ECDSA is dead.

• ECC is dead.

• HECC is dead.
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. . . but 15∗ years from now . . .

*http://horizon-magazine.eu/article/quantum-leap-computing en.html

Large quantum computers might be reality. Then

• RSA is dead.

• DH key exchange is dead.

• DSA is dead.

• XTR is dead.

• ECDSA is dead.

• ECC is dead.

• HECC is dead.

• all public key cryptography is dead?

• Actually there are a few more public-key cryptosystems.

Tanja Lange Post-Quantum Cryptography – p. 3



The “survivors”

Public-key encryption:

Lattice-based cryptography (e.g. NTRU, (Ring)-LWE)

Code-based cryptography (e.g. McEliece, Niederreiter)

Public-key signatures:

Multivariate-quadratic-equations cryptography (e.g.
HFE−)

Hash based cryptography (e.g. Merkle’s hash-trees
signatures)

For these systems no efficient usage of Shor’s algorithm is
known. Grover’s algorithm has to be taken into account
when choosing key sizes.
Some more possibilities with less confidence.
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Encryption systems. Tanja Lange Post-Quantum Cryptography – p. 5



Why care about this now?
15 years might seem a long time. But

There is no guarantee that it takes at least 15 years.

Long-term confidential documents (e.g. health records,
state secrets) become readable once quantum
computers are available. Attacker can store all of
today’s encrypted data to read later.

Electronic signatures on long-term commitments (e.g.
last wishes, contracts) can be forged once quantum
computers are available.

Nobody will inform you if a secret agency made a
breakthrough in constructing a quantum computer.

The systems mentioned before remain secure – but are
inefficient in time or size or both and need better
embedding into protocols.
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How about quantum cryptography?

Quantum cryptography expands a short shared key into
an effectively infinite shared stream.

Requires Alice and Bob to know some (e.g. 256)
unpredictable secret key bits. This is needed to make
sure that Alice talks to Bob and not to Eve.

Result of quantum cryptography is that Alice and Bob
both know a stream of some more (e.g. 1012)
unpredictable secret bits.

Length of the output stream increases linearly with the
amount of time.
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How about quantum cryptography?

Quantum cryptography expands a short shared key into
an effectively infinite shared stream.

Requires Alice and Bob to know some (e.g. 256)
unpredictable secret key bits. This is needed to make
sure that Alice talks to Bob and not to Eve.

Result of quantum cryptography is that Alice and Bob
both know a stream of some more (e.g. 1012)
unpredictable secret bits.

Length of the output stream increases linearly with the
amount of time.

Sounds like a stream cipher to you? Not exactly . . .
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Differences from stream ciphers
Quantum cryptography uses physical techniques
instead of mathematical function of the input key.

Security of quantum cryptography follows from quantum
mechanics instead of being merely conjectural.

Quantum cryptography needs direct connection/line of
sight between QC hardware (distance or quantum
repeaters are an issue), eavesdropping interrupts the
communication. Conventional cryptography can use
standard channels; eavesdropping fails because the
encrypted information is incomprehensible.
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Differences from stream ciphers
Quantum cryptography uses physical techniques
instead of mathematical function of the input key.

Security of quantum cryptography follows from quantum
mechanics instead of being merely conjectural.

Quantum cryptography needs direct connection/line of
sight between QC hardware (distance or quantum
repeaters are an issue), eavesdropping interrupts the
communication. Conventional cryptography can use
standard channels; eavesdropping fails because the
encrypted information is incomprehensible.

A stream cipher can be implemented on conventional
CPUs and generates GB of stream per second on a
$200 CPU. Quantum cryptography generates kB of
stream per second on special hardware costing $50000.
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More serious problem: how to get the initial secret?!
Secret meeting of agents and key exchange – or
public-key cryptography.
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How about quantum cryptography?
Quantum cryptography expands a short shared key into
an effectively infinite shared stream.

Requires Alice and Bob to know some (e.g. 256)
unpredictable secret key bits.

Result of quantum cryptography is that Alice and Bob
both know a stream of some more (e.g. 1012)
unpredictable secret bits.

Length of the output stream increases linearly with the
amount of time.

More serious problem: how to get the initial secret?!
Secret meeting of agents and key exchange – or
public-key cryptography.

And there was no problem in symmetric cryptography in
the first place.
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Post-quantum cryptography
Cryptographic systems that run on conventional
computers, are secure against attacks with
conventional computers, and remain secure under
attacks with quantum computers are called
post-quantum cryptosystems.

Post-quantum cryptography deals with
the design of such systems;
cryptanalysis of such systems;
the analysis of suitable parameters depending on
different threat models;
design of protocols using the secure primitives.
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Warnings

The following describes text-book versions.

There exist e.g. CCA2 secure versions, versions with
better efficiency, other finite fields . . . .
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Hash-based signatures
1979 Lamport one-time signature scheme.

Fix a k-bit one-way function G : {0, 1}k → {0, 1}k and
hash function H : {0, 1}∗ → {0, 1}k.

Signer’s secret key X: 2k strings
x1[0], x1[1], . . . , xk[0], xk[1], each k bits. Total: 2k2 bits.

Signer’s public key Y : 2k strings
y1[0], y1[1], . . . , yk[0], yk[1], each k bits, computed as
yi[b] = G(xi[b]). Total: 2k2 bits.

Signature S(X, r,m) of a message m:
r, x1[h1], . . . , xk[hk] where H(r,m) = (h1, . . . , hk).

Must never use secret key more than once.

Usually choose G = H (restricted to k bits).

1979 Merkle extends to more signatures.
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8-time Merkle hash tree
Eight Lamport one-time keys Y1, Y2, . . . , Y8 with corresponding
X1, X2, . . . , X8, where Xi = (xi,1[0], xi,1[1], . . . , xi,k[0], xi,k[1])

and Yi = (yi,1[0], yi,1[1], . . . , yi,k[0], yi,k[1]).
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Merkle public key is Y15.
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Signature in 8-time Merkle hash tree
First message has signature is (S(X1, r,m), Y1, Y2, Y10, Y14).
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Signature in 8-time Merkle hash tree
First message has signature is (S(X1, r,m), Y1, Y2, Y10, Y14).
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Verify by checking signature S(X1, r,m) on m against Y1.
Link Y1 against public key Y15 by computing Y ′

9 = H(Y1, Y2),
Y ′

13 = H(Y ′

9, Y10), and comparing H(Y ′

13, Y14) with Y15.
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Problems and improvements
Signature as presented is stateful – signer needs to
know which Xi’s have been used (and never reuse!).

Depth of tree determines length of signature & number
of signatures that can be done with public key.
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Problems and improvements
Signature as presented is stateful – signer needs to
know which Xi’s have been used (and never reuse!).

Depth of tree determines length of signature & number
of signatures that can be done with public key.

Can have tree of trees to balance length of public key
and signature length.

No need to have H collision resistant.

Winternitz signatures are more compact than Lamport
signatures: To sign values in [0, 2k − 1] pick random k-bit
X0 and Y0, compute Xi+1 = H(Xi), Yi+1 = H(Yi), publish
(X2k−1, Y2k−1) as key. Signature on j is (Xj , Y2k−1−j).

Verify H2k−1−j(Xj)
?
= X2k−1, Hj(Y2k−1−j)

?
= Y2k−1.

Can have stateless signatures at larger key size.
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Code-based cryptography

Here only consider binary codes, i.e. codes over IF2.

A generator matrix of an [n, k] code C is a k × n matrix
G such that C = {xG : x ∈ IFk

2}.

The matrix G corresponds to a map IFk
2 → IFn

2 sending a
message of length k to an n-bit string.

A parity-check matrix of an [n, k] code C is an
(n− k)× n matrix H such that C = {c ∈ IFn

2 : H cT = 0}.

A systematic generator matrix is a generator matrix of
the form (Ik|Q) where Ik is the k × k identity matrix and
Q is a k × (n− k) matrix (redundant part).

Easy to get parity-check matrix from systematic
generator matrix, use H = (QT |In−k).
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Decoding problem

The Hamming distance between two words in IFn
2 is the

number of coordinates where they differ. The Hamming
weight of a word is the number of non-zero coordinates.

The minimum distance of a linear code C is the
smallest Hamming weight of a nonzero codeword in C.

Classical decoding problem: find the closest codeword
x ∈ C to a given y ∈ IFn

2 , assuming that there is a
unique closest codeword.

In particular: Decoding a generic binary code of length
n and without knowing anything about its structure
requires about 2(0.5+o(1))n/ log

2
(n) binary operations

(assuming a rate ≈ 1/2)

Coding theory deals with efficiently decodable codes.
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The McEliece cryptosystem I
Let C be a length-n binary Goppa code Γ of dimension k
with minimum distance 2t+ 1 where t ≈ (n− k)/ log2(n);
original parameters (1978) n = 1024, k = 524, t = 50.

The McEliece secret key consists of a generator matrix
G for Γ, an efficient t-error correcting decoding
algorithm for Γ; an n× n permutation matrix P and a
nonsingular k × k matrix S.

n, k, t are public; but Γ, P , S are randomly generated
secrets.

The McEliece public key is the k × n matrix G′ = SGP .

Encrypt: Compute mG′ and add a random error vector
e of weight t and length n. Send y = mG′ + e.

Decrypt: Compute yP−1 = mG′P−1 + eP−1 =

mSG+ eP−1. Use fast decoding to find mS and m.
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The McEliece cryptosystem II
Encrypt: Compute mG′ and add a random error vector
e of weight t and length n. Send y = mG′ + e.

Decrypt: Compute yP−1 = mG′P−1 + eP−1 =

mSG+ eP−1. Use fast decoding to find mS and m.

Attacker is faced with decoding y to nearest codeword
mG′ in the code generated by G′. This is general
decoding if G′ does not expose any structure.

Wrote attack software against original McEliece
parameters, decoding 50 errors in a [1024, 524] code.

Attack on a single computer with a 2.4GHz Intel Core 2
Quad Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

Running the software on 200 such computers would
reduce the average time to one week.
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Improvements

Increase n: The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

Allow values of n between powers of 2: Get
considerably better optimization of (e.g.) the McEliece
public-key size.

Use list decoding to increase t: Unique decoding is
ensured by CCA2-secure variants.

Decrease key size by using fields other than IF2 (wild
McEliece).

Decrease key size & be faster by using other codes.
Needs security analysis: some codes have too much
structure.

See McBits talk tomorrow for record-setting
implementation. Tanja Lange Post-Quantum Cryptography – p. 20



Lattice-based crypto (1996)
A lattice L is a discrete subgroup of IRn: Let
B = {b1,b2, . . . ,bn} be a basis L =

{
∑n

i=1 xibi|xi ∈ ZZ
}

.
There are many different bases to represent this set.

In basis close to orthogonal can easily determine
closest vector to given point in IRn.

For a general basis finding the closest vector is hard.

Secret key: basis with short, close to orthogonal
vectors B.

Public key: skewed basis BU , where U is unimodular
matrix.

Simplest lattice schemes look like code schemes – just
using different domains for the message and error.

Most efficient versions (NTRU, Ring-LWE) use ideal
lattices; need more cryptanalysis.
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Multivariate signatures (1982)
Idea: Given y0, . . . , yn−1 ∈ IF2 finding x0, . . . , xn−1 ∈ IF2

with y0 = q0(x0, x1, . . . , xn−1),

y1 = q1(x0, x1, . . . , xn−1),

...
yn−1 = qn−1(x0, x1, . . . , xn−1),

is hard, where the qi are quadratic equations over IF2.

Signature: preimage of (y0, . . . , yn−1) = H(r,m) (if
exists).

Build in trapdoor by constructing the polynomials from a
hidden polynomial q(x) over IF2n

∼= IF2[t]/f(t), using
x =

∑

xit
i and sorting by powers of t. Finding x ∈ IF2n

with q(x) = y easier.

Hide structure by applying linear transformations,
removing some equations; adding extra variables.
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Advertisement

Visit www.pqcrypto.org for much more material, in
particular references in

Quantum computing
Hash-based cryptography
Code-based cryptography
Lattice-based cryptography
MQ cryptography

Help us complete the bibliography.

Next conference on post-quantum cryptography:
PQCrypto 2014 in Waterloo, Canada
http://pqcrypto2014.uwaterloo.ca
Summer school: Sep. 29-30, 2014
Conference: Oct. 1-3, 2014
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