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Elliptic curves
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Elliptic curve

E : y2 + (a1x + a3)
︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Group: E(IFq) = { (x, y) ∈ IF2
q : y2 + h(x)y = f(x) } ∪ {P∞ }

Often q = 2r or q = p, prime. Isomorphic transformations
lead to

y2 = f(x) q odd,

for
y2 + xy = x3 + a2x

2 + a6

y2 + y = x3 + a4x + a6
q = 2r,

curve non-supersingular
curve supersingular

In this talk we consider only fields of odd characteristic and IR.
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

S
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

S

P ⊕ R
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

S

Line y = λx + µ has slope

λ = yR−yP

xR−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , R
and S, thus

(x − xP )(x − xR)(x − xS) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

xS = λ2 − xP − xR
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

S

P ⊕ R

Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
yS = λxS + µ

= λxS + yP − λxP

= λ(xS − xP ) + yP

Point P ⊕ R has the same x-coordinate as S but negative
y-coordinate:

xP⊕R = λ2 − xP − xR, yP⊕R = λ(xP − xP⊕R) − yP
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

S

P ⊕ R

[2]P

[−2]P

In general, for (xP , yP ) 6= (xR,−yR):

(xP , yP ) ⊕ (xR, yR) =
= (xP⊕R, yP⊕R) =

= (λ2 − xP − xR, λ(xP − xP⊕R)− yP ),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,

(3x2
P + a4)/(2yP ) else.

⇒ Addition and Doubling need
1 I, 2M, 1S and 1 I, 2M, 2S, respectively
ADD and DBL differ by 1S!
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Weierstraß equation

E : y2 + (a1x + a3)
︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Negative of P = (xP , yP ) is given by
−P = (xP ,−yP − h(xP )).

(xP , yP ) ⊕ (xR, yR) = (x3, y3) =

= (λ2 + a1λ − a2 − xP − xR, λ(xP − x3) − yP − a1x3 − a3),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,
3x2

P +2a2xP +a4−a1yP

2yP +aP xP +a3
else.
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Projective Coordinates

P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), P ⊕ Q = (X3 : Y3 : Z3)

on E : Y 2Z = X3 + a4XZ2 + a6Z
3; (x, y) ∼ (X/Z, Y/Z)

Addition: P 6= ±Q Doubling P = Q 6= −P

A = Y2Z1 − Y1Z2, B = X2Z1 − X1Z2, A = a4Z
2
1 + 3X2

1 , B = Y1Z1,

C = A2Z1Z2 − B3 − 2B2X1Z2 C = X1Y1B,D = A2 − 8C

X3 = BC,Z3 = B3Z1Z2 X3 = 2BD,Z3 = 8B3.
Y3 = A(B2X1Z2 − C) − B3Y1Z2, Y3 = A(4C − D) − 8Y 2

1 B2

No inversion is needed – good for most
implementations

General ADD: 12M+2S

DBL: 7M+5S

Fast . . . but very different performance of ADD and DBL
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Jacobian Coordinates
P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), P ⊕ Q = (X3 : Y3 : Z3)

on Y 2 = X3 + a4XZ4 + a6Z
6; (x, y) ∼ (X/Z2, Y/Z3)

Addition: P 6= ±Q Doubling P = Q 6= −P

A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , A = Y 2

1 , B = Z2
1

D = Y2Z
3
1 , E = B − A,F = D − C C = 4X1A,D = 3X2

1 + a4B
2

X3 = 2(−E3 − 2AE2 + F 2) X3 = −2C + D2

Z3 = E(Z1 + Z2)
2 − Z2

1 − Z2
2 Z3 = (Y1 + Z1)

2 − A − B

Y3 = 2(−CE3 + F (AE2 − X3)), Y3 = −8A2 + D(C − X3).

General ADD: 11M+5S

mixed ADD (J + A = J ): 8M+3S

DBL: 3M+7S (one M by a4); for a4 = −3: 3M+5S

Even faster . . . even more different performance
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Different coordinate systemsy2 = x3 + ax + b

system points correspondence

affine (A) (x, y)

projective (P) (X,Y, Z) (X/Z, Y/Z)

Jacobian (J ) (X,Y, Z) (X/Z2, Y/Z3)

Chudnovsky Jacobian (J C) (X,Y, Z, Z2, Z3) (X/Z2, Y/Z3)

modified Jacobian (Jm) (X,Y, Z, aZ4) (X/Z2, Y/Z3)

system addition doubling

affine (A) 2M 1S 1I 2M 2S 1I
projective (P) 12M 2S – 7M 5S –
Jacobian (J ) 11M 5S – 3M 7S –
Chudnovsky Jacobian (J C) 10M 4S – 4M 7S –
modified Jacobian (Jm) 12M 7S – 4M 4S –
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Arithmetic

in the time of

Side-channel attacks
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Side Channels
Attacker can measure

Time to perform operations,

Power consumption during operations,

Electro-magnetic radiation during computation,

Noise produced during computation.

. . .

Obviously, integer addition is cheaper than multiplication
⇒ needs more clock cycles, different characteristics of

power trace.

Attacker might be able to reconstruct sequence of
operations (power & EM) or at least learn how many of
each kind were performed (timing).
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Consequences

If sequence of operations depends on the secret key
and this is directly translated to the observed data, one can
reconstruct the key

⇒ Simple Side-Channel
Analysis (SSCA)

(often SPA= Simple
Power Analysis).

(e. g. in binary square-
and-multiply one has

S M S S M ∼
(1101)2 = 13).
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Double-and-always-Add

This is the obvious countermeasure . . .
IN: P ∈ E(IFq), n ∈ ZZ, n =

∑l
i=0 ni2

i

OUT: Q0 = nP

1. Q0 = P,Q1 = [2]P

2. for i = l − 1 down to 0 do

3. Q0 = [2]Q0

4. Q1−ni
= Q1−ni

⊕ P dummy operation if ni = 1

5. output Q0

. . . but it is very inefficient.

Caution: If an active adversary is allowed, the dummy
operations might be detected (fault attacks)

Tanja Lange SCA on curves – p. 14



Montgomery Ladder (Arbitrary Group)

Idea: Make used addition per round.
Consider the intermediate results (i is decreasing).
Qi =

∑l
j=i[nj2

j−i]P , put Ri = Qi ⊕ P , then

Qi = [2]Qi+1⊕[ni]P = Qi+1⊕Ri+1⊕niP⊖P = [2]Ri+1⊕niP⊖[2]P.

This implies

(Qi, Ri) =

{

([2]Qi+1, Qi+1 ⊕ Ri+1) if ni = 0

(Qi+1 ⊕ Ri+1, [2]Ri+1) if ni = 1

13 = (1101)2 ∼

(Q3, R3) = (P, [2]P )

(Q2, R2) = ([3]P, [4]P )

(Q1, R1) = ([6]P, [7]P )

(Q0, R0) = ([13]P, [14]P )
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Montgomery Form
Generalized to arbitrary multiples
[n]P = (Xn : Yn : Zn), [m]P = (Xm : Ym : Zm) with known
difference [m − n]P on

EM : By2 = x3 + Ax2 + x
Addition: n 6= m

Xm+n = Zm−n

(
(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)

)2
,

Zm+n = Xm−n

(
(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)

)2

Doubling: n = m
4XnZn = (Xn + Zn)2 − (Xn − Zn)2,

X2n = (Xn + Zn)2(Xn − Zn)2,

Z2n = 4XnZn

(
(Xn − Zn)2 +

(
(A + 2)/4

)
(4XnZn)

)
.

An addition takes 4M and 2S whereas a doubling needs
only 3M and 2S. Order is divisible by 4.
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Montgomery Arithmetic for EC
Needs only x coordinate (not y)

⇒ lower storage requirement compared to full
Montgomery ladder.

Projective version (no inversion) extremely efficient for
curves in Montgomery form ⇒ Montgomery curves
(curves were proposed for ECM factoring due to fast
group operation).

Starting with affine base point and using Montgomery
ladder, so that Zm−n = Z1 = 1, leads to ADD for 3M+2S.

Choose A so that (A + 2)/4 is small, then DBL for only
2M+2S.

Shielded against SPA (Brier/Joye for arbitrary curves),
slower than for general curves but faster than full
doubling and addition and less storage needed.

Tanja Lange SCA on curves – p. 17



Side-channel atomicity

Chevallier-Mames, Ciet, Joye 2004
Idea: build group operation from identical blocks.

Each block consists of:

1 multiplication, 1 addition, 1 negation, 1 addition;

fill with cheap dummy additions and negations
ADD (A + J ) needs 11 blocks
DBL (2J ) needs 10 blocks

. . . . . .

Requires that M and S are indistinguishable from their
traces.

No protection against fault attacks.
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Side-channel atomicity

Chevallier-Mames, Ciet, Joye 2004
Idea: build group operation from identical blocks.

Each block consists of:

1 multiplication, 1 addition, 1 negation, 1 addition;

fill with cheap dummy additions and negations
ADD (A + J ) needs 11 blocks
DBL (2J ) needs 10 blocks

. . . . . .
ADD9 ADD10ADD11DBL1 DBL2 DBL3 DBL4 DBL5

Requires that M and S are indistinguishable from their
traces.

No protection against fault attacks.
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Uniform Projective coordinates
Brier, Joye 2002
Idea: unify how the slope is computed.

improved in Brier, Déchène, and Joye 2004

λ =
(x1 + x2)

2 − x1x2 + a4 + y1 − y2

y1 + y2 + x1 − x2

=

{
y1−y2

x1−x2
(x1, y1) 6= ±(x2, y2)

3x2

1+a4

2y1
(x1, y1) = (x2, y2)

Multiply numerator & denominator by x1 − x2 to see this.

Proposed formulae can be generalized to projective
coordinates.

Some special cases may occur, but with very low
probability, e. g. x2 = y1 + y2 + x1. Alternative equation
for this case.
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Jacobi intersection and quartic
Liardet and Smart CHES 2001: Jacobi intersection

Billet and Joye AAECC 2003: Jacobi-Model

EJ : Y 2 = ǫX4 − 2δX2Z2 + Z4.

X3 = X1Z1Y2 + Y1X2Z2

Z3 = (Z1Z2)
2 − ǫ(X1X2)

2

Y3 = (Z3 + 2ǫ(X1X2)
2)(Y1Y2 − 2δX1X2Z1Z2) +

2ǫX1X2Z1Z2(X
2
1Z2

2 + Z2
1X2

2 ).

Unified formulas need 10M+3S+D+2E

Can have ǫ or δ small

Needs point of order 2; for ǫ = 1 the group orsder is
divisible by 4.
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Hessian curves

EH : X3 + Y 3 + Z3 = cXY Z.

Addition: P 6= ±Q Doubling P = Q 6= −P

X3 = X2Y
2
1 Z2 − X1Y

2
2 Z1 X3 = Y1(X

3
1 − Z3

1)

Y3 = X2
1Y2Z2 − X2

2Y1Z1 Y3 = X1(Z
3
1 − Y 3

1 )

Z3 = X2Y2Z
2
1 − X1Y1Z

2
2 Z3 = Z1(Y

3
1 − X3

1 )

Curves were first suggested for speed

Joye and Quisquater suggested Hessian Curves for
unified group operations using

[2](X1 : Y1 : Z1) = (Z1 : X1 : Y1) ⊕ (Y1 : Z1 : X1)

Unified formulas need 12M.

Needs point of order 3.
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Edwards coordinates
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Addition on Elliptic Curves

At Mathematics: Algorithms and Proofs in Leiden, January
2007, Harold M. Edwards gave a talk on Addition on Elliptic
Curves
So Dan and I expected . . .

P

R

−(P ⊕ R)

P ⊕ R

[2]P

−[2]P
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Addition on Elliptic Curves

At Mathematics: Algorithms and Proofs in Leiden, January
2007, Harold M. Edwards gave a talk on Addition on Elliptic
Curves

But there it was – the elliptic curve:

x2 + y2 = a2(1 + x2y2).
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Addition on Elliptic Curves

At Mathematics: Algorithms and Proofs in Leiden, January
2007, Harold M. Edwards gave a talk on Addition on Elliptic
Curves

But there it was – the elliptic curve:

x2 + y2 = a2(1 + x2y2).

Nonsingular if and only if a5 6= a.
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Addition on Elliptic Curves

At Mathematics: Algorithms and Proofs in Leiden, January
2007, Harold M. Edwards gave a talk on Addition on Elliptic
Curves

But there it was – the elliptic curve:

x2 + y2 = a2(1 + x2y2).

Nonsingular if and only if a5 6= a.
To see that this is indeed an elliptic curve, use
z = y(1 − a2x2)/a to obtain

z2 = x4 − (a2 + 1/a2)x2 + 1.
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Edwards’ Addition Formulae
P = (xP , yP ), Q = (xQ, yQ) on x2 + y2 = a2(1 + x2y2).

P ⊕ Q =

(
xP yQ + yP xQ

a(1 + xP xQyP yQ)
,

yP yQ − xP xQ

a(1 − xP xQyP yQ)

)

.

[2]P =

(
xP yP + yP xP

a(1 + xP xP yP yP )
,

yP yP − xP xP

a(1 − xP xP yP yP )

)

=

(
2xP yP

a(1 + (xP yP )2)
,

y2
P − x2

P

a(1 − (xP yP )2)

)

.

For much more information on elliptic curves in this
shape see Edwards 2007 paper in Bull. AMS.,
electronic April 9.
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Results on Edwards
coordinates are ongoing joint

work with

Daniel J. Bernstein
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Edwards coordinates
Introduce further parameter and relabel

x2 + y2 = c2(1 + dx2y2), c, d 6= 0, dc4 6= 1.

Neutral element is (0, c), this is an affine point!

−(xP , yP ) = (−xP , yP ).

P ⊕ Q =

(
xP yQ + yP xQ

c(1 + dxP xQyP yQ)
,

yP yQ − xP xQ

c(1 − dxP xQyP yQ)

)

.
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Edwards coordinates
Introduce further parameter and relabel

x2 + y2 = c2(1 + dx2y2), c, d 6= 0, dc4 6= 1.

Neutral element is (0, c), this is an affine point!

−(xP , yP ) = (−xP , yP ).

P ⊕ Q =

(
xP yQ + yP xQ

c(1 + dxP xQyP yQ)
,

yP yQ − xP xQ

c(1 − dxP xQyP yQ)

)

.

[2]P =

(
xP yP + yP xP

c(1 + dxP xP yP yP )
,

yP yP − xP xP

c(1 − dxP xP yP yP )

)

.
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Edwards coordinates
Introduce further parameter and relabel

x2 + y2 = c2(1 + dx2y2), c, d 6= 0, dc4 6= 1.

Neutral element is (0, c), this is an affine point!

−(xP , yP ) = (−xP , yP ).

P ⊕ Q =

(
xP yQ + yP xQ

c(1 + dxP xQyP yQ)
,

yP yQ − xP xQ

c(1 − dxP xQyP yQ)

)

.

[2]P =

(
xP yP + yP xP

c(1 + dxP xP yP yP )
,

yP yP − xP xP

c(1 − dxP xP yP yP )

)

.

Unified group operations!
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Edwards coordinates
Introduce further parameter and relabel

x2 + y2 = c2(1 + dx2y2), c, d 6= 0, dc4 6= 1.

Neutral element is (0, c), this is an affine point!

−(xP , yP ) = (−xP , yP ).

P ⊕ Q =

(
xP yQ + yP xQ

c(1 + dxP xQyP yQ)
,

yP yQ − xP xQ

c(1 − dxP xQyP yQ)

)

.

A = ZP · ZQ; B = A2; C = XP · XQ; D = YP · YQ;

E = (XP + YP ) · (XQ + YQ) − C − D; F = d · C · D;

XP⊕Q = A · E · (B − F ); YP⊕Q = A · (D − C) · (B + F );

ZP⊕Q = c · (B − F ) · (B + F ).
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Edwards coordinates
Introduce further parameter and relabel

x2 + y2 = c2(1 + dx2y2), c, d 6= 0, dc4 6= 1.

Neutral element is (0, c), this is an affine point!

−(xP , yP ) = (−xP , yP ).

P ⊕ Q =

(
xP yQ + yP xQ

c(1 + dxP xQyP yQ)
,

yP yQ − xP xQ

c(1 − dxP xQyP yQ)

)

.

A = ZP · ZQ; B = A2; C = XP · XQ; D = YP · YQ;

E = (XP + YP ) · (XQ + YQ) − C − D; F = d · C · D;

XP⊕Q = A · E · (B − F ); YP⊕Q = A · (D − C) · (B + F );

ZP⊕Q = c · (B − F ) · (B + F ).

Needs 10M + 1S + 1C + 1D + 7A. At least one of c, d small.
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Comparison of unified formulae

System Cost of unified addition-or-doubling
Projective 11M+6S+1D; see Brier/Joye ’02
Projective if a4 = −1 13M+3S; see Brier/Joye ’02
Jacobi intersection 13M+2S+1D; see Liardet/Smart ’01
Jacobi quartic 10M+3S+3D; see Billet/Joye ’03
Hessian 12M; see Joye/Quisquater ’01
Edwards (c = 1) 10M+1S+1D

Exactly the same formulae for doubling (no
re-arrangement like in Hessian; no if-else)

No exceptional cases if d is not a square. Formulae
correct for all affine inputs (incl. (0, c),−P ).

Caveat: Edwards curves have a point of order 4,
namely (c, 0).
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Countermeasures against DPA
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Main Idea
Differential methods need to simulate group operations on
known input. Guess bits one by one and test for correlation
between groupings depending on internal representation.
⇒ introduce randomness!

Choose different n′ in equivalence class of n, e. g. use
n′ = n + kℓ, for group order ℓ. This changes the scalar &
binary representation.

Split the scalar n = k1 + k2

Change the representation of the scalar (Aigner
Oswald) using redundancy in signed representation –
often too little randomness.

Randomize group representation, e. g. use isomorphic
or isogenous curve; alternative field representation.

Randomize element representation.
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Randomized Points

Compute [n]Q as [n](Q ⊕ R) ⊖ [n]R.

For efficiency [n]R should be known, e.g. precompute
short list

{(R1, [n]R1), (R2, [n]R2), . . . , (Rk, [n]Rk)}

use
[n]Q = [n](Q ⊕ Rl) ⊖ [n]Rl

for random l.

Use new results to refill list.
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Randomized Coordinates
(Coron’s third countermeasure)

Let the affine base point be Pj = (xj , yj). Start
computation with

Pj = (Xj : Yj : Zj) = (rxj : ryj : r) ∼ (xj : yj : 1)

for random r. Randomization can also be used at
intermediate steps

Same idea works for Jacobian coordinates.

Can be used also for unified addition formulae.

Make sure to transfer back to affine (x′

j , y
′

j) = [n]Pj after
computation (Naccache, Smart, Stern Eurocrypt 2004)

Note that zero values are not changed . Use only in
combination with others to avoid Goubin attacks.
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Edwards coordinates for speed
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Fastest addition formulae

Unified formulas are valid for addition

Edwards ADD takes 10M+1S+1D, mixed 9M+1S+1D.

System Cost of addition
Jacobian 12M+2S; HECC
Jacobi intersection 13M+2S+1D; see Liardet/Smart ’01
Projective 12M+2S; HECC
Jacobi quartic 10M+3S+3D; see Billet/Joye ’03
Hessian 12M; see Joye/Quisquater ’01
Edwards (c = 1) 10M+1S+1D
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How about non-unified doubling?

[2]P =

(
xP yP + yP xP

c(1 + dxP xP yP yP )
,

yP yP − xP xP

c(1 − dxP xP yP yP )

)

=

(
2xP yP

c(1 + d(xP yP )2)
,

y2
P − x2

P

c(1 − d(xP yP )2)

)
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How about non-unified doubling?

[2]P =

(
xP yP + yP xP

c(1 + dxP xP yP yP )
,

yP yP − xP xP

c(1 − dxP xP yP yP )

)

=

(
2xP yP

c(1 + d(xP yP )2)
,

y2
P − x2

P

c(1 − d(xP yP )2)

)

=

(
2cxP yP

c2(1 + d(xP yP )2)
,

c(y2
P − x2

P )

c2(2 − (1 + d(xP yP )2))

)

Use curve equation x2 + y2 = c2(1 + dx2y2).
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How about non-unified doubling?

[2]P =

(
xP yP + yP xP

c(1 + dxP xP yP yP )
,

yP yP − xP xP

c(1 − dxP xP yP yP )

)

=

(
2xP yP

c(1 + d(xP yP )2)
,

y2
P − x2

P

c(1 − d(xP yP )2)

)

=

(
2cxP yP

c2(1 + d(xP yP )2)
,

c(y2
P − x2

P )

c2(2 − (1 + d(xP yP )2))

)

=

(
2cxP yP

x2
P + y2

P

,
c(y2

P − x2
P )

2c2 − (x2
P + y2

P )

)
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How about non-unified doubling?

[2]P =

(
xP yP + yP xP

c(1 + dxP xP yP yP )
,

yP yP − xP xP

c(1 − dxP xP yP yP )

)

=

(
2xP yP

c(1 + d(xP yP )2)
,

y2
P − x2

P

c(1 − d(xP yP )2)

)

=

(
2cxP yP

c2(1 + d(xP yP )2)
,

c(y2
P − x2

P )

c2(2 − (1 + d(xP yP )2))

)

=

(
2cxP yP

x2
P + y2

P

,
c(y2

P − x2
P )

2c2 − (x2
P + y2

P )

)

Can always choose c = 1!
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Doubling in Edwards coordinates

P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), P ⊕ Q = (X3 : Y3 : Z3)

on EE : (X2 + Y 2)Z2 = c2(Z4 + dX2Y 2); (x, y) ∼ (X/Z, Y/Z)

A = X1 + Y1; B = A2; C = X2
1 ; D = Y 2

1 ; E = C + D;

F = B − E; G = c · Z1; H = G2; I = H + H ; J = E − I;

X3 = c · F · J ; Y3 = c · E · (C − D); Z3 = E · J.

3M + 4S + 3C + 6A.

For c = 1 this gives the fastest known doubling formulas!
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Fastest doubling formulae

System Cost of doubling
Projective 6M+5S+1D; HECC
Hessian 6M+6S; see Joye/Quisquater ’01
Jacobi quartic 1M+9S+3D; see Billet/Joye ’03
Jacobian 2M+7S+1D; HECC
Jacobian if a4 = −3 3M+5S; see DJB ’01
Jacobi intersection 4M+3S+1D; see Liardet/Smart ’01
Edwards (c = 1) 3M+4S

Edwards faster than Jacobian in DBL & ADD.

Edwards coordinates allow to use windowing methods

Montgomery takes 5M+4S+1D per bit.
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Multi-scalar multiplication
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Idea of joint doublings
To compute [n1]P1 ⊕ [n2]P2 ⊕ · · · ⊕ [nm]Pm compute the
doublings together, i.e. write scalars ni in binary:

n1 = n1,l−12
l−1 +n1,l−22

l−2 +n1,l−32
l−3 . . . +n1,12 +n1,0

n2 = n2,l−12
l−1 +n2,l−22

l−2 +n2,l−32
l−3 . . . +n2,12 +n2,0

... =
...

...
...

...
...

nm = nm,l−12
l−1 +nm,l−22

l−2 +nm,l−32
l−3 . . . +nm,12 +nm,0
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Idea of joint doublings
To compute [n1]P1 ⊕ [n2]P2 ⊕ · · · ⊕ [nm]Pm compute the
doublings together, i.e. write scalars ni in binary:

n1 = n1,l−12
l−1 +n1,l−22

l−2 +n1,l−32
l−3 . . . +n1,12 +n1,0

n2 = n2,l−12
l−1 +n2,l−22

l−2 +n2,l−32
l−3 . . . +n2,12 +n2,0

... =
...

...
...

...
...

nm = nm,l−12
l−1 +nm,l−22

l−2 +nm,l−32
l−3 . . . +nm,12 +nm,0

Compute as
[2]([n1,l−1]P1 ⊕ [n2,l−1]P2 ⊕ [n3,l−1]P3 ⊕ · · · ⊕ [nm,l−1]Pm

︸ ︷︷ ︸

first column

)

Tanja Lange SCA on curves – p. 38



Idea of joint doublings
To compute [n1]P1 ⊕ [n2]P2 ⊕ · · · ⊕ [nm]Pm compute the
doublings together, i.e. write scalars ni in binary:

n1 = n1,l−12
l−1 +n1,l−22

l−2 +n1,l−32
l−3 . . . +n1,12 +n1,0

n2 = n2,l−12
l−1 +n2,l−22

l−2 +n2,l−32
l−3 . . . +n2,12 +n2,0

... =
...

...
...

...
...

nm = nm,l−12
l−1 +nm,l−22

l−2 +nm,l−32
l−3 . . . +nm,12 +nm,0

Compute as

[2]
(
[2]([n1,l−1]P1 ⊕ [n2,l−1]P2 ⊕ [n3,l−1]P3 ⊕ · · · ⊕ [nm,l−1]Pm)⊕

([n1,l−2]P1 ⊕ [n2,l−2]P2 ⊕ [n3,l−2]P3 ⊕ · · · ⊕ [nm,l−2]Pm

)
⊕

· · · etc.

Needs many more additions than doublings, even with
precomputations.

Tanja Lange SCA on curves – p. 38



Applications
ECDSA verification uses 2 scalar multiplications ... just
to add the results.

If base point P is fixed, precompute R = [2l/2]P and
include in the curve parameters. Split scalar
n = n12

l/2 + n0 and compute

[n1]R ⊕ [n0]P.

GLV curves split scalar in two halves to get faster scalar
multiplication.

Verification in accelerated ECDSA can be extended to
use 4 or even 6 scalars. Splitting of the scalar is done
by LLL techniques.

Further applications in batch verification of signatures –
many scalars – by taking random linear combinations.
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Comparison – 1 DBL & 0.5 mixed ADD

System Cost of 1 DBL & 0.5 mixed ADD
Projective 10.5M+6S+1D
Jacobi quartic 5M+10.5S+4.5D
Hessian 11M+3S
Jacobian 6M+8.5S+1D
Jacobi intersection 9.5M+4S+0.5D
Jacobian if a4 = −3 7M+6.5S
Edwards 7.5M+4.5S+0.5D
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1 DBL & 0.75 ADD & 0.75 mixed ADD

System 1DBL & 0.75 ADD & 0.75 mixed ADD
Projective 21.75M+8S+1D
Jacobi intersection 22M+6S+1.5D
Jacobian 16.25M+13S+1D
Jacobian if a4 = −3 17.25M+11S
Jacobi quartic 14.5M+13.5S+7.5D
Hessian 22.5M+3S
Chudnovsky if a4 = −3 16.5M+10.25S
Edwards 17.25M+5.5S+1.5D
Chudnovsky refers to the case that the second input to the
addition is of the form (X2 : Y2 : Z2 : Z2

2 : Z3
2 ).

Note that Z2 = 1 is possible here.
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The end

http://www.hyperelliptic.org/tanja/newelliptic/
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