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National Academy of Sciences (US)

4 December 2018: Report on quantum computing

Don’t panic. “Key Finding 1: Given the current state of quantum computing and recent rates
of progress, it is highly unexpected that a quantum computer that can compromise RSA 2048
or comparable discrete logarithm-based public key cryptosystems will be built within the next
decade.”

Panic. “Key Finding 10: Even if a quantum computer that can decrypt current cryptographic
ciphers is more than a decade off, the hazard of such a machine is high enough—and the time
frame for transitioning to a new security protocol is sufficiently long and uncertain—that
prioritization of the development, standardization, and deployment of post-quantum
cryptography is critical for minimizing the chance of a potential security and privacy disaster.”

“[Section 4.4:] In particular, all encrypted data that is recorded today and stored for future use,
will be cracked once a large-scale quantum computer is developed.”
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Commonly used systems

Sender
“Alice”

//

Untrustworthy network
“Eve”

Receiver
“Bob”

Cryptography with symmetric keys
AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305.
SHA-2. SHA-3. Salsa20.

Cryptography with public keys
BN-254. Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384.
NIST P-521. RSA encrypt. RSA sign. secp256k1.
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Post-quantum cryptography
Cryptography under the assumption that the attacker has a quantum computer.

5 Major categories of public-key post-quantum systems
I Code-based encryption: McEliece cryptosystem has survived since 1978. Short ciphertexts

and large public keys. Security relies on hardness of decoding error-correcting codes.
I Hash-based signatures: very solid security and small public keys. Require only a secure

hash function (hard to find second preimages).
I Isogeny-based encryption: new kid on the block, promising short keys and ciphertexts

and non-interactive key exchange. Security relies on hardness of finding isogenies between
elliptic curves over finite fields.

I Lattice-based encryption and signatures: possibility for balanced sizes. Security relies on
hardness of finding short vectors in some (typically special) lattice.

I Multivariate-quadratic signatures: short signatures and large public keys. Security relies
on hardness of solving systems of multivariate equations over finite fields.

Warning: These are categories of mathematical problems;
individual systems may be totally insecure if the problem is not used correctly.

We have a good understanding of what a quantum computer can do,
but new systems need more analysis.
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Diffie–Hellman key exchange ’76

Public parameters:

I a finite group G (traditionally IF∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−− {0...q−1} b

random←−− {0...q−1}

g a gb

k = hash(((gb)a) k = hash((g a)b)

Fundamental reason this works: ·a and ·b commute!
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Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Is this a good idea?

Effort for both: O(#G ). Bob needs to be smarter.
(There also exist better attacks)
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Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.
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Exponential separation
Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G ).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G ).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly computes
b from gb in any group in polynomial time.
Isogeny graphs to the rescue!
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What is an elliptic curve?

An elliptic curve is a smooth projective plane curve of genus one with at least one point.

This information together with the theorem of Riemann Roch is enough to derive that any
elliptic curve admits an affine equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ k, where k is the field where the point is defined.

This equation is the general form of a Weierstrass curve.

In algebraic geometry, smooth means that the curve does not have singularities.

[The indices actually make sense if you give y weight 3, x weight 2 and ask that the weight + index equals 6.]
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Singularities

Jacobi criterion:
A point P = (xP , yP) on E is singular if (x , y) also satisfies the two partial derivatives,
2y + a1x + a3 = 0 and a1y = 3x2 + 2a2x + a4.

A curve is non-singular (or smooth) if it does not have a singular point.

Note that “point on E” means that the point satisfies the curve equation. Note also that you
need to check this for all points over any extension field of k.

u
//

vOO

u
//

vOO
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Isomorphisms

An isomorphism is a map between elliptic curves that is defined everywhere, i.e., that is given
by polynomials in x and y .

Valid transformations are those that keep the curve shape the same, so y2 and x3 are monic
and no other degrees than in the long equation appear.

This means we can change
y ← α3y + βx + γ, x ← α2x + δ, and divide both sides by α6.

For fields of characteristic larger than 3 we can transform this equation to one with fewer
variables, called short Weierstrass form.

Our first target is to get rid of the a1xy + a3y term. If the characteristic is not 2 we can use
y ← y − (a1x + a3)/2 to reach the form y2 = x3 + a′2x

2 + a′4x + a′6.

If the characteristic is not 3 we can similarly get rid of the a′2x
2 term by using x ← x − a′2/3.

The curve equation y2 = x3 + c4x + c6 is called short Weierstrass form.
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Short Weierstrass form y 2 = x3 + c4x + c6

A singularity exists if and only if the right hand side has a double root, i.e. if its discriminant is
zero:

4c34 + 27c26 = 0.

Within this form the only isomorphisms possible are y ← α3y , x ← α2x , and divide both sides
by α6.

This gives c ′4 = c4/α
4 and c ′6 = c6/α

6.

The j-invariant of a curve in short Weierstrass form is

j = 1728 · 4c34/(4c34 + 27c26 ).

This is invariant under isomorphisms.
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Addition law on the curve
Definition: If P,Q,R are on a line then P + Q + R =∞.
∞ is the neutral element of
this group operation.

•
P

•Q

•−(P + Q)

•P + Q

x
//

yOO
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Tangents to the curve and points with multiplicity
Definition: If P,Q,R are on a line then P + Q + R =∞.
∞ is the neutral element of
this group operation.

•
P

•
R = −(2P)

• 2P

x
//

yOO
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Montgomery curves
Montgomery curves are a special form of elliptic curves which can be written in the form

Bv2 = u3 + Au2 + u.

This almost matches the Weierstrass equation given above and the addition law is very similar.

If u1 6= u2 then λ = (v1 − v2)/(u1 − u2);
if u1 = u2 and v1 = v2 6= 0 then λ = (3u21 + 2Au1 + 1)/(2Bv1).
In both cases

u3 = Bλ2 − A− u1 − u2, v3 = λ(u1 − u3)− v1

As on Weierstrass curves:
−(u1, v1) = (u1,−v1) and ∞ is the neutral element.

Montgomery curves always have a point (0, 0) of order 2 and at least one of the following

I u2 + Au + 1 = (u − u1)(u − u2), giving (u1, 0), (u2, 0) of order 2;

I there is a point of order 4.

Hence, the group order is always divisible by 4.

See the EFD for more curve shapes and efficient formulas.
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Isogenies

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions

I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.
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Isogenies

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions

I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E → E

is an isogeny from E to itself.

If m 6= 0 in the base field, its kernel is

E [m] ∼= Z/m × Z/m.

Thus [m] is a degree-m2 isogeny.
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Isogenies

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions

I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x , y) 7→ (−x ,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax − b} .

It is an isomorphism; its kernel is {∞}.

Tanja Lange Post-quantum cryptography I – Isogeny-based cryptography 18



Isogenies

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions

I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3:

(x , y) 7→
(

x3−4x2+30x−12
(x−2)2 , x

3−6x2−14x+35
(x−2)3 · y

)
defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over IF71. Its kernel is {(2, 9), (2,−9),∞}.
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.

(We usually care about subgraphs with certain properties.)

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these

not enough for crypto!
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CSIDH ["si:saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)



Why CSIDH?

I Closest thing we have in PQC to normal DH key exchange:
Keys can be reused, blinded; no difference between initiator &responder.

I Public keys are represented by some A ∈ IFp; p fixed prime.

I Alice computes and distributes her public key A.
Bob computes and distributes his public key B.

I Alice and Bob do computations on each other’s public keys
to obtain shared secret.

I Fancy math: computations start on some elliptic curve

EA : y2 = x3 + Ax2 + x ,

use isogenies to move to a different curve.

I Computations need arithmetic (add, mult, div) modulo p and
elliptic-curve computations.
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CSIDH in one slide
I Choose some small odd primes `1, ..., `n.

I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Let X = {y2 = x3+Ax2+x over IFp with p+1 points}.
I Look at the `i -isogenies defined over IFp within X .

m
ag
ic
m
at
h
ha
pp

en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.

I We can represent E ∈ X as a single coefficient A ∈ IFp.
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CSIDH key exchange

Alice Bob
[ , , , ] [ , , , ]
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Walking in the CSIDH graph
For math details see the bonus slides at the end.
Taking a “positive” step on the `i -subgraph.

1. Find a point (x , y) ∈ E of order `i with x , y ∈ IFp.
The order of any (x , y) ∈ E divides p + 1, so [(p + 1)/`i ](x , y) =∞ or a point of order `i .
Sample a new point if you get ∞.

2. Compute the isogeny with kernel 〈(x , y)〉 using Vélu’s formulas.

Taking a “negative” step on the `i -subgraph.

1. Find a point (x , y) ∈ E of order `i with x ∈ IFp but y /∈ IFp.

Same test as above to find such a point.

2. Compute the isogeny with kernel 〈(x , y)〉 using Vélu’s formulas.

Upshot: With “x-only’ arithmetic” everything happens over IFp.
=⇒ Efficient to implement! There are several more speedups, such as pushing points

through isogenies.
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Abstract from Diffie-Hellman data flow

“CSIDH: an efficient post-quantum

commutative group action”

Cycles are compatible: [right then left] = [left then right]

 only need to keep track of total step counts for each `i .

Example: [ , , , , , , , ] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X !

Many paths are “useless”. Fun fact: Quotienting out trivial actions yields the ideal-class group
cl(Z[
√
−p]).
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Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key exchange from a commutative
group action G × S → S :

Alice public Bob

a
random←−− G b

random←−− G

a ∗ s b ∗ s

key := a ∗ (b ∗ s) key := b ∗ (a ∗ s)
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Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G , (x , y) 7→ g x ·
↑
hy

For general group actions, we cannot compose x ∗ s and y ∗ (b ∗ s).

For CSIDH this would require composing two elliptic curves in some form compatible with the
action of G .
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CSIDH vs. Kuperberg
Kuperberg’s algorithm consists of two components:

1. Evaluate the group action many times. (“oracle calls”)

2. Combine the results in a certain way. (“sieving”)

I The algorithm admits many different tradeoffs.

I Oracle calls are expensive.

I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1)

)
!

Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.
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CSIDH security

Core problem:
Given E ,E ′ ∈ X , find and compute isogeny E → E ′.

Size of key space:
I About

√
p of all A ∈ IFp are valid keys.

(More precisely #cl(Z[
√
−p]) keys.)

Without quantum computer:
I Meet-in-the-middle variants: Time O( 4

√
p).

(2016 Delfs–Galbraith)

With quantum computer:
I 2014 Childs–Jao–Soukharev: Kuperberg applies to family

I These have subexponential complexity.
I Not vulnerable to Shor’s attack.

CSIDH security:
I Public-key validation:

Quickly check that EA : y2 = x3 + Ax2 + x has p + 1 points.
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CSIDH-512 https://csidh.isogeny.org/
Definition:
I p = 4

∏74
i=1 `i − 1 with `1, . . . , `73 first 73 odd primes. `74 = 587.

I Exponents −5 ≤ ei ≤ 5 for all 1 ≤ i ≤ 74.

Sizes:
I Private keys: 32 bytes. (37 in current software for simplicity.)
I Public keys: 64 bytes (just one IFp element).

Performance on typical Intel Skylake laptop core:
I Clock cycles: about 12 · 107 per operation.
I Somewhat more for constant-time implementations.

Security:
I Pre-quantum: at least 128 bits.

I Post-quantum: complicated.
Recent work analyzing cost: see https://quantum.isogeny.org.
Several papers analyzing quantum approaches. (2018 Biasse–Iezzi-Jacobson, 2018-2020
Bonnetain–Schrottenloher, 2020 Peikert)
https://csidh.isogeny.org/analysis.html
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I Private keys: 32 bytes. (37 in current software for simplicity.)
I Public keys: 64 bytes (just one IFp element).

Performance on typical Intel Skylake laptop core:
I Clock cycles: about 12 · 107 per operation.
I Somewhat more for constant-time implementations.

Security:
I Pre-quantum: at least 128 bits.
I Post-quantum: complicated.

Recent work analyzing cost: see https://quantum.isogeny.org.
Several papers analyzing quantum approaches. (2018 Biasse–Iezzi-Jacobson, 2018-2020
Bonnetain–Schrottenloher, 2020 Peikert)
https://csidh.isogeny.org/analysis.html

Tanja Lange Post-quantum cryptography I – Isogeny-based cryptography 30

https://csidh.isogeny.org/
https://quantum.isogeny.org
https://csidh.isogeny.org/analysis.html


Further information (also on PQC in general)
I YouTube channel Tanja Lange: Post-quantum cryptography.
I Isogeny-based cryptography school.
I https://2017.pqcrypto.org/school: PQCRYPTO summer school

with 21 lectures on video, slides, and exercises.
I https://2017.pqcrypto.org/exec and https://pqcschool.org/index.html:

Executive school (less math, more perspective).
I https://pqcrypto.org our overview page.
I ENISA report on PQC, co-authored.
I https://pqcrypto.eu.org: PQCRYPTO EU Project.

I PQCRYPTO recommendations.
I Free software libraries (libpqcrypto, pqm4, pqhw).
I Many reports, scientific articles, (overview) talks.

I Quantum Threat Timeline from Global Risk Institute, 2019; 2021 update.
I Status of quantum computer development (by German BSI).
I NIST PQC competition.
I PQCrypto 2016, PQCrypto 2017, PQCrypto 2018, PQCrypto 2019, PQCrypto 2020,

PQCrypto 2021, PQCrypto 2022 with many slides and videos online.
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https://pqcrypto.org
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://pqcrypto.eu.org
https://pqcrypto.eu.org/recommend.html
https://libpqcrypto.org/
https://github.com/mupq/pqm4
https://github.com/mupq/pqhw
https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://pqcrypto2016.jp/
https://2017.pqcrypto.org/conference/index.html
http://www.math.fau.edu/pqcrypto2018/daily-schedules.php
https://pqcrypto2019.org/
https://pqcrypto2020.inria.fr/
https://pqcrypto2021.kr/
https://2022.pqcrypto.org


Bonus slides

Math details
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Isogenies and endomorphism rings

An isogeny of elliptic curves is a non-zero map ϕ : E → E ′

I given by rational functions

I that is a group homomorphism.

The degree d of a separable isogeny is the size of its kernel d = ker(ϕ).

For isogeny ϕ : E → E ′ there exists a unique dual isogeny ϕ̂ : E ′ → E .

The composition ϕ̂ ◦ ϕ is the multiplication-by-d map on E and ϕ ◦ ϕ̂ the multiplication-by-d
map on E ′, where d = deg(ϕ) = deg(ϕ̂).

An endomorphism is an isogeny from a curve E to itself.

The set of endomorphisms forms a ring End(E ) under + and ◦.

The ring of k-rational endomorphisms of E/k is denoted Endk(E ).
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Elliptic curves over finite fields
We now focus on curves over finite fields IFq, q = pk .

There are only finitely many pairs (x , y) that can satisfy the curve equation, thus there are only
finitely many points on E (IFq).

Hasse Interval:
#E (IFq) ∈ [q + 1− 2

√
q, q + 1 + 2

√
q]

The following are equivalent definitions of supersingular curves:

I #E (IFq) = q + 1− t with t ≡ 0 mod p.

I E [p] = {∞}.
Note that E [n] = {P ∈ E (IFp) | nP =∞}.

For p > 3 the only t ∈ [−2
√
p, 2
√
p] with t ≡ 0 mod p is t = 0.

Thus #E (IFp) = p + 1, #E (IFp2) ∈ {(p − 1)2, p2 + 1, (p + 1)2}
for supersingular curves and p > 3.
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Quadratic twists

E ′/k is a twist of elliptic curve E/k if E ′ is isomorphic to E over k̄.

For E : y2 = x3 + Ax2 + x over IFp with p ≡ 3 mod 4 E ′ : −y2 = x3 + Ax2 + x is isomorphic
to E via

(x , y) 7→ (x ,
√
−1y).

This map is defined over IFp2 , so this is a quadratic twist.

E ′ is not in Weierstrass form (does not have the right shape).
E ′ is isomorphic to E ′′ : y2 = x3−Ax2 + x via (x , y) 7→ (−x , y) over IFp.

Each x ∈ IFp satisfies one of

I x3 + Ax2 + x is a square in IFp, thus there are two points (x ,±
√
x3 + Ax2 + x) in E (IFp).

I x3 + Ax2 + x is not a square in IFp, thus there are two points (x ,±
√
−(x3 + Ax2 + x)) in

E ′(IFp).
I x3 + Ax2 + x = 0, thus (x , 0) is a point in E (IFp) and in E ′(IFp).

#E (IFp) + #E ′(IFp) = 2p + 2, thus
#E (IFp) = p + 1− t implies #E ′(IFp) = p + 1 + t.
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Isogenies and kernels

For any finite subgroup G of E , there exists a unique1

separable isogeny ϕG : E → E ′ with kernel G .

The curve E ′ is called E/G . (≈ quotient groups)

If G is defined over k , then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G )  only suitable for small degrees.

Vélu operates in the field where the points in G live.

 need to make sure extensions stay small for desired G
 this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on E ; but #E (k) =
#((E/G )(k)).

1(up to isomorphism of E ′)
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Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G )  only suitable for small degrees.
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Vélu’s formulas

Let P have odd prime order ` on EA.
For 1 ≤ i < ` let xi be the x-coordinate of iP.
Let

τ =
`−1∏
i=1

xi , σ =
`−1∑
i=1

(
xi −

1

xi

)
, f (x) = x

`−1∏
i=1

xxi − 1

x − xi
.

Then the `-isogeny with kernel 〈P〉 is given by

ϕ` : EA → EB , (x , y) 7→ (f (x), c0yf
′(x))

where B = τ(A− 3σ), and c20 = τ .

Main operation is to compute the xi , just some elliptic-curve additions.
Note that (`− i)P = −iP and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay) inversions.

Montgomery curves have efficient arithmetic using only x-coordinates.
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Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199
E390 E29

E220

E295

E40
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E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over IF419.

Each EA on the left has E−A on the right.
Negative direction means: flip to twist, go positive direction, flip back.
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Class groups for supersingular curves over IFp
Let X = {y2 = x3+Ax2+x over IFp with p+1 points}.
All curves in X have IFp-endomorphism ring O = Z[

√
−p].

Let π the Frobenius endomorphism. Ideal in O above `i .

li = (`i , π − 1).

Moving + in X with `i isogeny ⇐⇒ action of li on X .

More precisely:
Subgroup corresponding to li is E [li ] = E (IFp)[`i ].
(Note that ker(π − 1) is just the IFp-rational points!)

Subgroup corresponding to li is

E [li ] = {P ∈ E [`i ] | π(P) = −P}.

For supersingular Montgomery curves over IFp, p ≡ 3 mod 4

E [li ] = {(x , y) ∈ E [`i ] | x ∈ IFp; y /∈ IFp} ∪ {∞}.
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Commutative group action

cl(O) acts on X = {y2 = x3+Ax2+x over IFp with p+1 points}.
For most ideal classes the kernel is big and formulas are expensive to compute.

I = l101 l−72 l273

is a “big” ideal, but we can compute the action iteratively.

cl(O) is commutative2 so we get a commutative group action..

The choice for CSIDH:
Let K = {[le11 · · · lenn ] | (e1, ..., en) is ‘short’} ⊆ cl(O).
The action of K on X is very efficient!
Pick K as the keyspace

2Important to use the IFp-endomorphism ring.


