Disorientation faults in CSIDH

Tanja Lange (with lots of slides by Chloe Martindale and Lorenz Panny)

Eindhoven University of Technology

18 October 2022

An isogeny of elliptic curves is a non-zero map $E \to E'$

- given by rational functions
- that is a group homomorphism.

The *degree* of a separable isogeny is the size of its *kernel*.

An isogeny of elliptic curves is a non-zero map $E \to E'$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the *multiplication-by-m map*

$$[m]: E \to E$$

is an isogeny from E to itself.

If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

Thus [m] is a degree- m^2 isogeny.

Tanja Lange

An isogeny of elliptic curves is a non-zero map $E \to E'$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an *isomorphism*; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3:

$$(x,y)\mapsto \left(rac{x^3-4x^2+30x-12}{(x-2)^2},rac{x^3-6x^2-14x+35}{(x-2)^3}\cdot y
ight)$$

defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over ${\rm I\!F}_{71}$. Its kernel is $\{(2,9), (2,-9), \infty\}$.

Isogenies are a source of exponentially-sized graphs.

- Isogenies are a source of exponentially-sized graphs.
- ▶ Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.

(We usually care about *sub*graphs with certain properties.)

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.

(We usually care about *sub*graphs with certain properties.)

▶ We can *walk efficiently* on these graphs.

- Isogenies are a source of exponentially-sized graphs.
- <u>Isogeny graph</u>: Nodes are isomorphism classes of curves, edges are isogenies.
 (We usually care about *sub*graphs with certain properties.)
- ▶ We can *walk efficiently* on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- Isogenies are a source of exponentially-sized graphs.
- <u>Isogeny graph</u>: Nodes are isomorphism classes of curves, edges are isogenies.
 (We usually care about *sub*graphs with certain properties.)
- ▶ We can *walk efficiently* on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient algorithms to recover paths from endpoints. (Both classical and quantum!)

- Isogenies are a source of exponentially-sized graphs.
- <u>Isogeny graph</u>: Nodes are isomorphism classes of curves, edges are isogenies.
 (We usually care about *sub*graphs with certain properties.)
- ▶ We can *walk efficiently* on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

- Isogenies are a source of exponentially-sized graphs.
- <u>Isogeny graph</u>: Nodes are isomorphism classes of curves, edges are isogenies.
 (We usually care about *sub*graphs with certain properties.)
- ▶ We can *walk efficiently* on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these "Almost" is not good enough for crypto!

Different isogeny graphs

There are two distinct families of systems:

Tanja Lange

The and the Miles and

(Castryck, Lange, Martindale, Panny, Renes; 2018)

Why CSIDH?

- Closest thing we have in PQC to normal DH key exchange: Keys can be reused, blinded; no difference between initiator &responder.
- ▶ Public keys are represented by some $A \in \mathbb{F}_p$; *p* fixed prime.
- Alice computes and distributes her public key A. Bob computes and distributes his public key B.
- Alice and Bob do computations on each other's public keys to obtain shared secret.
- Fancy math: computations start on some elliptic curve E_A : y² = x³ + Ax² + x, use isogenies to move to a different curve.
- Computations need arithmetic (add, mult, div) modulo p and elliptic-curve computations.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.

• We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.

CSIDH action is commutative

Cycles are *compatible*: [right then left] = [left then right] \rightarrow only need to keep track of *total* step *counts* for each ℓ_i .

CSIDH action is commutative (hence the C)

Cycles are *compatible*: [right then left] = [left then right] \rightarrow only need to keep track of *total* step *counts* for each ℓ_i .

Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$. CSIDH private keys are vectors $(e_1, e_2, \dots, e_n) \in [-m, m]^n$ for some m.

CSIDH action is commutative (hence the C)

Cycles are *compatible*: [right then left] = [left then right] \rightarrow only need to keep track of *total* step *counts* for each ℓ_i .

Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$. CSIDH private keys are vectors $(e_1, e_2, \dots, e_n) \in [-m, m]^n$ for some m.

Many paths are "useless".

Fun fact: Quotienting out trivial actions yields the *ideal-class group* $cl(\mathbb{Z}[\sqrt{-p}])$.

CSIDH action is commutative (hence the C)

Cycles are *compatible*: [right then left] = [left then right] \rightarrow only need to keep track of *total* step *counts* for each ℓ_i .

Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$. CSIDH private keys are vectors $(e_1, e_2, \dots, e_n) \in [-m, m]^n$ for some m.

Many paths are "useless".

Fun fact: Quotienting out trivial actions yields the *ideal-class group* $cl(\mathbb{Z}[\sqrt{-p}])$.

There is a group action of $G = cl(\mathbb{Z}[\sqrt{-p}])$ on our set of curves X.

CSIDH security

Core problem:

Given $E, E' \in X$, find and compute isogeny $E \to E'$.

Size of key space:

 About √p of all A ∈ 𝔽_p are valid keys. (More precisely #cl(ℤ[√−p]) keys.)

Without quantum computer:

 Meet-in-the-middle variants: Time O(⁴√p). (2016 Delfs–Galbraith)

CSIDH security

Core problem:

Given $E, E' \in X$, find and compute isogeny $E \to E'$.

Size of key space:

 About √p of all A ∈ 𝔽_p are valid keys. (More precisely #cl(ℤ[√−p]) keys.)

Without quantum computer:

Meet-in-the-middle variants: Time O(⁴√p).
 (2016 Delfs–Galbraith)

With quantum computer:

- Abelian hidden-shift algorithms apply (2014 Childs–Jao–Soukharev)
 - These have subexponential complexity.
 - Not vulnerable to Shor's attack.

CSIDH security:

Public-key validation:

Quickly check that $E_A: y^2 = x^3 + Ax^2 + x$ has p + 1 points.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- $p = 4 \prod_{i=1}^{74} \ell_i 1$ with $\ell_1, \ldots, \ell_{73}$ first 73 odd primes. $\ell_{74} = 587$.
- Exponents $-5 \le e_i \le 5$ for all $1 \le i \le 74$.

Sizes:

- Private keys: 32 bytes. (37 in current software for simplicity.)
- Public keys: 64 bytes (just one \mathbb{F}_p element).

Performance on typical Intel Skylake laptop core:

- Clock cycles: about $12 \cdot 10^7$ per operation.
- Somewhat more for constant-time implementations. https://ctidh.isogeny.org is fast and constant time.

Security:

Pre-quantum: at least 128 bits.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- $p = 4 \prod_{i=1}^{74} \ell_i 1$ with $\ell_1, \ldots, \ell_{73}$ first 73 odd primes. $\ell_{74} = 587$.
- Exponents $-5 \le e_i \le 5$ for all $1 \le i \le 74$.

Sizes:

- Private keys: 32 bytes. (37 in current software for simplicity.)
- ▶ Public keys: 64 bytes (just one \mathbb{F}_p element).

Performance on typical Intel Skylake laptop core:

- Clock cycles: about $12 \cdot 10^7$ per operation.
- Somewhat more for constant-time implementations. https://ctidh.isogeny.org is fast and constant time.

Security:

- Pre-quantum: at least 128 bits.
- Post-quantum: Several papers analyzing quantum approaches.
 (2018 Biasse-lezzi-Jacobson, 2018-2020 Bonnetain-Schrottenloher, 2020 Peikert)
 All known attacks cost exp((log p)^{1/2+o(1)}), improvements to sieving target the o(1).
 Algorithms use "oracle calls". See https://quantum.isogeny.org for costs analysis.

E'/k is a *twist* of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a *quadratic twist*.

E'/k is a *twist* of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over $I\!\!F_{p^2}$, so this is a *quadratic twist*.

E' is not in Weierstrass form (does not have the right shape). E' is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

E'/k is a *twist* of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a *quadratic twist*.

E' is not in Weierstrass form (does not have the right shape). E' is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

Each $x \in \mathbb{F}_p$ satisfies one of

- > $x^3 + Ax^2 + x$ is a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{x^3 + Ax^2 + x})$ in $E(\mathbb{F}_p)$.
- ▶ $x^3 + Ax^2 + x$ is not a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{-(x^3 + Ax^2 + x)})$ in $E'(\mathbb{F}_p)$.
- ▶ $x^3 + Ax^2 + x = 0$, thus (x, 0) is a point in $E(\mathbb{F}_p)$ and in $E'(\mathbb{F}_p)$.

Disorientation faults in CSIDH

E'/k is a *twist* of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a *quadratic twist*.

E' is not in Weierstrass form (does not have the right shape). E' is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

Each $x \in \mathbb{F}_p$ satisfies one of

 \blacktriangleright $x^3 + Ax^2 + x$ is a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{x^3 + Ax^2 + x})$ in $E(\mathbb{F}_p)$.

▶
$$x^3 + Ax^2 + x$$
 is not a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{-(x^3 + Ax^2 + x)})$ in $E'(\mathbb{F}_p)$.

▶
$$x^3 + Ax^2 + x = 0$$
, thus $(x, 0)$ is a point in $E(\mathbb{F}_p)$ and in $E'(\mathbb{F}_p)$.

 $#E(\mathbb{F}_p) + #E'(\mathbb{F}_p) = 2p + 2, \text{ thus}$ $#E(\mathbb{F}_p) = p + 1 - t \text{ implies } #E'(\mathbb{F}_p) = p + 1 + t.$

Tanja Lange

Disorientation faults in CSIDH

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ 𝔽_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a *"negative"* step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a *"negative"* step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

<u>Upshot:</u> With "x-only' arithmetic" everything happens over \mathbb{F}_p .

 \implies Efficient to implement! There are several more speedups, such as pushing points through isogenies.

Graphs of elliptic curves

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over ${\rm IF}_{419}$.

Disorientation faults in CSIDH

Graphs of elliptic curves

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over ${\rm I\!F}_{419}$. Each E_A on the left has E_{-A} on the right.

Negative direction means: flip to twist, go positive direction, flip back. Tanja Lange Disorientation faults in CSIDH

Vélu's formulas

Let P have odd prime order ℓ on E_A . For $1 \le i < \ell$ let x_i be the x-coordinate of iP. Let $\tau = \prod_{i=1}^{\ell-1} x_i, \quad \sigma = \sum_{i=1}^{\ell-1} \left(x_i - \frac{1}{x_i} \right), \quad f(x) = x \prod_{i=1}^{\ell-1} \frac{xx_i - 1}{x - x_i}.$ Then the ℓ -isogeny with kernel $\langle P \rangle$ is given by $\varphi_\ell : E_A \to E_B, (x, y) \mapsto (f(x), c_0 y f'(x))$ where $B = \tau(A - 3\sigma)$, and $c_0^2 = \tau$.

Main operation is to compute the x_i , just some elliptic-curve additions. Note that $(\ell - i)P = -iP$ and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay) inversions.

Montgomery curves have efficient arithmetic using only x-coordinates.

Tanja Lange

Disorientation faults in CSIDH

Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny, Krijn Reijnders, Jana Sotáková, and Monika Trimoska https://eprint.iacr.org/2022/1202

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ 𝔽_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a *"negative"* step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x ∈ 𝔽_p but y ∉ 𝔽_p. Same test as above to find such a point.
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ 𝔽_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a *"negative"* step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

To find this point, we pick a random $x \in \mathbb{F}_p$, compute $z = x^3 + Ax^2 + x$ and check whether z is a square or not.

If it has the desired sign, multiply by $(p+1)/\ell_i$ to (hopefully) get a point of order ℓ_i

- or repeat with new x.

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ 𝔽_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a *"negative"* step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

To find this point, we pick a random $x \in \mathbb{F}_p$, compute $z = x^3 + Ax^2 + x$ and check whether z is a square or not.

If it has the desired sign, multiply by $(p+1)/\ell_i$ to (hopefully) get a point of order ℓ_i – or repeat with new x.

Implementations amortize this cost over multiple ℓ_i of the same orientation (sign).

Disorientation faults in CSIDH

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ 𝔽_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a *"negative"* step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

To find this point, we pick a random $x \in \mathbb{F}_p$, compute $z = x^3 + Ax^2 + x$ and check whether z is a square or not.

If it has the desired sign, multiply by $(p+1)/\ell_i$ to (hopefully) get a point of order ℓ_i – or repeat with new x.

Implementations amortize this cost over multiple ℓ_i of the same orientation (sign). Knowing how often we take ℓ_i and in which orientation means knowing the key.

Tanja Lange

Disorientation faults in CSIDH

Computations in CSIDH

Require: $A \in \mathbb{F}_p$ and a list of integers (e_1, \ldots, e_n) . **Ensure:** $B \in \mathbb{F}_p$ such that $\prod [\mathfrak{l}_i]^{e_i} * E_A = E_B$ 1: while some $e_i \neq 0$ do 2: Sample a random $x \in \mathbb{F}_p$, defining a point *P*. Set $s \leftarrow \text{IsSquare}(x^3 + Ax^2 + x)$. 3: Let $S = \{i \mid e_i \neq 0, \text{ sign}(e_i) = s\}$. Restart with new x if S is empty. 4: Let $k \leftarrow \prod_{i \in S} \ell_i$ and compute $Q \leftarrow [\frac{p+1}{k}]P$. 5: for each $i \in S$ do 6: 7: Set $k \leftarrow k/\ell_i$ and compute $R \leftarrow [k]Q$. If $R = \infty$, skip this *i*. Compute $\phi: E_A \to E_B$ with kernel $\langle R \rangle$. 8: Set $A \leftarrow B$, $Q \leftarrow \phi(Q)$, and $e_i \leftarrow e_i - s$. 9:

Computations in CSIDH the presence of attackers

Require: $A \in \mathbb{F}_p$ and a list of integers (e_1, \ldots, e_n) . **Ensure:** $B \in \mathbb{F}_p$ such that $\prod [\mathfrak{l}_i]^{e_i} * E_A = E_B$ 1: while some $e_i \neq 0$ do 2: Sample a random $x \in \mathbb{F}_p$, defining a point *P*. Set $s \leftarrow \text{IsSquare}(x^3 + Ax^2 + x)$. 3: Let $S = \{i \mid e_i \neq 0, \text{ sign}(e_i) = s\}$. Restart with new x if S is empty. 4: Let $k \leftarrow \prod_{i \in S} \ell_i$ and compute $Q \leftarrow [\frac{p+1}{k}]P$. 5: for each $i \in S$ do 6: 7: Set $k \leftarrow k/\ell_i$ and compute $R \leftarrow [k]Q$. If $R = \infty$, skip this *i*. Compute $\phi: E_A \to E_B$ with kernel $\langle R \rangle$. 8: Set $A \leftarrow B$, $Q \leftarrow \phi(Q)$, and $e_i \leftarrow e_i - s$. 9:

10: return A.

An attacker can disturb the computation of $x^3 + Ax^2 + x$ or the IsSquare test and disorient a whole batch of steps.

Disorientation faults in CSIDH

Computations in CSIDH the presence of attackers

Require: $A \in \mathbb{F}_p$ and a list of integers (e_1, \ldots, e_n) . **Ensure:** $B \in \mathbb{F}_p$ such that $\prod [\mathfrak{l}_i]^{e_i} * E_A = E_B$ 1: while some $e_i \neq 0$ do Sample a random $x \in \mathbb{F}_p$, defining a point *P*. 2: Set $s \leftarrow \text{IsSquare}(x^3 + Ax^2 + x)$. 3: Let $S = \{i \mid e_i \neq 0, \text{ sign}(e_i) = s\}$. Restart with new x if S is empty. 4: Let $k \leftarrow \prod_{i \in S} \ell_i$ and compute $Q \leftarrow [\frac{p+1}{k}]P$. 5: for each $i \in S$ do 6: 7: Set $k \leftarrow k/\ell_i$ and compute $R \leftarrow [k]Q$. If $R = \infty$, skip this *i*. Compute $\phi: E_A \to E_B$ with kernel $\langle R \rangle$. 8: Set $A \leftarrow B$, $Q \leftarrow \phi(Q)$, and $e_i \leftarrow e_i - s$. 9:

10: **return** *A*.

An attacker can disturb the computation of $x^3 + Ax^2 + x$ or the IsSquare test and disorient a whole batch of steps.

Resulting curve E_t is **close** to E_B .

Computations in CSIDH the presence of attackers

Require: $A \in \mathbb{F}_p$ and a list of integers (e_1, \ldots, e_n) . **Ensure:** $B \in \mathbb{F}_p$ such that $\prod [\mathfrak{l}_i]^{e_i} * E_A = E_B$ 1: while some $e_i \neq 0$ do 2: Sample a random $x \in \mathbb{F}_p$, defining a point *P*. Set $s \leftarrow \text{IsSquare}(x^3 + Ax^2 + x)$. 3: Let $S = \{i \mid e_i \neq 0, \text{ sign}(e_i) = s\}$. Restart with new x if S is empty. 4: Let $k \leftarrow \prod_{i \in S} \ell_i$ and compute $Q \leftarrow [\frac{p+1}{k}]P$. 5: for each $i \in S$ do 6: Set $k \leftarrow k/\ell_i$ and compute $R \leftarrow [k]Q$. If $R = \infty$, skip this *i*. 7: Compute $\phi: E_A \to E_B$ with kernel $\langle R \rangle$. 8: Set $A \leftarrow B$. $Q \leftarrow \phi(Q)$. and $e_i \leftarrow e_i - s$. 9: 10: **return** A.

An attacker can disturb the computation of $x^3 + Ax^2 + x$ or the IsSquare test and disorient a whole batch of steps.

Resulting curve E_t is **close** to E_B .

Off by exactly $2\ell_i$ isogenies for $i \in S$ when the fault happened.

Resulting curve E_t is **close** to E_B . Off by exactly $2\ell_i$ isogenies for $i \in S$ when the fault happened.

To get to E_B we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to -.

Finding *S* tells us the signs of those e_i .

Resulting curve E_t is **close** to E_B . Off by exactly $2\ell_i$ isogenies for $i \in S$ when the fault happened.

To get to E_B we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to -.

Finding S tells us the signs of those e_i .

We can fault in different rounds to get all e_i – first round faults get $|e_i| \ge 1$, second round faults get $|e_i| \ge 2$, ...

Resulting curve E_t is **close** to E_B . Off by exactly $2\ell_i$ isogenies for $i \in S$ when the fault happened.

To get to E_B we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to -.

Finding *S* tells us the signs of those e_i .

We can fault in different rounds to get all e_i – first round faults get $|e_i| \ge 1$, second round faults get $|e_i| \ge 2$, ... but we don't actually know how many + and how many – we have done when we fault in round > 1.

Resulting curve E_t is **close** to E_B . Off by exactly $2\ell_i$ isogenies for $i \in S$ when the fault happened.

To get to E_B we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to -.

Finding *S* tells us the signs of those e_i .

We can fault in different rounds to get all e_i – first round faults get $|e_i| \ge 1$, second round faults get $|e_i| \ge 2$, ... but we don't actually know how many + and how many – we have done when we fault in round > 1. In round 2 we might have done ++, +-, -+, or --.

Resulting curve E_t is **close** to E_B . Off by exactly $2\ell_i$ isogenies for $i \in S$ when the fault happened.

To get to E_B we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to -.

Finding *S* tells us the signs of those e_i .

We can fault in different rounds to get all e_i – first round faults get $|e_i| \ge 1$, second round faults get $|e_i| \ge 2$, ... but we don't actually know how many + and how many – we have done when we fault in round > 1. In round 2 we might have done ++, +-, -+, or --. Middle 2 options give curves we have seen as results in round 1.

Let $E^{i,+}$ and $E^{i,-}$ denote the curves when faulting the *i*-th occurrence of + and -, respectively.

At least one of the faulty curves in round 1 has no more than n/2 elements in S. Brute force search takes

$$\binom{n}{n/2}$$

For CSIDH-512 n = 74, so $\binom{74}{37} \equiv 2^{70}$.

At least one of the faulty curves in round 1 has no more than n/2 elements in S. Brute force search takes

$$\binom{n}{n/2}$$

For CSIDH-512 n = 74, so $\binom{74}{37} \equiv 2^{70}$.

We can walk from E_B and E_t and meet in the middle for

$$\sqrt{\binom{n}{n/2}}$$

At least one of the faulty curves in round 1 has no more than n/2 elements in S. Brute force search takes

$$\binom{n}{n/2}$$

For CSIDH-512 n = 74, so $\binom{74}{37} \equiv 2^{70}$.

We can walk from E_B and E_t and meet in the middle for

$$\sqrt{\binom{n}{n/2}}.$$

But there is a lot more information we can get!

At least one of the faulty curves in round 1 has no more than n/2 elements in S. Brute force search takes

$$\binom{n}{n/2}$$

For CSIDH-512 n = 74, so $\binom{74}{37} \equiv 2^{70}$.

We can walk from E_B and E_t and meet in the middle for

$$\sqrt{\binom{n}{n/2}}$$

But there is a lot more information we can get!

```
E^{1,+} and E^{2,+} differ by those \ell_i that have exactly e_i = 1.
E^{2,+} and E^{2,+} differ by those \ell_i that have exactly e_i = 2.
```

These gaps are much smaller, on average n/(2m+1).

Tanja Lange

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ 𝔽_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability 1/3 we miss $\ell_1 = 3$ in the order of the point,

Taking a "positive" step on the ℓ_i -subgraph.

 Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).

2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability 1/3 we miss $\ell_1 = 3$ in the order of the point, with probability 1/5 we miss $\ell_2 = 5$ in the order of the point, ...
Even more information

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability 1/3 we miss $\ell_1 = 3$ in the order of the point, with probability 1/5 we miss $\ell_2 = 5$ in the order of the point, ... We get clouds of curves at distance 1 or 2 primes from $E^{1,+}$ and E^{1-} . These very efficiently reveal orientations of small primes and thus reduce the search space.

Even more information

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability 1/3 we miss $\ell_1 = 3$ in the order of the point, with probability 1/5 we miss $\ell_2 = 5$ in the order of the point, ... We get clouds of curves at distance 1 or 2 primes from $E^{1,+}$ and E^{1-} . These very efficiently reveal orientations of small primes and thus reduce the search space.

Later rounds have the same, but also have some 'late comers' pointing in the wrong direction. $e_i = 1$ will have $\ell_1 = 3$ appear near $E^{2,+}$ with probability 1/3, when it was missed in round 1.

Even more information

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ IF_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞ (probability 1/l_i).
- 2. Compute the *isogeny* with *kernel* $\langle (x, y) \rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability 1/3 we miss $\ell_1 = 3$ in the order of the point, with probability 1/5 we miss $\ell_2 = 5$ in the order of the point, ... We get clouds of curves at distance 1 or 2 primes from $E^{1,+}$ and E^{1-} . These very efficiently reveal orientations of small primes and thus reduce the search space.

Later rounds have the same, but also have some 'late comers' pointing in the wrong direction. $e_i = 1$ will have $\ell_1 = 3$ appear near $E^{2,+}$ with probability 1/3, when it was missed in round 1.

Our tool, pubcrawl, does MitM searches in neighborhoods of curves.

Graph for toy CSIDH-103 (n = 21, m = 3)

white: intermediate curves found with pubcrawl.

See the paper for

How to induce such faults.

Note: this attack uses a lot of nice math but starts from a physical attack, so the attacker needs physical access.

- Other keyspaces incl. CTIDH.
- Probabilities and cost estimates.
- How to read off the key from pubcrawl and the graphs.
- What you can still do if you get only $hash(E_t)$ instead of E_t .
- Speedups.

https://eprint.iacr.org/2022/1202.

CSIDH with countermeasures

Require: $A \in \mathbb{F}_n$ and a list of integers (e_1, \ldots, e_n) . **Ensure:** $B \in \mathbb{F}_p$ such that $\prod [\mathfrak{l}_i]^{e_i} * E_A = E_B$ 1: while some $e_i \neq 0$ do Sample a random $x \in \mathbb{F}_{p}$, defining a point P. 2: Set $z \leftarrow x^3 + Ax^2 + x$, $\tilde{v} \leftarrow z^{(p+1)/4}$. 3. Set $s \leftarrow 1$ if $\tilde{v}^2 = z$, $s \leftarrow -1$ if $\tilde{v}^2 = -z$, $s \leftarrow 0$ otherwise. 4: Let $S = \{i \mid e_i \neq 0, \text{ sign}(e_i) = s\}$. **Restart** with new x if S is empty. 5: Let $k \leftarrow \prod_{i \in S} \ell_i$ and compute $Q' = (X_{Q'} : Z_{Q'}) \leftarrow [\frac{p+1}{k}]P$. 6: Compute $z' \leftarrow x^3 + Ax^2 + x$. 7: Set $X_Q \leftarrow s \cdot z' \cdot X_{\Omega'}, Z_\Omega \leftarrow \tilde{v}^2 \cdot Z_{\Omega'}$ 8. Set $Q = (X_{\Omega} : Z_{\Omega})$. 9: for each $i \in S$ do $10 \cdot$ Set $k \leftarrow k/\ell_i$ and compute $R \leftarrow [k]Q$. If $R = \infty$, skip this *i*. 11. Compute $\phi: E_A \to E_B$ with kernel $\langle R \rangle$. 12: Set $A \leftarrow B$. $Q \leftarrow \phi(Q)$. and $e_i \leftarrow e_i - s$. 13. 14: return A.

This uses z in computation rather than just s, faults make us move outside set of curves.

Tanja Lange

Disorientation faults in CSIDH

Further information

- ► YouTube channel Tanja Lange: Post-quantum cryptography.
- Isogeny-based cryptography school.
- https://2017.pqcrypto.org/school: PQCRYPTO summer school with 21 lectures on video, slides, and exercises.
- https://2017.pqcrypto.org/exec and https://pqcschool.org/index.html: Executive school (less math, more perspective).
- https://pqcrypto.org our overview page.
- ► ENISA report on PQC, co-authored.
- https://pqcrypto.eu.org: PQCRYPTO EU Project.
 - PQCRYPTO recommendations.
 - Free software libraries (libpqcrypto, pqm4, pqhw).
 - Many reports, scientific articles, (overview) talks.
- Quantum Threat Timeline from Global Risk Institute, 2019; 2021 update.
- Status of quantum computer development (by German BSI).
- ► NIST PQC competition.
- PQCrypto 2016, PQCrypto 2017, PQCrypto 2018, PQCrypto 2019, PQCrypto 2020, PQCrypto 2021, PQCrypto 2022 with many slides and videos online.

Disorientation faults in CSIDH