Disorientation faults in CSIDH

Tanja Lange
(with lots of slides by Chloe Martindale and Lorenz Panny)

Eindhoven University of Technology
18 October 2022

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example \#1: For each $m \neq 0$, the multiplication-by-m map

$$
[m]: E \rightarrow E
$$

is an isogeny from E to itself.
If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \times \mathbb{Z} / m
$$

Thus $[m]$ is a degree- m^{2} isogeny.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example \#2: For any a and b, the map $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$ defines a degree- 1 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+a x+b\right\} \longrightarrow\left\{y^{2}=x^{3}+a x-b\right\}
$$

It is an isomorphism; its kernel is $\{\infty\}$.

Isogenies

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$

- given by rational functions
- that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example \#3:

$$
(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)
$$

defines a degree- 3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \longrightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\{(2,9),(2,-9), \infty\}$.

Big picture

- Isogenies are a source of exponentially-sized graphs.

Big picture

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)

Big picture

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
- We can walk efficiently on these graphs.

Big picture

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient algorithms to recover paths from endpoints. (Both classical and quantum!)

Big picture

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

Big picture

- Isogenies are a source of exponentially-sized graphs.
- Isogeny graph: Nodes are isomorphism classes of curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient algorithms to recover paths from endpoints.
(Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

> It is easy to construct graphs that satisfy almost all of these "Almost" is not good enough for crypto!

Different isogeny graphs

There are two distinct families of systems:

CSIDH ['sii,said]

Why CSIDH?

- Closest thing we have in PQC to normal DH key exchange: Keys can be reused, blinded; no difference between initiator \&responder.
- Public keys are represented by some $A \in \mathbb{F}_{p} ; p$ fixed prime.
- Alice computes and distributes her public key A. Bob computes and distributes his public key B.
- Alice and Bob do computations on each other's public keys to obtain shared secret.
- Fancy math: computations start on some elliptic curve $E_{A}: y^{2}=x^{3}+A x^{2}+x$, use isogenies to move to a different curve.
- Computations need arithmetic (add, mult, div) modulo p and elliptic-curve computations.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

$$
\begin{aligned}
& p=419 \\
& \ell_{1}=3 \\
& \ell_{2}=5 \\
& \ell_{3}=7
\end{aligned}
$$

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

- Walking "left" and "right" on any ℓ_{i}-subgraph is efficient.

CSIDH in one slide

- Choose some small odd primes $\ell_{1}, \ldots, \ell_{n}$.
- Make sure $p=4 \cdot \ell_{1} \cdots \ell_{n}-1$ is prime.
- Let $X=\left\{y^{2}=x^{3}+A x^{2}+x\right.$ over \mathbb{F}_{p} with $p+1$ points $\}$.
- Look at the ℓ_{i}-isogenies defined over \mathbb{F}_{p} within X.

- Walking "left" and "right" on any ℓ_{i}-subgraph is efficient.
- We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_{p}$.

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+,-,-]}
\end{array}
$$

CSIDH key exchange

Alice

$$
[+,+,-,-]
$$

$$
\begin{gathered}
\text { Bob } \\
{\left[_{\uparrow}^{-},+-,-,-\right]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+,-,-]}
\end{array}
$$

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+,-,-]}
\end{array}
$$

CSIDH key exchange

Alice
$\left[+,+,-,-{ }_{\uparrow}\right]$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-\uparrow]}
\end{gathered}
$$

CSIDH key exchange

Alice

$$
[+,+,-,-] \quad[-,+,-,-]
$$

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+-,-]}
\end{array}
$$

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+,-,-]}
\end{array}
$$

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+,-,-]}
\end{array}
$$

CSIDH key exchange

$$
\begin{gathered}
\text { Alice } \\
{[+,+,-,-\uparrow]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[-,+,-,-\uparrow]}
\end{gathered}
$$

CSIDH key exchange

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
{[+,+,-,-]} & {[-,+,-,-]}
\end{array}
$$

CSIDH action is commutative

Cycles are compatible: [right then left] $=$ [left then right]
\rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.

CSIDH action is commutative (hence the C)

Cycles are compatible: [right then left] $=$ [left then right]
\rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.
CSIDH private keys are vectors $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in[-m, m]^{n}$ for some m.

CSIDH action is commutative (hence the C)

Cycles are compatible: [right then left] $=$ [left then right]
\rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[\boldsymbol{+}, \boldsymbol{+},-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.
CSIDH private keys are vectors $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in[-m, m]^{n}$ for some m.
Many paths are "useless".
Fun fact: Quotienting out trivial actions yields the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

CSIDH action is commutative (hence the C)

Cycles are compatible: [right then left] $=$ [left then right]
\rightsquigarrow only need to keep track of total step counts for each ℓ_{i}.
Example: $[+,+,-,-,-,+,-,-]$ just becomes $(+1, \quad 0,-3) \in \mathbb{Z}^{3}$.
CSIDH private keys are vectors $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in[-m, m]^{n}$ for some m.
Many paths are "useless".
Fun fact: Quotienting out trivial actions yields the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.
There is a group action of $G=\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$ on our set of curves X.

CSIDH security

Core problem:
Given $E, E^{\prime} \in X$, find and compute isogeny $E \rightarrow E^{\prime}$.
Size of key space:

- About \sqrt{p} of all $A \in \mathbb{F}_{p}$ are valid keys. (More precisely $\# \mathrm{cl}(\mathbb{Z}[\sqrt{-p}])$ keys.)

Without quantum computer:

- Meet-in-the-middle variants: Time $O(\sqrt[4]{p})$.
(2016 Delfs-Galbraith)

CSIDH security

Core problem:
Given $E, E^{\prime} \in X$, find and compute isogeny $E \rightarrow E^{\prime}$.
Size of key space:

- About \sqrt{p} of all $A \in \mathbb{F}_{p}$ are valid keys. (More precisely $\# \mathrm{cl}(\mathbb{Z}[\sqrt{-p}])$ keys.)

Without quantum computer:

- Meet-in-the-middle variants: Time $\mathrm{O}(\sqrt[4]{p})$.
(2016 Delfs-Galbraith)
With quantum computer:
- Abelian hidden-shift algorithms apply (2014 Childs-Jao-Soukharev)
- These have subexponential complexity.
- Not vulnerable to Shor's attack.

CSIDH security:

- Public-key validation:

Quickly check that $E_{A}: y^{2}=x^{3}+A x^{2}+x$ has $p+1$ points.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- $p=4 \prod_{i=1}^{74} \ell_{i}-1$ with $\ell_{1}, \ldots, \ell_{73}$ first 73 odd primes. $\ell_{74}=587$.
- Exponents $-5 \leq e_{i} \leq 5$ for all $1 \leq i \leq 74$.

Sizes:

- Private keys: 32 bytes. (37 in current software for simplicity.)
- Public keys: 64 bytes (just one \mathbb{F}_{p} element).

Performance on typical Intel Skylake laptop core:

- Clock cycles: about $12 \cdot 10^{7}$ per operation.
- Somewhat more for constant-time implementations. https://ctidh.isogeny.org is fast and constant time.

Security:

- Pre-quantum: at least 128 bits.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- $p=4 \prod_{i=1}^{74} \ell_{i}-1$ with $\ell_{1}, \ldots, \ell_{73}$ first 73 odd primes. $\ell_{74}=587$.
- Exponents $-5 \leq e_{i} \leq 5$ for all $1 \leq i \leq 74$.

Sizes:

- Private keys: 32 bytes. (37 in current software for simplicity.)
- Public keys: 64 bytes (just one \mathbb{F}_{p} element).

Performance on typical Intel Skylake laptop core:

- Clock cycles: about $12 \cdot 10^{7}$ per operation.
- Somewhat more for constant-time implementations. https://ctidh.isogeny.org is fast and constant time.

Security:

- Pre-quantum: at least 128 bits.
- Post-quantum: Several papers analyzing quantum approaches. (2018 Biasse-lezzi-Jacobson, 2018-2020 Bonnetain-Schrottenloher, 2020 Peikert) All known attacks cost $\exp \left((\log p)^{1 / 2+o(1)}\right)$, improvements to sieving target the $o(1)$. Algorithms use "oracle calls". See https://quantum.isogeny.org for costs analysis.

Quadratic twists

E^{\prime} / k is a twist of elliptic curve E / k if E^{\prime} is isomorphic to E over \bar{k}.
For $E: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{p} with $p \equiv 3 \bmod 4 E^{\prime}:-y^{2}=x^{3}+A x^{2}+x$ is isomorphic to E via

$$
(x, y) \mapsto(x, \sqrt{-1} y)
$$

This map is defined over $\mathbb{F}_{p^{2}}$, so this is a quadratic twist.

Quadratic twists

E^{\prime} / k is a twist of elliptic curve E / k if E^{\prime} is isomorphic to E over \bar{k}.
For $E: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{p} with $p \equiv 3 \bmod 4 E^{\prime}:-y^{2}=x^{3}+A x^{2}+x$ is isomorphic to E via

$$
(x, y) \mapsto(x, \sqrt{-1} y)
$$

This map is defined over $\mathbb{F}_{p^{2}}$, so this is a quadratic twist.
E^{\prime} is not in Weierstrass form (does not have the right shape).
E^{\prime} is isomorphic to $E^{\prime \prime}: y^{2}=x^{3}-A x^{2}+x$ via $(x, y) \mapsto(-x, y)$ over \mathbb{F}_{p}.

Quadratic twists

E^{\prime} / k is a twist of elliptic curve E / k if E^{\prime} is isomorphic to E over \bar{k}.
For $E: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{p} with $p \equiv 3 \bmod 4 E^{\prime}:-y^{2}=x^{3}+A x^{2}+x$ is isomorphic to E via

$$
(x, y) \mapsto(x, \sqrt{-1} y)
$$

This map is defined over $\mathbb{F}_{p^{2}}$, so this is a quadratic twist.
E^{\prime} is not in Weierstrass form (does not have the right shape).
E^{\prime} is isomorphic to $E^{\prime \prime}: y^{2}=x^{3}-A x^{2}+x$ via $(x, y) \mapsto(-x, y)$ over \mathbb{F}_{p}.
Each $x \in \mathbb{F}_{p}$ satisfies one of
$-x^{3}+A x^{2}+x$ is a square in \mathbb{F}_{p}, thus there are two points $\left(x, \pm \sqrt{x^{3}+A x^{2}+x}\right)$ in $E\left(\mathbb{F}_{p}\right)$.
$-x^{3}+A x^{2}+x$ is not a square in \mathbb{F}_{p}, thus there are two points $\left(x, \pm \sqrt{-\left(x^{3}+A x^{2}+x\right)}\right)$ in $E^{\prime}\left(\mathbb{F}_{p}\right)$.

- $x^{3}+A x^{2}+x=0$, thus $(x, 0)$ is a point in $E\left(\mathbb{F}_{p}\right)$ and in $E^{\prime}\left(\mathbb{F}_{p}\right)$.

Quadratic twists

E^{\prime} / k is a twist of elliptic curve E / k if E^{\prime} is isomorphic to E over \bar{k}.
For $E: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{p} with $p \equiv 3 \bmod 4 E^{\prime}:-y^{2}=x^{3}+A x^{2}+x$ is isomorphic to E via

$$
(x, y) \mapsto(x, \sqrt{-1} y)
$$

This map is defined over $\mathbb{F}_{p^{2}}$, so this is a quadratic twist.
E^{\prime} is not in Weierstrass form (does not have the right shape).
E^{\prime} is isomorphic to $E^{\prime \prime}: y^{2}=x^{3}-A x^{2}+x$ via $(x, y) \mapsto(-x, y)$ over \mathbb{F}_{p}.
Each $x \in \mathbb{F}_{p}$ satisfies one of
$-x^{3}+A x^{2}+x$ is a square in \mathbb{F}_{p}, thus there are two points $\left(x, \pm \sqrt{x^{3}+A x^{2}+x}\right)$ in $E\left(\mathbb{F}_{p}\right)$.

- $x^{3}+A x^{2}+x$ is not a square in \mathbb{F}_{p}, thus there are two points $\left(x, \pm \sqrt{-\left(x^{3}+A x^{2}+x\right)}\right)$ in $E^{\prime}\left(\mathbb{F}_{p}\right)$.
- $x^{3}+A x^{2}+x=0$, thus $(x, 0)$ is a point in $E\left(\mathbb{F}_{p}\right)$ and in $E^{\prime}\left(\mathbb{F}_{p}\right)$.

$$
\# E\left(\mathbb{F}_{p}\right)+\# E^{\prime}\left(\mathbb{F}_{p}\right)=2 p+2, \text { thus }
$$

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-t \text { implies } \# E^{\prime}\left(\mathbb{F}_{p}\right)=p+1+t
$$

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$. The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}.
Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}.
Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Upshot: With "x-only' arithmetic" everything happens over \mathbb{F}_{p}.
\Longrightarrow Efficient to implement! There are several more speedups, such as pushing points through isogenies.

Graphs of elliptic curves

Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Graphs of elliptic curves

Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}. Each E_{A} on the left has E_{-A} on the right.
Negative direction means: flip to twist, go positive direction, flip back.

Vélu's formulas

Let P have odd prime order ℓ on E_{A}.
For $1 \leq i<\ell$ let x_{i} be the x-coordinate of $i P$.
Let

$$
\tau=\prod_{i=1}^{\ell-1} x_{i}, \quad \sigma=\sum_{i=1}^{\ell-1}\left(x_{i}-\frac{1}{x_{i}}\right), \quad f(x)=x \prod_{i=1}^{\ell-1} \frac{x x_{i}-1}{x-x_{i}}
$$

Then the ℓ-isogeny with kernel $\langle P\rangle$ is given by

$$
\varphi_{\ell}: E_{A} \rightarrow E_{B},(x, y) \mapsto\left(f(x), c_{0} y f^{\prime}(x)\right)
$$

where $B=\tau(A-3 \sigma)$, and $c_{0}^{2}=\tau$.
Main operation is to compute the x_{i}, just some elliptic-curve additions.
Note that $(\ell-i) P=-i P$ and both have the same x-coordinate.
Implementations often use projective formulas to avoid (or delay) inversions.
Montgomery curves have efficient arithmetic using only x-coordinates.

Disorientation faults in CSIDH

Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny, Krijn Reijnders, Jana Sotáková, and Monika Trimoska
https://eprint.iacr.org/2022/1202

Steps in CSIDH computation

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}.
Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Steps in CSIDH computation

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}.
Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

To find this point, we pick a random $x \in \mathbb{F}_{p}$, compute $z=x^{3}+A x^{2}+x$ and check whether z is a square or not.
If it has the desired sign, multiply by $(p+1) / \ell_{i}$ to (hopefully) get a point of order ℓ_{i} - or repeat with new x.

Steps in CSIDH computation

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

To find this point, we pick a random $x \in \mathbb{F}_{p}$, compute $z=x^{3}+A x^{2}+x$ and check whether z is a square or not.
If it has the desired sign, multiply by $(p+1) / \ell_{i}$ to (hopefully) get a point of order ℓ_{i} - or repeat with new x.

Implementations amortize this cost over multiple ℓ_{i} of the same orientation (sign).

Steps in CSIDH computation

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

To find this point, we pick a random $x \in \mathbb{F}_{p}$, compute $z=x^{3}+A x^{2}+x$ and check whether z is a square or not.
If it has the desired sign, multiply by $(p+1) / \ell_{i}$ to (hopefully) get a point of order ℓ_{i} - or repeat with new x.

Implementations amortize this cost over multiple ℓ_{i} of the same orientation (sign). Knowing how often we take ℓ_{i} and in which orientation means knowing the key.

Computations in CSIDH

Require: $A \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$.
Ensure: $B \in \mathbb{F}_{p}$ such that $\prod\left[\mathrm{L}_{i}\right]^{e_{i}} * E_{A}=E_{B}$
1: while some $e_{i} \neq 0$ do
Sample a random $x \in \mathbb{F}_{p}$, defining a point P.
Set $s \leftarrow \operatorname{IsSquare}\left(x^{3}+A x^{2}+x\right)$.
Let $S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}$. Restart with new x if S is empty.
Let $k \leftarrow \prod_{i \in S} l_{i}$ and compute $Q \leftarrow\left[\frac{p+1}{k}\right] P$.
for each $i \in S$ do
Set $k \leftarrow k / \ell_{i}$ and compute $R \leftarrow[k] Q$. If $R=\infty$, skip this i.
Compute $\phi: E_{A} \rightarrow E_{B}$ with kernel $\langle R\rangle$.
Set $A \leftarrow B, Q \leftarrow \phi(Q)$, and $e_{i} \leftarrow e_{i}-s$.
10: return A.

Computations in CSIDH the presence of attackers

Require: $A \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$.
Ensure: $B \in \mathbb{F}_{p}$ such that $\prod\left[\left[_{i}\right]^{e_{i}} * E_{A}=E_{B}\right.$
1: while some $e_{i} \neq 0$ do
2: \quad Sample a random $x \in \mathbb{F}_{p}$, defining a point P.
Set $s \leftarrow \operatorname{IsSquare}\left(x^{3}+A x^{2}+x\right)$.
Let $S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}$. Restart with new x if S is empty.
Let $k \leftarrow \prod_{i \in S} l_{i}$ and compute $Q \leftarrow\left[\frac{p+1}{k}\right] P$.

for each $i \in S$ do

Set $k \leftarrow k / \ell_{i}$ and compute $R \leftarrow[k] Q$. If $R=\infty$, skip this i.
Compute $\phi: E_{A} \rightarrow E_{B}$ with kernel $\langle R\rangle$.
Set $A \leftarrow B, Q \leftarrow \phi(Q)$, and $e_{i} \leftarrow e_{i}-s$.
10: return A.
An attacker can disturb the computation of $x^{3}+A x^{2}+x$ or the IsSquare test and disorient a whole batch of steps.

Computations in CSIDH the presence of attackers

Require: $A \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$.
Ensure: $B \in \mathbb{F}_{p}$ such that $\prod\left[\left[_{i}\right]^{e_{i}} * E_{A}=E_{B}\right.$
1: while some $e_{i} \neq 0$ do
2: \quad Sample a random $x \in \mathbb{F}_{p}$, defining a point P.
Set $s \leftarrow \operatorname{IsSquare}\left(x^{3}+A x^{2}+x\right)$.
Let $S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}$. Restart with new x if S is empty.
Let $k \leftarrow \prod_{i \in S} \ell_{i}$ and compute $Q \leftarrow\left[\frac{p+1}{k}\right] P$.

for each $i \in S$ do

Set $k \leftarrow k / \ell_{i}$ and compute $R \leftarrow[k] Q$. If $R=\infty$, skip this i.
Compute $\phi: E_{A} \rightarrow E_{B}$ with kernel $\langle R\rangle$.
Set $A \leftarrow B, Q \leftarrow \phi(Q)$, and $e_{i} \leftarrow e_{i}-s$.
10: return A.
An attacker can disturb the computation of $x^{3}+A x^{2}+x$ or the IsSquare test and disorient a whole batch of steps.
Resulting curve E_{t} is close to E_{B}.

Computations in CSIDH the presence of attackers

Require: $A \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$.
Ensure: $B \in \mathbb{F}_{p}$ such that $\prod\left[\mathrm{r}_{i}\right]^{e_{i}} * E_{A}=E_{B}$
1: while some $e_{i} \neq 0$ do
Sample a random $x \in \mathbb{F}_{p}$, defining a point P.
Set $s \leftarrow \operatorname{IsSquare}\left(x^{3}+A x^{2}+x\right)$.
Let $S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}$. Restart with new x if S is empty.
Let $k \leftarrow \prod_{i \in S} l_{i}$ and compute $Q \leftarrow\left[\frac{p+1}{k}\right] P$.
for each $i \in S$ do
Set $k \leftarrow k / \ell_{i}$ and compute $R \leftarrow[k] Q$. If $R=\infty$, skip this i.
Compute $\phi: E_{A} \rightarrow E_{B}$ with kernel $\langle R\rangle$.
Set $A \leftarrow B, Q \leftarrow \phi(Q)$, and $e_{i} \leftarrow e_{i}-s$.
10: return A.
An attacker can disturb the computation of $x^{3}+A x^{2}+x$ or the IsSquare test and disorient a whole batch of steps.
Resulting curve E_{t} is close to E_{B}.
Off by exactly $2 \ell_{i}$ isogenies for $i \in S$ when the fault happened.

How to recover key from faulty curves?

Resulting curve E_{t} is close to E_{B}.
Off by exactly $2 \ell_{i}$ isogenies for $i \in S$ when the fault happened.
To get to E_{B} we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to - .
Finding S tells us the signs of those e_{i}.

How to recover key from faulty curves?

Resulting curve E_{t} is close to E_{B}.
Off by exactly $2 \ell_{i}$ isogenies for $i \in S$ when the fault happened.
To get to E_{B} we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to - .
Finding S tells us the signs of those e_{i}.
We can fault in different rounds to get all e_{i} - first round faults get $\left|e_{i}\right| \geq 1$, second round faults get $\left|e_{i}\right| \geq 2, \ldots$

How to recover key from faulty curves?

Resulting curve E_{t} is close to E_{B}.
Off by exactly $2 \ell_{i}$ isogenies for $i \in S$ when the fault happened.
To get to E_{B} we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to - .
Finding S tells us the signs of those e_{i}.
We can fault in different rounds to get all e_{i} - first round faults get $\left|e_{i}\right| \geq 1$, second round faults get $\left|e_{i}\right| \geq 2, \ldots$ but we don't actually know how many + and how many - we have done when we fault in round >1.

How to recover key from faulty curves?

Resulting curve E_{t} is close to E_{B}.
Off by exactly $2 \ell_{i}$ isogenies for $i \in S$ when the fault happened.
To get to E_{B} we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to - .
Finding S tells us the signs of those e_{i}.
We can fault in different rounds to get all e_{i} - first round faults get $\left|e_{i}\right| \geq 1$, second round faults get $\left|e_{i}\right| \geq 2, \ldots$ but we don't actually know how many + and how many - we have done when we fault in round >1.
In round 2 we might have done,+++- , -+ , or -- .

How to recover key from faulty curves?

Resulting curve E_{t} is close to E_{B}.
Off by exactly $2 \ell_{i}$ isogenies for $i \in S$ when the fault happened.
To get to E_{B} we need to compute these in positive direction if we flipped s from - to + (we walked in the negative direction for primes that wanted to walk in the positive direction).

Likewise, we need to compute them in the negative direction if we flipped from + to - .
Finding S tells us the signs of those e_{i}.
We can fault in different rounds to get all e_{i} - first round faults get $\left|e_{i}\right| \geq 1$, second round faults get $\left|e_{i}\right| \geq 2, \ldots$ but we don't actually know how many + and how many - we have done when we fault in round >1.
In round 2 we might have done,+++- , -+ , or -- .
Middle 2 options give curves we have seen as results in round 1.
Let $E^{i,+}$ and $E^{i,-}$ denote the curves when faulting the i-th occurrence of + and -, respectively.

Cost of this attack

At least one of the faulty curves in round 1 has no more than $n / 2$ elements in S. Brute force search takes

$$
\binom{n}{n / 2 .}
$$

For CSIDH-512 $n=74$, so $\binom{74}{37} \equiv 2^{70}$.

Cost of this attack

At least one of the faulty curves in round 1 has no more than $n / 2$ elements in S. Brute force search takes

$$
\binom{n}{n / 2 .}
$$

For CSIDH-512 $n=74$, so $\binom{74}{37} \equiv 2^{70}$.
We can walk from E_{B} and E_{t} and meet in the middle for

$$
\sqrt{\binom{n}{n / 2}}
$$

Cost of this attack

At least one of the faulty curves in round 1 has no more than $n / 2$ elements in S. Brute force search takes

$$
\binom{n}{n / 2 .}
$$

For CSIDH-512 $n=74$, so $\binom{74}{37} \equiv 2^{70}$.
We can walk from E_{B} and E_{t} and meet in the middle for

$$
\sqrt{\binom{n}{n / 2}}
$$

But there is a lot more information we can get!

Cost of this attack

At least one of the faulty curves in round 1 has no more than $n / 2$ elements in S. Brute force search takes

$$
\binom{n}{n / 2 .}
$$

For CSIDH-512 $n=74$, so $\binom{74}{37} \equiv 2^{70}$.
We can walk from E_{B} and E_{t} and meet in the middle for

$$
\sqrt{\binom{n}{n / 2}}
$$

But there is a lot more information we can get!
$E^{1,+}$ and $E^{2,+}$ differ by those ℓ_{i} that have exactly $e_{i}=1$.
$E^{2,+}$ and $E^{2,+}$ differ by those ℓ_{i} that have exactly $e_{i}=2$.
\vdots
These gaps are much smaller, on average $n /(2 m+1)$.

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability $1 / 3$ we miss $\ell_{1}=3$ in the order of the point,

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability $1 / 3$ we miss $\ell_{1}=3$ in the order of the point, with probability $1 / 5$ we miss $\ell_{2}=5$ in the order of the point, \ldots

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability $1 / 3$ we miss $\ell_{1}=3$ in the order of the point, with probability $1 / 5$ we miss $\ell_{2}=5$ in the order of the point, \ldots
We get clouds of curves at distance 1 or 2 primes from $E^{1,+}$ and E^{1-}.
These very efficiently reveal orientations of small primes and thus reduce the search space.

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability $1 / 3$ we miss $\ell_{1}=3$ in the order of the point, with probability $1 / 5$ we miss $\ell_{2}=5$ in the order of the point, \ldots
We get clouds of curves at distance 1 or 2 primes from $E^{1,+}$ and E^{1-}.
These very efficiently reveal orientations of small primes and thus reduce the search space.
Later rounds have the same, but also have some 'late comers' pointing in the wrong direction. $e_{i}=1$ will have $\ell_{1}=3$ appear near $E^{2,+}$ with probability $1 / 3$, when it was missed in round 1 .

Even more information

Taking a "positive" step on the ℓ_{i}-subgraph.

1. Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
2. Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Repeatedly faulting round 1 will give many copies of $E^{1,+}$ and $E^{1,-}$, but with probability $1 / 3$ we miss $\ell_{1}=3$ in the order of the point, with probability $1 / 5$ we miss $\ell_{2}=5$ in the order of the point, \ldots
We get clouds of curves at distance 1 or 2 primes from $E^{1,+}$ and E^{1-}.
These very efficiently reveal orientations of small primes and thus reduce the search space.
Later rounds have the same, but also have some 'late comers' pointing in the wrong direction. $e_{i}=1$ will have $\ell_{1}=3$ appear near $E^{2,+}$ with probability $1 / 3$, when it was missed in round 1 .

Our tool, pubcrawl, does MitM searches in neighborhoods of curves.

Graph for toy CSIDH-103 $(n=21, m=3)$

See the paper for

- How to induce such faults.

Note: this attack uses a lot of nice math but starts from a physical attack, so the attacker needs physical access.

- Other keyspaces incl. CTIDH.
- Probabilities and cost estimates.
- How to read off the key from pubcrawl and the graphs.
- What you can still do if you get only hash $\left(E_{t}\right)$ instead of E_{t}.
- Speedups.
https://eprint.iacr.org/2022/1202.

CSIDH with countermeasures

Require: $A \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$.
Ensure: $B \in \mathbb{F}_{p}$ such that $\prod\left[\mathrm{l}_{i}\right]^{e_{i}} * E_{A}=E_{B}$
1: while some $e_{i} \neq 0$ do
2: \quad Sample a random $x \in \mathbb{F}_{p}$, defining a point P.
3: \quad Set $z \leftarrow x^{3}+A x^{2}+x, \tilde{y} \leftarrow z^{(p+1) / 4}$.
4: \quad Set $s \leftarrow 1$ if $\tilde{y}^{2}=z, s \leftarrow-1$ if $\tilde{y}^{2}=-z, s \leftarrow 0$ otherwise.
5: \quad Let $S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}$. Restart with new x if S is empty.
6: \quad Let $k \leftarrow \prod_{i \in S} \ell_{i}$ and compute $Q^{\prime}=\left(X_{Q^{\prime}}: Z_{Q^{\prime}}\right) \leftarrow\left[\frac{p+1}{k}\right] P$.
7: \quad Compute $z^{\prime} \leftarrow x^{3}+A x^{2}+x$.
8: \quad Set $X_{Q} \leftarrow s \cdot z^{\prime} \cdot X_{Q^{\prime}}, Z_{Q} \leftarrow \tilde{y}^{2} \cdot Z_{Q^{\prime}}$.
9: \quad Set $Q=\left(X_{Q}: Z_{Q}\right)$.
10: \quad for each $i \in S$ do
11: \quad Set $k \leftarrow k / \ell_{i}$ and compute $R \leftarrow[k] Q$. If $R=\infty$, skip this i.
12: \quad Compute $\phi: E_{A} \rightarrow E_{B}$ with kernel $\langle R\rangle$.
13: \quad Set $A \leftarrow B, Q \leftarrow \phi(Q)$, and $e_{i} \leftarrow e_{i}-s$.
14: return A.
This uses z in computation rather than just s, faults make us move outside set of curves.

Further information

- YouTube channel Tanja Lange: Post-quantum cryptography.
- Isogeny-based cryptography school.
- https://2017.pqcrypto.org/school: PQCRYPTO summer school with 21 lectures on video, slides, and exercises.
- https://2017.pqcrypto.org/exec and https://pqcschool.org/index.html: Executive school (less math, more perspective).
- https://pqcrypto.org our overview page.
- ENISA report on PQC, co-authored.
- https://pqcrypto.eu.org: PQCRYPTO EU Project.
- PQCRYPTO recommendations.
- Free software libraries (libpqcrypto, pqm4, pqhw).
- Many reports, scientific articles, (overview) talks.
- Quantum Threat Timeline from Global Risk Institute, 2019; 2021 update.
- Status of quantum computer development (by German BSI).
- NIST PQC competition.
- PQCrypto 2016, PQCrypto 2017, PQCrypto 2018, PQCrypto 2019, PQCrypto 2020, PQCrypto 2021, PQCrypto 2022 with many slides and videos online.

