S-unit attacks

Tanja Lange (with lots of slides from Daniel J. Bernstein)

Eindhoven University of Technology; Academia Sinica

11 August 2022 ANTS XV

Post-quantum cryptography

Cryptography under the assumption that the attacker has a quantum computer.

- 1994: Shor's quantum algorithm. 1996: Grover's quantum algorithm. Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.
- 2003: Daniel J. Bernstein introduces term Post-quantum cryptography.
- 2006: First International Workshop on Post-Quantum Cryptography. PQCrypto 2006, 2008, 2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.
- 2015: NIST hosts its first workshop on post-quantum cryptography.
- 2016: NIST announces a standardization project for post-quantum systems.
- 2017: Deadline for submissions to the NIST competition.
- 2019: Second round of NIST competition begins.
- 2020: Third round of NIST competition begins.
- 2021 2022 "not later than the end of March":

Post-quantum cryptography

Cryptography under the assumption that the attacker has a quantum computer.

- 1994: Shor's quantum algorithm. 1996: Grover's quantum algorithm. Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.
- 2003: Daniel J. Bernstein introduces term Post-quantum cryptography.
- 2006: First International Workshop on Post-Quantum Cryptography. PQCrypto 2006, 2008, 2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.
- 2015: NIST hosts its first workshop on post-quantum cryptography.
- 2016: NIST announces a standardization project for post-quantum systems.
- 2017: Deadline for submissions to the NIST competition.
- 2019: Second round of NIST competition begins.
- 2020: Third round of NIST competition begins.
- 2021 2022 "not later than the end of March": 05 Jul NIST announces first selections.
- 2022 $\rightarrow \infty$ NIST studies further systems.
- 2023/2024?: NIST issues post-quantum standards.

Major categories of public-key post-quantum systems

- **Code-based** encryption: McEliece cryptosystem has survived since 1978. Short ciphertexts and large public keys. Security relies on hardness of decoding error-correcting codes.
- **Hash-based** signatures: very solid security and small public keys. Require only a secure hash function (hard to find second preimages).
- **Isogeny-based** encryption: new kid on the block, promising short keys and ciphertexts and non-interactive key exchange. Security relies on hardness of finding isogenies between elliptic curves over finite fields.
- Lattice-based encryption and signatures: possibility for balanced sizes. Security relies on hardness of finding short vectors in some (typically special) lattice.
- **Multivariate-quadratic** signatures: short signatures and large public keys. Security relies on hardness of solving systems of multivariate equations over finite fields.

Warning: These are categories of mathematical problems; individual systems may be totally insecure if the problem is not used correctly.

We have a good algorithmic abstraction of what a quantum computer can do, but new systems need more analysis. Any extra structure offers more attack surface.

The winners:

- Kyber, a KEM based on structured lattices
- Dilithium, a signature scheme based on structured lattices
- Falcon, a signature scheme based on structured lattices
- SPHINCS+, a signature scheme based on

The winners:

- Kyber, a KEM based on structured lattices
- Dilithium, a signature scheme based on structured lattices
- Falcon, a signature scheme based on structured lattices
- SPHINCS+, a signature scheme based on hash functions

The winners:

- Kyber, a KEM based on structured lattices
- Dilithium, a signature scheme based on structured lattices
- Falcon, a signature scheme based on structured lattices
- SPHINCS+, a signature scheme based on hash functions

This is an odd choice, given that KEMs are most urgently needed to ensure long-term confidentiality.

The winners:

- Kyber, a KEM based on structured lattices
- Dilithium, a signature scheme based on structured lattices
- Falcon, a signature scheme based on structured lattices
- SPHINCS+, a signature scheme based on hash functions

This is an odd choice, given that KEMs are most urgently needed to ensure long-term confidentiality.

Schemes advancing to round 4, so maybe more winners later:

- BIKE, a KEM based on codes
- Classic McEliece, a KEM based on codes
- HQC, a KEM based on codes
- SIKE, a KEM based on isogenies (see psych session yesterday)

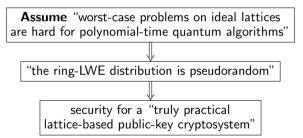
Lattice-based cryptography

1998 (ANTS-III) Hoffstein, Pipher, and Silverman introduce NTRU, working in ring $\mathbf{Z}[x]/(x^m - 1)$ (modulo q and modulo 3)

Lattice-based cryptography

1998 (ANTS-III) Hoffstein, Pipher, and Silverman introduce NTRU, working in ring $\mathbf{Z}[x]/(x^m - 1)$ (modulo q and modulo 3)

2010 Lyubashevsky, Peikert, and Regev "introduce" Ring-LWE and prove "very strong hardness guarantees"



Concrete parameters in cryptosystems are chosen assuming much more than polynomial hardness.

Typical structured lattices

NTRU uses $\mathbf{Z}[x]/(x^m - 1)$ for prime *m*.

Typical structured lattices

NTRU uses $\mathbf{Z}[x]/(x^m - 1)$ for prime *m*.

The winners all use 2-power cyclotomics: Define $R = \mathbb{Z}[x]/(x^n + 1)$ for some $n \in \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...\}$. From now on consider this case.

Ideal-SVP Given a nonzero ideal $I \subseteq R$, find a "short" nonzero element $g \in I$.

Ideal I is given by basis $v_1, v_2, \ldots, v_n \in R$ such that $I = \mathbf{Z}v_1 + \mathbf{Z}v_2 + \cdots + \mathbf{Z}v_n$.

Typical structured lattices

NTRU uses $\mathbf{Z}[x]/(x^m - 1)$ for prime *m*.

The winners all use 2-power cyclotomics: Define $R = \mathbb{Z}[x]/(x^n + 1)$ for some $n \in \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...\}$. From now on consider this case.

Ideal-SVP Given a nonzero ideal $I \subseteq R$, find a "short" nonzero element $g \in I$.

Ideal I is given by basis $v_1, v_2, \ldots, v_n \in R$ such that $I = \mathbf{Z}v_1 + \mathbf{Z}v_2 + \cdots + \mathbf{Z}v_n$.

E.g. for
$$n = 4$$

 $v_1 = x^3 + 817$ \longrightarrow $g = 2v_1 + 3v_2 - 5v_3 - 2v_4$
 $v_2 = x^2 + 540$ this needs work $= 2x^3 + 3x^2 - 5x + 1$
 $v_3 = x + 247$
 $v_4 = 1009$

817	0	0	1
540	0	1	0
247	1	0	0
1009	0	0	0

817	0	0	1
540	0	1	0
247	1	0	0
192	0	0	-1

277	0	-1	1
540	0	1	0
247	1	0	0
192	0	0	-1

277	0	-1	1
263	0	2	-1
247	1	0	0
192	0	0	-1

14	0	-3	2
263	0	2	-1
247	1	0	0
192	0	0	-1

14	0	-3	2
16	-1	2	-1
247	1	0	0
192	0	0	-1

14	0	-3	2
16	-1	2	-1
55	1	0	1
192	0	0	-1

14	0	-3	2
16	-1	2	-1
55	1	0	1
137	-1	0	-2

14	0	-3	2
16	-1	2	-1
55	1	0	1
82	-2	0	-3

14	0	-3	2
16	-1	2	-1
55	1	0	1
27	-3	0	-4

14	0	-3	2
16	-1	2	-1
28	4	0	5
27	-3	0	-4

14	0	-3	2
16	-1	2	-1
1	7	0	9
27	-3	0	-4

14	0	-3	2
16	-1	2	-1
1	7	0	9
11	-2	-2	-3

14	0	-3	2
2	-1	5	-3
1	7	0	9
11	-2	-2	-3

3	2	-1	5
2	-1	5	-3
1	7	0	9
11	-2	-2	-3

3	2	-1	5
2	-1	5	-3
2 1	7	0	9
9	-1	-7	0

3	2	-1	5
2	-1	5	-3
-5	3	2	-1
-1	5	-3	-2

But this doesn't reach "short" when *n* is large.

Lower bound on shortest nonzero element

Let $K = \mathbf{Q}(\zeta_{2n})$ and let $\iota_1, \iota_3, \ldots, \iota_{n-1}, \iota_{-1}, \ldots, \iota_{-(n-1)}$ be the embeddings of K into \mathbf{C} . For $z \in \mathbf{C}$ let $|z| = \sqrt{z \cdot \overline{z}}$.

Minkowski embedding:

Apply $\{\iota_1, \ldots, \iota_{n-1}, \iota_{-1}, \ldots, \iota_{-(n-1)}\}$ to the nonzero ideal $I \subseteq R = \mathbb{Z}[x]/(x^n + 1)$. Obtain an *n*-dim lattice of covolume $\sqrt{n^n} \cdot \#(R/I)$.

E.g.,
$$1009 \mapsto (1009, 1009, 1009);$$

 $x + 247 \mapsto (\zeta_8^1 + 247, \zeta_8^3 + 247, \zeta_8^{-3} + 247, \zeta_8^{-1} + 247);$
 $x^2 + 540 \mapsto (\zeta_8^2 + 540, \zeta_8^6 + 540, \zeta_8^{-6} + 540, \zeta_8^{-2} + 540);$
 $x^3 + 817 \mapsto (\zeta_8^3 + 817, \zeta_8^9 + 817, \zeta_8^{-9} + 817, \zeta_8^{-3} + 817);$
 $I \hookrightarrow 4$ -dim lattice of covolume $4^{4/2} \cdot 1009 \approx 11.27^4;$

Lower bound on shortest nonzero element

Let $K = \mathbf{Q}(\zeta_{2n})$ and let $\iota_1, \iota_3, \ldots, \iota_{n-1}, \iota_{-1}, \ldots, \iota_{-(n-1)}$ be the embeddings of K into \mathbf{C} . For $z \in \mathbf{C}$ let $|z| = \sqrt{z \cdot \overline{z}}$.

Minkowski embedding:

Apply $\{\iota_1, \ldots, \iota_{n-1}, \iota_{-1}, \ldots, \iota_{-(n-1)}\}$ to the nonzero ideal $I \subseteq R = \mathbb{Z}[x]/(x^n + 1)$. Obtain an *n*-dim lattice of covolume $\sqrt{n^n} \cdot \#(R/I)$.

E.g.,
$$1009 \mapsto (1009, 1009, 1009);$$

 $x + 247 \mapsto (\zeta_8^1 + 247, \zeta_8^3 + 247, \zeta_8^{-3} + 247, \zeta_8^{-1} + 247);$
 $x^2 + 540 \mapsto (\zeta_8^2 + 540, \zeta_8^6 + 540, \zeta_8^{-6} + 540, \zeta_8^{-2} + 540);$
 $x^3 + 817 \mapsto (\zeta_8^3 + 817, \zeta_8^9 + 817, \zeta_8^{-9} + 817, \zeta_8^{-3} + 817);$
 $I \hookrightarrow 4$ -dim lattice of covolume $4^{4/2} \cdot 1009 \approx 11.27^4;$

Use this to bound length of $g \in I - \{0\}$ with $\prod_{\iota} |\iota(g)| = \#(R/g) \ge \#(R/I)$ so $||g||_2 = \sqrt{\sum_{\iota} |\iota(g)|^2} \ge \sqrt{n} (\prod_{\iota} |\iota(g)|)^{1/n} \ge \sqrt{n} \#(R/I)^{1/n} = (\text{covol } I)^{1/n}.$ In our example $g = 2x^3 + 3x^2 - 5x + 1 \mapsto (2\zeta_8^3 + 3\zeta_8^2 - 5\zeta_8 + 1, 2\zeta_8^3 + 3\zeta_8^2 - 5\zeta_8^{-3} + 1, 2\zeta_8^{-3} + 3\zeta_8^{-2} - 5\zeta_8^{-1} + 1)$ $||g||_2 = \sqrt{4}\sqrt{2^2 + 3^2} + 5^2 + 1 \approx 12.49 > 11.27.$

Tanja Lange

Upper bound on shortest nonzero element

1889 Minkowski "geometry of numbers" implies

$$||g||_2 \le 2(n/2)!^{1/n} \pi^{-1/2} (\text{covol } I)^{1/n}$$

for some $g \in I - \{0\}$, i.e., some nonzero $g \in I$ has

$$\eta = \frac{||g||_2}{(\text{covol } I)^{1/n}} \le 2(n/2)!^{1/n} \pi^{-1/2},$$

where η is called the "Hermite factor".

E.g.
$$n = 4$$
: $\eta \le 1.35$. $n = 512$: $\eta \le 11.03$.
Have $2(n/2)!^{1/n}\pi^{-1/2} \approx \sqrt{2n/e\pi}$ for large n .

This shows that very short elements exist. But can we find them?

Performance of known algorithms

Algorithm input: nonzero ideal $I \subseteq R = \mathbb{Z}[x]/(x^n + 1)$. Output: nonzero $g = g_0 + \dots + g_{n-1}x^{n-1} \in I$ with $(g_0^2 + \dots + g_{n-1}^2)^{1/2} = \eta \cdot (\#(R/I))^{1/n}$.

Algorithms using only additive structure of *I*:

- LLL (fast):
- BKZ-80 (not hard):
- BKZ-160 (public attack):
- BKZ-300 (large-scale attack):

BKZ- β repeatedly computes a shortest basis in a lattice of dimension β . Quality and cost increae with β .

These algorithms work for arbitrary lattices. Can we do better using ideal structure?

$$\begin{split} &\eta^{1/n}\approx 1.022.\\ &\eta^{1/n}\approx 1.010.\\ &\eta^{1/n}\approx 1.007.\\ &\eta^{1/n}\approx 1.005. \end{split}$$

Notation for infinite places of $K = \mathbf{Q}[x]/(x^n + 1)$

Define $\zeta_m = \exp(2\pi i/m) \in \mathbf{C}$ for nonzero $m \in \mathbf{Z}$. For any $c \in 1 + 2\mathbf{Z}$ have $(\zeta_{2n}^c)^n + 1 = 0$ so there is a unique ring morphism $\iota_c: K \to \mathbf{C}$ taking x to $\zeta_{2\pi}^c$ All $x^n + 1$ roots in **C**: $\zeta_{2n}^1, \ldots, \zeta_{2n}^{n-1}, \zeta_{2n}^{-(n-1)}, \ldots, \zeta_{2n}^{-1}$ All $\iota: K \to \mathbf{C}: \iota_1, \ldots, \iota_{n-1}, \iota_{-(n-1)}, \ldots, \iota_{-1}$. Define $|g|_{c} = |\iota_{c}(g)|^{2} = \iota_{c}(g)\iota_{-c}(g)$. The maps $g \mapsto |g|_c$ are the **infinite places** of K. All places: $g \mapsto |g|_1, g \mapsto |g|_3, \dots, g \mapsto |g|_{n-1}$. Same as: $g \mapsto |g|_{-1}, g \mapsto |g|_{-3}, \dots, g \mapsto |g|_{-n-1}$. ----

$$\sum_{c \in \{1,3,\ldots,n-1\}} |g_0 + \cdots + g_{n-1} x^{n-1}|_c = \frac{n}{2} (g_0^2 + \cdots + g_{n-1}^2).$$

Notation for finite places of $K = \mathbf{Q}[x]/(x^n + 1)$

Nonzero ideals of R factor into prime ideals.

For each nonzero prime ideal P of R, define

 $|g|_P = \#(R/P)^{-\operatorname{ord}_P g}.$

"Norm of *P*" is #(R/P). The maps $g \mapsto |g|_P$ are the **finite places** of *K*.

For each prime number *p*:

Factor $x^n + 1$ in $\mathbf{F}_p[x]$ to see the prime ideals of R containing p.

E.g. p = 2: Prime ideal 2R + (x + 1)R = (x + 1)R.

E.g. "unramified degree-1 primes": $p \in 1 + 2n\mathbf{Z} \Rightarrow \text{exactly } n \text{ nth roots } r_1, \ldots, r_n \text{ of } -1 \text{ in } \mathbf{F}_p.$ $x^n + 1 = (x - r_1)(x - r_2) \ldots (x - r_n) \text{ in } \mathbf{F}_p[x].$ Prime ideals $pR + (x - r_1)R, \ldots, pR + (x - r_n)R.$ Notation for places $g \mapsto |g|_v$ for, e.g., n = 4, $R = \mathbf{Z}[x]/(x^4 + 1)$

$$g = g_0 + g_1 x + g_2 x^2 + g_3 x^3, \qquad \zeta_8 = \exp(2\pi i/8):$$

$$\iota_{-1}(g) = g_0 + g_1 \zeta_8^{-1} + g_2 \zeta_8^{-2} + g_3 \zeta_8^{-3};$$

$$\iota_1(g) = g_0 + g_1 \zeta_8 + g_2 \zeta_8^2 + g_3 \zeta_8^3; \qquad |g|_1 = |\iota_1(g)|^2.$$

$$\iota_{-3}(g) = g_0 + g_1 \zeta_8^{-3} + g_2 \zeta_8^{-6} + g_3 \zeta_8^{-9};$$

$$\iota_3(g) = g_0 + g_1 \zeta_8^3 + g_2 \zeta_8^6 + g_3 \zeta_8^9; \qquad |g|_3 = |\iota_3(g)|^2.$$

$$P_{17,2} = 17R + (x - 2)R:$$

$$P_{17,8} = 17R + (x - 8)R:$$

$$P_{17,-8} = 17R + (x + 8)R:$$

$$P_{17,-2} = 17R + (x + 2)R:$$

$$P_{41,3} = 41R + (x - 3)R:$$
etc.

$$\begin{split} |g|_{17,2} &= 17^{-\text{ord}_{P_{17,2}}g}, \\ |g|_{17,8} &= 17^{-\text{ord}_{P_{17,8}}g}, \\ g|_{17,-8} &= 17^{-\text{ord}_{P_{17,-8}}g}, \\ g|_{17,-2} &= 17^{-\text{ord}_{P_{17,-2}}g}, \\ |g|_{41,3} &= 41^{-\text{ord}_{P_{41,3}}g}. \end{split}$$

S-units of $K = \mathbf{Q}[x]/(x^n + 1)$

Assume $\infty \subseteq S \subseteq \{ \text{places of } K \}$. Useful special case: *S* has all primes $\leq y$ for some *y*. [Warning: Often people rename $S - \infty$ as *S*.]

$$g \in K^* \text{ is an } \boldsymbol{S}\text{-unit} \quad \Leftrightarrow \quad gR = \prod_{P \in S} P^{e_P} \text{ for some } e_P$$
$$\Leftrightarrow \quad |g|_v = 1 \text{ for all } v \in \{\text{places of } K\} - S$$
$$\Leftrightarrow \quad \text{the vector } v \mapsto \log|g|_v \text{ is 0 outside } S$$

S-unit lattice: set of such vectors $v \mapsto \log |g|_v$.

E.g. Temporarily allowing
$$n = 1$$
, $K = \mathbf{Q}$:
{ $\{\infty, 2, 3\}$ -units in $\mathbf{Q}\} = \pm 2^{\mathbf{Z}}3^{\mathbf{Z}}$. ("3-smooth".)
Lattice: $(\log 2, -\log 2, 0)\mathbf{Z} + (\log 3, 0, -\log 3)\mathbf{Z}$.

Special case: unit attacks

- 0. Define $S = \infty$. { ∞ -units of K} = {units of R} = R^* .
- 1. Input a nonzero ideal I of R.
- 2. Find a generator of *I*: some *g* with gR = I.
- 3. Find a unit u "close to g".
- 4. Output g/u.

This assumes R^* is known and I is principal.

Quality of the output:

How small is g/u compared to *I*?

Most cryptosystems require approx SVP to be hard.

History: 2014 Bernstein: this is "reasonably well known among computational algebraic number theorists" and is a threat to lattice-based cryptography. 2014 Campbell–Groves–Shepherd: exploit cyclotomic units to break a lattice-based system

from 2009 Gentry. Assume finding g with quantum algorithm.

2015 Cramer-Ducas-Peikert-Regev: asymptotic analysis of 2014 algorithm.

S-unit attacks

- 0. Choose a finite set S of places.
- 1. Input a nonzero ideal I of R.
- 2. Find an S-generator of I: some g with $gR = I \prod_{P \in S} P^{e_P}$.
- 3. Find an S-unit u "close to g/I". This is an S-unit-lattice close-vector problem.
- 4. Output g/u.

Step 2 has a poly-time quantum algorithm from 2016 Biasse–Song, building on unit-group algorithm from 2014 Eisenträger–Hallgren–Kitaev–Song. Also has non-quantum algorithms running in subexponential time, assuming standard heuristics; for analysis and speedups see 2014 Biasse–Fieker.

Critical for Step 3 speed: constructing short vectors in the S-unit lattice.

History: 2015 Bernstein: apply unit attacks to close principal multiple of *I*. 2016 Bernstein: *S*-unit attacks.

2017 Cramer–Ducas–Wesolowski: use cyclotomic structure in finding close principal multiples; more analysis in 2019 Ducas–Plançon–Wesolowski.

2019 Pellet-Mary-Hanrot-Stehlé: first analysis of S-unit attacks.

See also 2020 Bernard-Roux-Langlois, 2021 Bernard-Lesavourey-Nguyen-Roux-Langlois.

 $\pm 1, \pm x, \pm x^2, \dots, \pm x^{n-1} = \mp 1/x$ are units.

$$\pm 1, \pm x, \pm x^2, \dots, \pm x^{n-1} = \mp 1/x$$
 are units.
 $(1-x^3)/(1-x) = 1 + x + x^2 \in R.$
This is a unit since $(1-x)/(1-x^3) =$

 $\pm 1, \pm x, \pm x^2, \dots, \pm x^{n-1} = \mp 1/x \text{ are units.}$ $(1-x^3)/(1-x) = 1 + x + x^2 \in R.$ This is a unit since $(1-x)/(1-x^3) = (1-x^{2n^2+1})/(1-x^3) \in R.$ For $c \in 1+2\mathbb{Z}$: R has automorphism $\sigma_c : x \mapsto x^c.$ $\sigma_c(1+x+x^2) = 1 + x^c + x^{2c} \text{ is a unit.}$ Useful to symmetrize: define $u_c = 1 + x^c + x^{-c}.$

 $\pm 1, \pm x, \pm x^2, \dots, \pm x^{n-1} = \mp 1/x \text{ are units.}$ $(1 - x^3)/(1 - x) = 1 + x + x^2 \in R.$ This is a unit since $(1 - x)/(1 - x^3) = (1 - x^{2n^2+1})/(1 - x^3) \in R.$ For $c \in 1 + 2\mathbf{Z}$: R has automorphism $\sigma_c : x \mapsto x^c$. $\sigma_c(1 + x + x^2) = 1 + x^c + x^{2c}$ is a unit. Useful to symmetrize: define $u_c = 1 + x^c + x^{-c}$. $x^{\mathbf{Z}} \prod_c u_c^{\mathbf{Z}}$ has finite index in R^* . Index is called h^+ . Assume $h^+ = 1$. Proven, assuming GRH, for $n \in \{2, 4, 8, \dots, 256\}$; see 2014 Miller. Heuristics say true for all powers of 2; see 2004 Buhler–Pomerance–Robertson, 2015 Miller.

Unit lattice for n = 8

$$\begin{split} |u_1|_1 &= |1 + \zeta_{16} + \zeta_{16}^{-1}|^2 \approx \exp 2.093. \\ |u_1|_3 &= |1 + \zeta_{16}^3 + \zeta_{16}^{-3}|^2 \approx \exp 1.137. \\ |u_1|_5 &= |1 + \zeta_{16}^5 + \zeta_{16}^{-5}|^2 \approx \exp -2.899. \\ |u_1|_7 &= |1 + \zeta_{16}^7 + \zeta_{16}^{-7}|^2 \approx \exp -0.330. \end{split}$$

Define

 $\log_{\infty} f = (\log |f|_1, \log |f|_3, \log |f|_5, \log |f|_7).$

 $\begin{array}{l} {\sf Log}_{\infty} \ u_1 \approx (2.093, 1.137, -2.899, -0.330). \\ {\sf Log}_{\infty} \ u_3 \approx (1.137, -0.330, 2.093, -2.899). \\ {\sf Log}_{\infty} \ u_5 \approx (-2.899, 2.093, -0.330, 1.137). \\ {\sf Log}_{\infty} \ u_7 \approx (-0.330, -2.899, 1.137, 2.093). \end{array}$

 $Log_{\infty} R^*$ is lattice of dim n/2 - 1 = 3 in hyperplane

$$\{(\ell_1,\ell_3,\ell_5,\ell_7)\in \mathbf{R}^4: \ell_1+\ell_3+\ell_5+\ell_7=0\}.$$

Short lattice basis: $Log_{\infty} u_1$, $Log_{\infty} u_3$, $Log_{\infty} u_5$.

Reducing modulo units

Assume *I* is principal. Start with generator $g = g_0 + g_1 x + \dots + g_{n-1} x^{n-1}$ of *I*. Compute $\text{Log}_{\infty} g = (\log |g|_1, \log |g|_3, \dots, \log |g|_{n-1}).$

Replacing g with gu replaces $|g|_c$ with $|g|_c|u|_c$. Easy to track $||g||_2^2 = \sum_c |g|_c = (n/2)(g_0^2 + \cdots + g_{n-1}^2)$.

Reducing modulo units

Assume *I* is principal. Start with generator $g = g_0 + g_1 x + \dots + g_{n-1} x^{n-1}$ of *I*. Compute $\text{Log}_{\infty} g = (\log |g|_1, \log |g|_3, \dots, \log |g|_{n-1}).$

Replacing g with gu replaces $|g|_c$ with $|g|_c|u|_c$. Easy to track $||g||_2^2 = \sum_c |g|_c = (n/2)(g_0^2 + \cdots + g_{n-1}^2)$.

Try to reduce $\log_{\infty} g$ modulo unit lattice: Adjust $\log_{\infty} g$ by subtracting vectors from $\log_{\infty}(R^*)$. Actually, precompute some combinations of basis vectors and subtract closest vector within this set;

repeat several times; keep smallest $g_0^2 + \cdots + g_{n-1}^2$.

Note that unit hyperplane is orthogonal to norm: $\#(R/I) = \#(R/g) = \prod_c |g|_c = \exp \sum_c \log |g|_c.$

Experiments for small n

Geometric average of $\eta^{1/n}$ over 100000 experiments:

п	Model	Attack	Tweak	Shortest
4	1.01516	1.01518	1.01518	1.01518
8	1.01968	1.01972	1.01696	1.01696
16	1.01861	1.01860	1.01628	1.01627

"Shortest": Take *I*, find a shortest nonzero vector *g*, output $\eta = (g_0^2 + \dots + g_{n-1}^2)^{1/2} / \# (R/I)^{1/n}$. [Assuming BKZ-*n* software produces shortest nonzero vector.]

"Attack": Same I, find a generator, reduce mod unit lattice $\rightarrow g$, output $(g_0^2 + \cdots + g_{n-1}^2)^{1/2} / \# (R/I)^{1/n}$.

"Model": Take a hyperplane point, reduce mod unit lattice $\rightarrow \log_{\infty} g$, output $(g_0^2 + \cdots + g_{n-1}^2)^{1/2}$.

"Tweak": Multiply by x + 1, reduce, repeat for $I, (x + 1)I, (x + 1)^2I, (x + 1)^3I, (x + 1)^4I, ...$ Often $(x + 1)^e g$ is closer to unit lattice than g. (This is including a finite place of norm 2 in S.)

Nice S-units for cyclotomics (as in this talk)

Can use Gauss sums and Jacobi sums.

For details and more credits see 2021 talk given by Bernstein at SIAM-AG.

For each prime number $p \in 1 + 2n\mathbb{Z}$, and each group morphism $\chi : \mathbf{F}_p^* \to \zeta_{2n}^{\mathbb{Z}}$, define

$$\mathsf{Gauss}\Sigma_{\rho}(\chi) = \sum_{a \in \mathbf{F}_{\rho}^{*}} \chi(a) \zeta_{\rho}^{a}$$

Then $Gauss \Sigma_p(\chi)$ is an S-unit for $S = \infty \cup p$.

E.g.
$$n = 16$$
, $\zeta_{2n} = \zeta_{32}$, $p = 97 \in 1 + 2n\mathbb{Z}$:
There is a morphism $\chi : \mathbb{F}_{97}^* \to \zeta_{32}^{\mathbb{Z}}$ with $\chi(5) = \zeta_{32}$.
 $Gauss\Sigma_p(\chi) = \zeta_{32}^0 \zeta_{97}^1 + \zeta_{32}^1 \zeta_{97}^5 + \zeta_{32}^2 \zeta_{97}^{25} + \cdots$.
 $Gauss\Sigma_p(\chi^2) = \zeta_{32}^0 \zeta_{97}^1 + \zeta_{32}^2 \zeta_{97}^5 + \zeta_{32}^4 \zeta_{97}^{25} + \cdots$.

Stickelberger and augmented Stickelberger lattices used in 2019 Ducas–Plançon–Wesolowski are exponent vectors in factorizations of (some) ratios of Gauss sums.

Tanja Lange

Traditional method to find S-units: filtering

Take random small element $u \in R$: e.g. $u = x^{31} - x^{41} + x^{59} + x^{26} - x^{53}$.

- Does #(R/u) factor into primes ≤y? Needs fast computation of norms and factorization. See Bernstein's talk tomorrow.
- 2. Is u an S-unit for $S = \infty \cup \{P : \#(R/P) \le y\}$?

Small primes \Rightarrow fast non-quantum factorization. [Helpful speedups: almost always $\#(R/P) \in 1 + 2n\mathbb{Z}$. Batch factorization.]

Standard heuristics $\Rightarrow y^{2+o(1)}$ choices of *u* include $y^{1+o(1)}$ *S*-units, spanning all *S*-units, for

- appropriate $n^{1/2+o(1)}$ choice for log y,
- appropriate $n^{1/2+o(1)}$ choice for $\sum_i u_i^2$.

Total time $\exp(n^{1/2+o(1)})$.

Can tricks from NFS on extensions be applied to reach 1/3 + o(1)?

Automorphisms and subrings

Apply each σ_c to quickly amplify each u found into, typically, n independent S-units. What if u is invariant under (say) two σ_c ?

Automorphisms and subrings

Apply each σ_c to quickly amplify each u found into, typically, n independent S-units.

What if u is invariant under (say) two σ_c ? Great! Start with u from proper subrings. Makes #(R/u) much more likely to factor into small primes.

Examples of useful subrings of $R = \mathbf{Z}[x]/(x^n + 1)$:

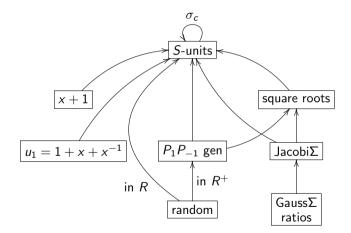
•
$$\mathbf{Z}[x^2]/(x^n+1) = \{u \in R : \sigma_{n+1}(u) = u\}.$$

•
$$R^+ = \{ u \in R : \sigma_{-1}(u) = u \}.$$

Also use subrings to speed up #(R/u) computation: see Bernstein's talk tomorrow.

Some rings (but not power-of-2 cyclotomics) have so many subrings that no other techniques are needed: see 2014 Bernstein, 2017 Bauch–Bernstein–de Valence–Lange–van Vredendaal, 2018 Biasse-van Vredendaal, 2020 Lesavourey–Plantard–Susilo, 2020 Biasse–Fieker–Hofmann–Page.

Overview: Constructing small S-units



Conjectured scalability: $\exp(n^{1/2+o(1)})$

Simple algorithm variant, skipping many speedups:

Take traditional log $y \in n^{1/2+o(1)}$. Take $S = \infty \cup \{P : \#(R/P) \le y\}$. Precompute

$$\{S$$
-unit $u \in R$: $\sum_i u_i^2 \leq n^{1/2+o(1)}\}$.

Conjectured scalability: $\exp(n^{1/2+o(1)})$

Simple algorithm variant, skipping many speedups:

Take traditional log $y \in n^{1/2+o(1)}$. Take $S = \infty \cup \{P : \#(R/P) \le y\}$. Precompute

$$\{S$$
-unit $u \in R$: $\sum_i u_i^2 \leq n^{1/2+o(1)}\}$.

To randomize, multiply *I* by some random primes in *S*. Can repeat $y^{O(1)}$ times. Compute *S*-generator *g* of *I* (quantum or classical).

Clear denominators: Multiply by generators of $P_c P_{-c}$ (this assumes $h^+ = 1$) \Rightarrow element of *I* that *S*-generates *I*.

Replace g with gu/v having log vector closest to I; repeat until stable \Rightarrow short element of I.

Heuristics $\Rightarrow \eta \le n^{1/2+o(1)}$, time $\exp(n^{1/2+o(1)})$. "Vector within ϵ of shortest in subexponential time."

Compare to typical cryptographic assumption: $\eta \leq n^{2+o(1)}$ is hard to reach.

Tanja Lange

Non-randomness of S-unit lattices

Number of points of a lattice L in a big ball $B \approx \frac{\text{vol } B}{\text{covol } L}$.

For almost all lattices L (1956 Rogers, ..., 2019 Strömbergsson–Södergren): If vol B = covol L then length of shortest nonzero vector in $L \approx \text{radius of } B$.

2016 Laarhoven: analogous heuristics for effectiveness of reduction via subtracting off short vectors from database. 2019 Pellet-Mary–Hanrot–Stehlé, 2021 Ducas–Pellet-Mary: Apply these heuristics to S-unit lattices \Rightarrow very small chance that previous slide works.

Non-randomness of S-unit lattices

Number of points of a lattice L in a big ball $B \approx \frac{\text{vol } B}{\text{covol } L}$.

For almost all lattices L (1956 Rogers, ..., 2019 Strömbergsson–Södergren): If vol B = covol L then length of shortest nonzero vector in $L \approx \text{radius of } B$.

2016 Laarhoven: analogous heuristics for effectiveness of reduction via subtracting off short vectors from database. 2019 Pellet-Mary–Hanrot–Stehlé, 2021 Ducas–Pellet-Mary: Apply these heuristics to S-unit lattices \Rightarrow very small chance that previous slide works.

But all of these heuristics provably fail for the lattice \mathbf{Z}^d . Are these accurate for *S*-unit lattices?

2021 Bernstein-Lange "Non-randomness of S-unit lattices": The standard length/reduction heuristics provably fail for S-unit lattices for (1) n = 1, any S; (2) each n as S grows (roughly what the previous slide uses); (3) minimal S, any n. See https://s-unit.attacks.cr.yp.to/spherical.html.

Evidence for the conjecture

For traditional log $y \in n^{1/2+o(1)}$, time budget $\exp(n^{1/2+o(1)})$: Standard smoothness heuristics \Rightarrow find short *S*-units spanning the *S*-unit lattice, as in 2014 Biasse–Fieker; and find *S*-generator of *I*.

Various quantifications of the behavior of *S*-unit lattices are much closer to \mathbf{Z}^d than to random lattices. Model reduction as \mathbf{Z}^d reduction \Rightarrow find short *S*-generator of *I*.

Full attack software now available: https://s-unit.attacks.cr.yp.to/filtered.html. Numerical experiments are consistent with the heuristics.

Ongoing work: attack speedups; more precise *S*-unit models and predictions; more numerical evidence for comparison to the models; other fast *S*-unit constructions, exploiting more cyclotomic structure.