Hash-based Signature, the Round-3 Candidate: SPHINCS+


Tanja Lange

Academia Sinica

Eindhoven University of Technology

Post-quantum cryptography forum 14 January 2022

Public-key signatures

- Prerequisite: Alice has a private key and public key
- Prerequisite: Everyone knows is belonging to Alice.
- Alice signs messages using , Other people verify using

Public-key signatures

- Prerequisite: Alice has a private key and public key
- ▶ Prerequisite: Everyone knows 🚮 as belonging to Alice.
- Alice signs messages using , Other people verify using
- Security goals: Integrity and authenticity.
- Nobody can produce signatures valid under without .
- Modifications to signed message get caught.

Tanja Lange

- A https://pac.ithome.com.tw
- iThon
 - Connection Security for pqc.ithome.com.tw

Verified by: TAIWAN-CA

More Information

第一屆後量子密碼論均 Post-quantum Cryptography Foru

活動資訊

國際講者

專業議程

相關報導

			<	C	onn	ect	ion	Se	cur	ity	for	pq	c.it	hor	ne.	con	n.tv	v					
1	•)	1	6		You	are	sec	ure	ly co	onn	ecte	ed t	o th	is s	ite.								
				1	Verit	fied	by:	TAI	WAI	N-C	A											/	•
									Mor	e In	forr	nat	ion										
																			a.				
																							•
							-											1.				-	-
								\$	K	~											R		5

· 🗳	Page Info — http	bs://pac.ithom	ne.com.tw/	
<u>G</u> eneral <u>I</u>	Aedia Permissions Secu	arity		
Website Id	entity			
Website:	pqc.ithome.com.tw			
Owner:	This website does not sup	ply ownership inform	nation.	
Verified by:	TAIWAN-CA			View Certificate
Expires on:	January 3, 2023			
Privacy & I	listory			
Have I visite	d this website prior to toda	y? Yes, once	e	
Is this websi computer?	te storing information on m	ny Yes, cookies	<u>Clear Cook</u>	ies and Site Data
Have I save	d any passwords for this we	ebsite? No	Vie <u>w</u>	Saved Passwords

Technical Details

Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 128 bit keys, TLS 1.2) The page you are viewing was encrypted before being transmitted over the Internet.

Encryption makes it difficult for unauthorized people to view information traveling between computers. It is therefore unlikely that anyone read this page as it traveled across the network.

Help

Certificate

*.ithome.com.tw	TWCA Secure SSL Certification TWCA Global F Authority CA
Subject Name	
Country	TW
State/Province	Taiwan
Locality	Taipei
Organization	ITHOME PUBLICATIONS INC.
Organizational Unit	
Common Name	*.ithome.com.tw
Issuer Name	
Country	TW
Organization	
Organizational Unit	
Common Name	TWCA Secure SSL Certification Authority
Validity Not Before Not After	Thu, 16 Dec 2021 08:43:55 GMT Tue, 03 Jan 2023 15:59:59 GMT
Subject Alt Names	
DNS Name	*.ithome.com.tw
DNS Name	ithome.com.tw
Public Key Info	
Algorithm	RSA
Key Size	2048
Exponent	
Modulus	C5:16:B9:74:75:83:F5:F4:37:6A:5F:27:A2:1B:6D:F9:AB:C5:8B:DC:D
Miscellaneous	
Serial Number	47:E5:00:00:00:04:EA:15:4A:58:85:C3:B1:2D:1A:51
Signature Algorithm	SHA-256 with RSA Encryption

Public Key Info

Algorithm	RSA
Key Size	2048
Exponent	65537
Modulus	C5:16:B9:74:75:83:F5:F4:37:6A:5F:27:A2:1B:6D:F9:AB:C5:8B:DC:D

Miscellaneous

47:E5:00:00:00:04:EA:15:4A:58:85:C3:B1:2D:1A:51
SHA-256 with RSA Encryption
3
PEM (cert) PEM (chain)

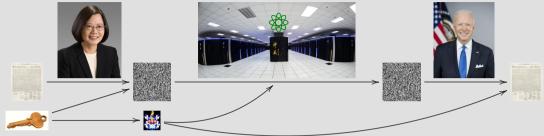
Fingerprints

SHA-256	BB:D8:99:8A:7B:9A:06:FE:81:A1:F2:18:92:1D:93:CB:62:1F:42:BE:36
SHA-1	8E:E3:DA:17:00:DD:4F:7C:89:1A:33:E3:C2:9C:C1:ED:C4:3F:87:6B

Post-quantum public-key signatures: hash-based

 Only one prerequisite: a good hash function, e.g. SHA3-512, ... Hash functions map long strings to fixed-length strings.
H: {0,1}* → {0,1}ⁿ.

Signature schemes use hash functions in handling



Old idea: 1979 Lamport one-time signatures;

1979 Merkle extends to more signatures.

Tanja Lange

Post-quantum public-key signatures: hash-based

 Only one prerequisite: a good hash function, e.g. SHA3-512, ... Hash functions map long strings to fixed-length strings. H: {0,1}* → {0,1}ⁿ.

Signature schemes use hash functions in handling

- Quantum computers affect the hardness only marginally (Grover, not Shor).
- Old idea: 1979 Lamport one-time signatures;

1979 Merkle extends to more signatures.

Tanja Lange

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s).

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s). Can only use once as s known after first use.

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s). Can only use once as s known after first use.

Extend to signing bit by having two values: Private key: 2 bit strings (s_0, s_1) , public key: $(H(s_0), H(s_1))$.

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s). Can only use once as s known after first use.

Extend to signing bit by having two values: Private key: 2 bit strings (s_0, s_1) , public key: $(H(s_0), H(s_1))$. To sign 0 reveal s_0 , to sign 1 reveal s_1 .

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s). Can only use once as s known after first use.

Extend to signing bit by having two values: Private key: 2 bit strings (s_0, s_1) , public key: $(H(s_0), H(s_1))$. To sign 0 reveal s_0 , to sign 1 reveal s_1 .

Lamport signs *m* via $H(m) = (h_0, h_1, \ldots, h_{255})$. Private key: 256 × 2 bit strings $\mathbf{s} = (s_{0,0}, s_{0,1}, s_{1,0}, s_{1,1}, \ldots, s_{255,0}, s_{255,1})$, public key: $\mathbf{p} = (H(s_{0,0}), H(s_{0,1}), H(s_{1,0}), H(s_{1,1}), \ldots, H(s_{255,0}), H(s_{255,1}))$. To sign *m* reveal $s_{0,h_0}, s_{1,h_1}, \ldots, s_{255,h_{255}}$.

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s). Can only use once as s known after first use.

Extend to signing bit by having two values: Private key: 2 bit strings (s_0, s_1) , public key: $(H(s_0), H(s_1))$. To sign 0 reveal s_0 , to sign 1 reveal s_1 .

Lamport signs *m* via $H(m) = (h_0, h_1, ..., h_{255})$. Private key: 256 × 2 bit strings $\mathbf{s} = (s_{0,0}, s_{0,1}, s_{1,0}, s_{1,1}, ..., s_{255,0}, s_{255,1})$, public key: $\mathbf{p} = (H(s_{0,0}), H(s_{0,1}), H(s_{1,0}), H(s_{1,1}), ..., H(s_{255,0}), H(s_{255,1}))$. To sign *m* reveal $s_{0,h_0}, s_{1,h_1}, ..., s_{255,h_{255}}$. Tradeoff: define public key as $H(\mathbf{p})$, also reveal rest of \mathbf{p} to sign, for short public key at expense of longer signature.

Idea: Use one-wayness of cryptographic hash function to authenticate. Private key: bit string s, public key: H(s). Can only use once as s known after first use.

Extend to signing bit by having two values: Private key: 2 bit strings (s_0, s_1) , public key: $(H(s_0), H(s_1))$. To sign 0 reveal s_0 , to sign 1 reveal s_1 .

Lamport signs *m* via $H(m) = (h_0, h_1, ..., h_{255})$. Private key: 256 × 2 bit strings $\mathbf{s} = (s_{0,0}, s_{0,1}, s_{1,0}, s_{1,1}, ..., s_{255,0}, s_{255,1})$, public key: $\mathbf{p} = (H(s_{0,0}), H(s_{0,1}), H(s_{1,0}), H(s_{1,1}), ..., H(s_{255,0}), H(s_{255,1}))$. To sign *m* reveal $s_{0,h_0}, s_{1,h_1}, ..., s_{255,h_{255}}$. Tradeoff: define public key as $H(\mathbf{p})$, also reveal rest of \mathbf{p} to sign, for short public key at expense of longer signature.

Winternitz achieves short public keys and signatures costing more calls to H.

On the fast track: stateful hash-based signatures

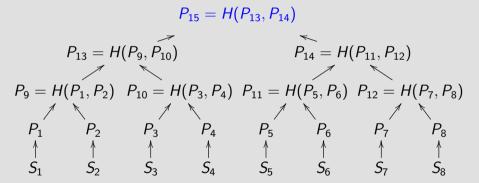
► CFRG has published 2 RFCs: RFC 8391 and RFC 8554

+	ет F	Datatracker	Groups	Documents	Meetings	Othe	r Usei	r
	Reque Categ	net Research st for Comme jory: Informa 2070-1721	nts: 839 tional				rsity	A. Huelsing TU Eindhoven D. Butin TU Darmstadt S. Gazdag genua GmbH J. Rijneveld Radboud University A. Mohaisen of Central Florida May 2018
•	ETF	Datatracker	Group	s Documei	nts Meeti	ings	Other	User
	Reque Categ	rnet Research est for Commo gory: Informa 2070-1721	ents: 8		TF)			D. McGrew M. Curcio S. Fluhrer Cisco Systems April 2019
			Leight	on-Micali	Hash-Bas	sed Si	ignatu	res

On the fast track: stateful hash-based signatures

- ► CFRG has published 2 RFCs: RFC 8391 and RFC 8554
- NIST has standardized the same two schemes.

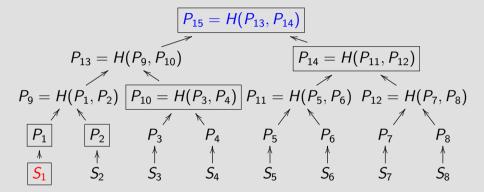
On the fast track: stateful hash-based signatures


- ► CFRG has published 2 RFCs: RFC 8391 and RFC 8554
- NIST has standardized the same two schemes.

 ISO SC27 JTC1 WG2 is working on standard for stateful hash-based signatures.

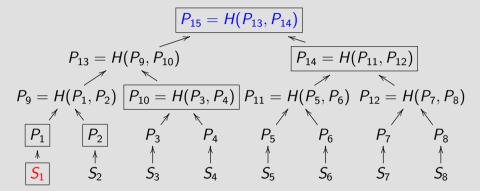
Merkle's (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key P_{15} .



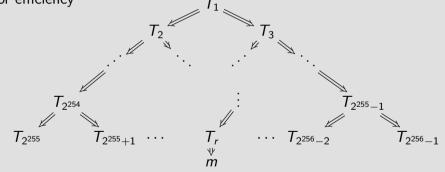
 $S_i \rightarrow P_i$ can be Lamport or Winternitz one-time signature system. Each such pair (S_i, P_i) may be used only once.

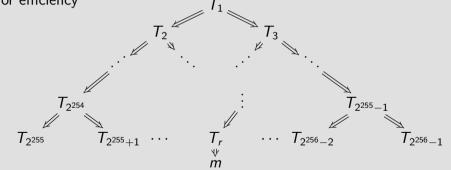
Tanja Lange


Signature in 8-time Merkle hash tree

Signature of first message: $(sign(m, S_1), P_1, P_2, P_{10}, P_{14})$.

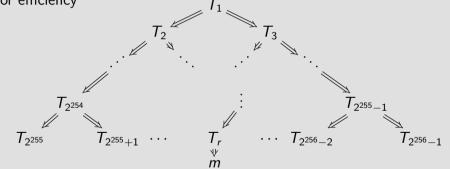
Signature in 8-time Merkle hash tree


Signature of first message: $(sign(m, S_1), P_1, P_2, P_{10}, P_{14})$.


Verify signature sign (m, S_1) with public key P_1 (provided in signature). Link P_1 against public key P_{15} by computing $P'_9 = H(P_1, P_2)$, $P'_{13} = H(P'_9, P_{10})$, and comparing $H(P'_{13}, P_{14})$ with P_{15} . Reject if $H(P'_{13}, P_{14}) \neq P_{15}$.

Tanja Lange

Huge trees (1987 Goldreich), keys on demand (Levin) Signer chooses random $r \in \{2^{255}, 2^{255} + 1, \dots, 2^{256} - 1\}$, uses one-time public key T_r to sign m; uses one-time public key T_i to sign (T_{2i}, T_{2i+1}) on path to T_1 . Generates *i*th secret key deterministically as $H_k(i)$ where k is master secret. Important for efficiency T_1



Huge trees (1987 Goldreich), keys on demand (Levin) Signer chooses random $r \in \{2^{255}, 2^{255} + 1, \dots, 2^{256} - 1\}$, uses one-time public key T_r to sign m; uses one-time public key T_i to sign (T_{2i}, T_{2i+1}) on path to T_1 . Generates *i*th secret key deterministically as $H_k(i)$ where k is master secret. Important for efficiency T_1

 T_i for small *i* gets used repeatedly (each time an *m* falls in that sub-tree)

Huge trees (1987 Goldreich), keys on demand (Levin) Signer chooses random $r \in \{2^{255}, 2^{255} + 1, \dots, 2^{256} - 1\}$, uses one-time public key T_r to sign m; uses one-time public key T_i to sign (T_{2i}, T_{2i+1}) on path to T_1 . Generates *i*th secret key deterministically as $H_k(i)$ where k is master secret. Important for efficiency T_1

 T_i for small *i* gets used repeatedly (each time an *m* falls in that sub-tree) but $H_k(i)$ being deterministic means it signs the same value, so no break.

Tanja Lange

Huge trees (1987 Goldreich), keys on demand (Levin) Signer chooses random $r \in \{2^{255}, 2^{255} + 1, \dots, 2^{256} - 1\}$, uses one-time public key T_r to sign m; uses one-time public key T_i to sign (T_{2i}, T_{2i+1}) on path to T_1 . Generates *i*th secret key deterministically as $H_k(i)$ where k is master secret. Important for efficiency and security. T_1

 T_i for small *i* gets used repeatedly (each time an *m* falls in that sub-tree) but $H_k(i)$ being deterministic means it signs the same value, so no break.

Tanja Lange

Hash-based Signature, the Round-3 Candidate: SPHINCS+

m

 $T_{2^{255}+1} \cdots T_r \cdots T_{2^{256}-2}$

NIST submission SPHINCS+

- Post-quantum signature based on hash functions.
- ► Requires only a secure hash function, no further assumptions.
- Based on ideas of Lamport (1979) and Merkle (1979).
- Developed starting from SPHINCS with
 - improve multi-signature,
 - smaller keys,
 - Option for shorter signatures (30kB instead of 41kB) if "only" 2⁵⁰ messages signed.
- Three versions (using different hash functions)
 - ► SPHINCS+-SHA3 (with SHAKE256),
 - ► SPHINCS+-SHA2 (with SHA-256),
 - ▶ SPHINCS+-Haraka (with Haraka, a hash function for short inputs).

More info at https://sphincs.org/.

See also my course page for more detailed videos and slides.

Tanja Lange