Isogeny-Based Cryptography

Tanja Lange (with lots of slides by Lorenz Panny)

Eindhoven University of Technology

20 & 21 July 2020

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Fundamental reason this works: \cdot^{a} and \cdot^{b} commute!

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

• • •

- b-2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - b. Publish $B \leftarrow t \cdot g$.

Is this a good idea?

	Bob		
1.	Set $t \leftarrow g$.		
2.	Set $t \leftarrow t \cdot g$.		
3.	Set $t \leftarrow t \cdot g$.		
4.	Set $t \leftarrow t \cdot g$.		
<i>b</i> -2.	Set $t \leftarrow t \cdot g$.		
<i>b</i> -1.	Set $t \leftarrow t \cdot g$.		
Ь.	Publish $B \leftarrow t \cdot g$.		

2. Set
$$t \leftarrow t \cdot g$$
. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
...
 $b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
 $b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
b. Set $t \leftarrow t \cdot g$. If $t = B$ return b .
 $b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$
 $b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$

Bob			
1.	Set $t \leftarrow g$.		
2.	Set $t \leftarrow t \cdot g$.		
3.	Set $t \leftarrow t \cdot g$.		
4.	Set $t \leftarrow t \cdot g$.		
-2.	Set $t \leftarrow t \cdot g$.		
-1.	Set $t \leftarrow t \cdot g$.		
Ь.	Publish $B \leftarrow t \cdot g$.		

Attacker Eve				
1.	Set $t \leftarrow g$.	If $t = B$ return 1.		
2.	Set $t \leftarrow t \cdot g$.	If $t = B$ return 2.		
3.	Set $t \leftarrow t \cdot g$.	If $t = B$ return 3.		
4.	Set $t \leftarrow t \cdot g$.	If $t = B$ return 3.		
<i>b</i> -2.	Set $t \leftarrow t \cdot g$.	If $t = B$ return $b-2$.		
<i>b</i> -1.	Set $t \leftarrow t \cdot g$.	If $t = B$ return $b-1$.		
Ь.	Set $t \leftarrow t \cdot g$.	If $t = B$ return b .		
<i>b</i> +1.	Set $t \leftarrow t \cdot g$.	If $t = B$ return $b + 1$.		
<i>b</i> +2.	Set $t \leftarrow t \cdot g$.	If $t = B$ return $b + 2$.		

Effort for both: O(#G). Bob needs to be smarter. (There also exist better attacks)

b b

multiply

Square-and-multiply

Reminder: DH in group with #G = 23. Bob computes g^{13} .

Square-and-multiply-and-square-and-multiply

Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange

Square-and-multiply-and-square-and-multiply-and-square-and-

Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange

Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange

Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange

Fast mixing: paths of length log(# nodes) to everywhere.

Exponential separation

Constructive computation:

With square-and-multiply, applying b takes $\Theta(\log_2 \# G)$.

Attack costs:

For well-chosen groups, recovering b takes $\Theta(\sqrt{\#G})$.

(For less-well chosen groups the attacks are faster.)

As

$$\sqrt{\#G} = 2^{0.5 \log_2 \#G}$$

attacks are exponentially harder.

Exponential separation until quantum computers come

Constructive computation:

With square-and-multiply, applying b takes $\Theta(\log_2 \# G)$.

Attack costs: For well-chosen groups, recovering b takes $\Theta(\sqrt{\#G})$.

(For less-well chosen groups the attacks are faster.)

As

$$\sqrt{\#G} = 2^{0.5 \log_2 \#G}$$

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor's algorithm quantumly computes b from g^b in any group in polynomial time.

Exponential separation until quantum computers come

Constructive computation:

With square-and-multiply, applying b takes $\Theta(\log_2 \# G)$.

Attack costs: For well-chosen groups, recovering *b* takes $\Theta(\sqrt{\#G})$.

(For less-well chosen groups the attacks are faster.)

As

$$\sqrt{\#G} = 2^{0.5 \log_2 \#G}$$

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor's algorithm quantumly computes b from g^b in any group in polynomial time. Isogeny graphs to the rescue!

• <u>Isogenies</u> are a source of exponentially-sized graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Topic of this lecture

► Isogenies are well-behaved maps between elliptic curves.

Topic of this lecture

- Isogenies are well-behaved maps between elliptic curves.
- → Isogeny graph: <u>Nodes are curves</u>, edges are isogenies.
 (We usually care about subgraphs with certain properties.)
- Isogenies give rise to post-quantum Diffie-Hellman (and more!)

Components of well-chosen isogeny graphs look like this:

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

At this time, there are two distinct families of systems:

CSIDH ['siːˌsaɪd]

Martin Minister . 10

(Castryck, Lange, Martindale, Panny, Renes; 2018)

Why CSIDH?

- Closest thing we have in PQC to normal DH key exchange: Keys can be reused, blinded; no difference between initiator &responder.
- Public keys are represented by some $A \in \mathbb{F}_p$; *p* fixed prime.
- Alice computes and distributes her public key A.
 Bob computes and distributes his public key B.
- Alice and Bob do computations on each other's public keys to obtain shared secret.
- ► Fancy math: computations start on some elliptic curve $E_A : y^2 = x^3 + Ax^2 + x$, use isogenies to move to a different curve.
- Computations need arithmetic (add, mult, div) modulo p and elliptic-curve computations.
Math slide #1: Elliptic curves (nodes)

An elliptic curve over \mathbb{F}_p is given by an equation

E:
$$y^2 = x^3 + ax + b$$
, with $4a^3 - 27b^2 \neq 0$.

A point P = (x, y) on E is a solution to this equation or the point ∞ at infinity.

Math slide #1: Elliptic curves (nodes)

An elliptic curve over \mathbb{F}_p is given by an equation

E:
$$y^2 = x^3 + ax + b$$
, with $4a^3 - 27b^2 \neq 0$.

A point P = (x, y) on E is a solution to this equation or the point ∞ at infinity.

E is an abelian group: we can "add" and "subtract" points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- ► The sum of $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ is $P_3 = (x_3, y_3) = (\lambda^2 x_1 x_2, \lambda(x_1 x_3) y_1)$

where $\lambda = (y_2 - y_1)/(x_2 - x_1)$ if $x_1 \neq x_2$ and $\lambda = (3x_1^2 + a)/(2y_1)$ if $P_1 = P_2 \neq -P_1$.

Takeaway: Computations in \mathbb{F}_p , some formulas. Other curve shapes, such as Montgomery curves $y^2 = x^3 + Ax^2 + x$ are faster.

Tanja Lange

Isogeny-Based Cryptography

An isogeny of elliptic curves is a non-zero map $E \to E'$

- given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$

- given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-m map

$$[m]\colon E\to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$

- given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$

- given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3:

$$(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$$

defines a degree-3 isogeny of the elliptic curves

$$\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$$

over \mathbb{F}_{71} . Its kernel is $\{(2,9), (2,-9), \infty\}$.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

▶ Walking "left" and "right" on any ℓ_i-subgraph is efficient.

- Choose some small odd primes $\ell_1, ..., \ell_n$.
- Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- ▶ Walking "left" and "right" on any ℓ_i-subgraph is efficient.
- We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.

Tanja Lange

Isogeny-Based Cryptography

Walking in the CSIDH graph

```
Taking a "positive" step on the \ell_i-subgraph.
```

- Find a point (x, y) ∈ E of order l_i with x, y ∈ F_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ F_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Taking a "negative" step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. This uses scalar multiplication by $(p+1)/\ell_i$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- Find a point (x, y) ∈ E of order l_i with x, y ∈ F_p. The order of any (x, y) ∈ E divides p + 1, so [(p + 1)/l_i](x, y) = ∞ or a point of order l_i. Sample a new point if you get ∞.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

Taking a "negative" step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. This uses scalar multiplication by $(p+1)/\ell_i$.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ (see next slide).

<u>Upshot:</u> With "x-only' arithmetic" everything happens over \mathbb{F}_p .

 \implies Efficient to implement!

Tanja Lange

Isogeny-Based Cryptography

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

¹(up to isomorphism of E')

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Math slide #3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in G live. \rightsquigarrow need to make sure extensions stay small for desired #G \rightsquigarrow this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on E; but $\#E(k) \ \#E/G(k)$.

¹(up to isomorphism of E')

"CSIDH: an efficient post-quantum <u>commutative group action</u>"

"CSIDH: an efficient post-quantum <u>commutative group action</u>"

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

"CSIDH: an efficient post-quantum <u>commutative group action</u>"

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

"CSIDH: an efficient post-quantum <u>commutative group action</u>"

Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each ℓ_i . Example: [+, +, -, -, -, +, -, -] just becomes $(+1, 0, -3) \in \mathbb{Z}^3$.

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

Many paths are "useless". Fun fact: Quotienting out trivial actions yields the ideal-class group $cl(\mathbb{Z}[\sqrt{-\rho}])$.

Math slide #4: Quadratic twists Not my fault ...

E'/k is a twist elliptic curve E''/k if E is isomorphic to E' over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

Math slide #4: Quadratic twists Not my fault ...

E'/k is a twist elliptic curve E''/k if E is isomorphic to E' over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

Picking (x, y) on E with $x \in \mathbb{F}_p$, $y \neq \mathbb{F}_p$ implicitly picks point in $E'(\mathbb{F}_p)$.
Math slide #4: Quadratic twists Not my fault ...

E'/k is a twist elliptic curve E''/k if E is isomorphic to E' over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

Picking (x, y) on E with $x \in \mathbb{F}_p$, $y \neq \mathbb{F}_p$ implicitly picks point in $E'(\mathbb{F}_p)$.

E' is not in the isogeny graph, does not have the right shape.

E' is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

Tanja Lange

Graphs of elliptic curves

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Graphs of elliptic curves

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Each E_A on the left has E_{-A} on the right. Negative direction means: flip to twist, go positive direction, flip back.

Tanja Lange

Isogeny-Based Cryptography

Math slide #5: Vélu's formulas

Let P have prime order ℓ on E_A . For $1 \le k < \ell$ let x_k be the x-coordinate of [k]P. Let $\tau = \prod_{i=1}^{\ell-1} x_i, \quad \sigma = \sum_{i=1}^{\ell-1} \left(x_i - \frac{1}{x_i} \right)$ Then the ℓ isogeny from E_A maps to E_B with $B = \tau(A - 3\sigma)$.

Main operation is to compute the x_k , just some elliptic-curve additions.

Note that $[\ell - k]P = -[k]P$ and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay) inversions.

Math slide #6: Class groups

Reminder: $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}$. All curves in X have \mathbb{F}_p -endomorphism ring $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$.

Let π the Frobenius endomorphism. Ideal in \mathcal{O} above ℓ_i .

$$\mathfrak{l}_i = (\ell_i, \pi - 1).$$

Moving + in X with ℓ_i isogeny \iff action of l_i on X.

Math slide #6: Class groups

Reminder: $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$ All curves in X have \mathbb{F}_p -endomorphism ring $\mathcal{O} = \mathbb{Z}[\sqrt{-p}].$

Let π the Frobenius endomorphism. Ideal in \mathcal{O} above ℓ_i .

$$\mathfrak{l}_i = (\ell_i, \pi - 1).$$

Moving + in X with ℓ_i isogeny \iff action of l_i on X.

More precisely: Subgroup corresponding to l_i is $E[l_i] = E(\mathbb{F}_p)[\ell_i]$. (Note that ker $(\pi - 1)$ is just the \mathbb{F}_p -rational points!)

Subgroup corresponding to $\overline{l_i}$ is

$$E[\overline{\mathfrak{l}_i}] = \{ P \in E[\ell_i] \mid \pi(P) = -P \}.$$

Math slide #6: Class groups

Reminder: $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$ All curves in X have \mathbb{F}_p -endomorphism ring $\mathcal{O} = \mathbb{Z}[\sqrt{-p}].$

Let π the Frobenius endomorphism. Ideal in \mathcal{O} above ℓ_i .

$$\mathfrak{l}_i = (\ell_i, \pi - 1).$$

Moving + in X with ℓ_i isogeny \iff action of l_i on X.

More precisely: Subgroup corresponding to l_i is $E[l_i] = E(\mathbb{F}_p)[\ell_i]$. (Note that ker $(\pi - 1)$ is just the \mathbb{F}_p -rational points!)

Subgroup corresponding to $\overline{l_i}$ is

$$E[\overline{\iota_i}] = \{P \in E[\ell_i] \mid \pi(P) = -P\}.$$

For Montgomery curves,

$$E[\overline{\mathfrak{l}_i}] = \{(x, y) \in E[\ell_i] \mid x \in \mathbb{F}_p; y \notin \mathbb{F}_p\} \cup \{\infty\}.$$

Tanja Lange

Isogeny-Based Cryptography

Math slide #7: Commutative group action

cl(O) acts on X. For most ideal classes the kernel is big and formulas are expensive to compute.

$$I = \mathfrak{l}_1^{10} \mathfrak{l}_2^{-7} \mathfrak{l}_3^{27}$$

is a "big" ideal, but we can compute the action iteratively.

 $\mathrm{cl}(\mathcal{O})$ is commutative² so we get a commutative group action..

The choice for CSIDH: Let $K = \{ [l_1^{e_1} \cdots l_n^{e_1}] \mid (e_1, ..., e_n) \text{ is 'short'} \} \subseteq cl(\mathcal{O}).$ The action of K on X is very efficient! Pick K as the keyspace

²Important to use the \mathbb{F}_p -endomorphism ring.

Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key exchange from a commutative group action $G \times S \rightarrow S$:

Why no Shor?

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x, y) \mapsto g^x \stackrel{\cdot}{\uparrow} h^y$$

For general group actions, we cannot compose x * s and y * (b * s).

For CSIDH this would require composing two elliptic curves in some form compatible with the action of G.

CSIDH security

<u>Core problem</u>:

Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Size of key space:

 About √p of all A ∈ 𝔽_p are valid keys. (More precisely #cl(ℤ[√−p]) keys.)

Without quantum computer:

 Meet-in-the-middle variants: Time O(⁴√p). (2016 Delfs–Galbraith)

CSIDH security

Core problem:

Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Size of key space:

 About √p of all A ∈ 𝔽_p are valid keys. (More precisely #cl(ℤ[√−p]) keys.)

Without quantum computer:

 Meet-in-the-middle variants: Time O(⁴√p). (2016 Delfs–Galbraith)

With quantum computer:

- Abellian hidden-shift algorithms apply (2014 Childs–Jao–Soukharev)
 - Kuperberg's algoirhtm has subexponential complexity.

CSIDH security:

Public-key validation:

Quickly check that $E_A: y^2 = x^3 + Ax^2 + x$ has p + 1 points.

Tanja Lange

Isogeny-Based Cryptography

CSIDH-512 https://csidh.isogeny.org/

Definition:

- $p = \prod_{i=1}^{74} \ell_i 1$ with ℓ_1, \dots, ℓ_{73} first 73 odd primes. $\ell_{74} = 587$.
- Exponents $-5 \le e_i \le 5$ for all $1 \le i \le 74$.

Sizes:

- ▶ Private keys: 32 bytes. (37 in current software for simplicity.)
- Public keys: 64 bytes (just one \mathbb{F}_p element).

Performance on typical Intel Skylake laptop core:

- Clock cycles: about $12 \cdot 10^7$ per operation.
- ► Somewhat more for constant-time implementations.

Security:

▶ Pre-quantum: at least 128 bits.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- $p = \prod_{i=1}^{74} \ell_i 1$ with ℓ_1, \dots, ℓ_{73} first 73 odd primes. $\ell_{74} = 587$.
- Exponents $-5 \le e_i \le 5$ for all $1 \le i \le 74$.

Sizes:

- ▶ Private keys: 32 bytes. (37 in current software for simplicity.)
- Public keys: 64 bytes (just one \mathbb{F}_p element).

Performance on typical Intel Skylake laptop core:

- Clock cycles: about $12 \cdot 10^7$ per operation.
- ► Somewhat more for constant-time implementations.

Security:

- ▶ Pre-quantum: at least 128 bits.
- Post-quantum: complicated. Recent work analyzing cost: see https://quantum.isogeny.org. Several papers analyzing Kuperberg. (2018 Biasse-lezzi-Jacobson, 2018-2020 Bonnetain-Schrottenloher, 2020 Peikert) https://csidh.isogeny.org/analysis.html

Tanja Lange

Isogeny-Based Cryptography

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical and quantum operations.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- The sieving phase has classical and quantum operations. How to compare costs?

(Is one qubit operation \approx one bit operation? a hundred? millions?)

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- The sieving phase has classical and quantum operations. How to compare costs?
 (Is one multi countries of one bit countries? a hundred? million?)

(Is one qubit operation \approx one bit operation? a hundred? millions?)

 \implies It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost $\exp((\log p)^{1/2+o(1)})!$ Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.

Tanja Lange

SIDH – avoid commutativity

The supersingular isogeny graph over \mathbb{F}_{p^2} looks differently.

Nodes are isomorphism classes of elliptic curves taken any extension field. (All isooprhism classes of supersingular elliptic curves defined over \mathbb{F}_{p^2}).

Tanja Lange

Isogeny-Based Cryptography

Promblem: quadratic twists are identified, $\ell+1$ isogenies of degree ℓ from any curve, no more sense of direction.

• Alice & Bob pick secret subgroups A and B of E.

- Alice & Bob pick secret subgroups A and B of E.
- ► Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)

- Alice & Bob pick secret subgroups A and B of E.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.

- Alice & Bob pick secret subgroups A and B of E.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

Promblem: quadratic twists are identified, $\ell+1$ isogenies of degree ℓ from any curve, no more sense of direction.

- Alice & Bob pick secret subgroups A and B of E.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice somehow obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret (E/B)/A' ≅ E/⟨A, B⟩ ≅ (E/A)/B'.
- ► Key is an isomorphism class; make this useable taking *j*-invariant.

Tanja Lange

Isogeny-Based Cryptography

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B .

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." Alice knows only A, Bob knows only φ_B .

- Alice picks A as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." Alice knows only A, Bob knows only φ_B .

<u>Solution</u>: φ_B is a group homomorphism!

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

Using images of P and Q also lets Alice keep direction in iterative computation of φ_{A} .

Tanja Lange

Isogeny-Based Cryptography

SIDH in one slide

Public parameters:

- ▶ large prime $p = 2^n 3^m 1$, supersingular E/\mathbb{F}_{p^2} with $(p+1)^2$ points.
- bases (P, Q) and (R, S) of E[2ⁿ] and E[3^m].
 Want these points defined over F_{p²} for efficiency.
 Parameter chioce ensures this. Recall E[k] ≅ Z/k × Z/k.

Alice	public	Bob
$ \stackrel{random}{\longleftarrow} \{02^n - 1\} $		$b \xleftarrow{random} \{03^m - 1\}$
$oldsymbol{A}:=\langle P+[oldsymbol{a}]Q angle$		$B := \langle R + [b]S angle$
compute $\varphi_A \colon E \to E/A$		compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(R), \varphi_A(S)$		$E/B, \varphi_B(P), \varphi_B(Q)$
$A' := \langle \varphi_B(P) + [\mathbf{a}] \varphi_B(Q) \rangle$ $s := j((E/B)/A')$		$B' := \langle \varphi_{\mathbf{A}}(R) + [b]\varphi_{\mathbf{A}}(S) \rangle$ $s := j((E/\mathbf{A})/B')$

In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.

In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.

!! Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.

- In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i := [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

- → Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.
 - BTW: The choice of p makes sure everything stays over \mathbb{F}_{p^2} .

Security of SIDH

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Each secret isogeny φ_A, φ_B is a walk of about $\log p/2$ steps. Alice & Bob can choose from about \sqrt{p} secret keys each, so their keys are in small corners of the key space.

Security of SIDH

```
The SIDH graph has size \lfloor p/12 \rfloor + \varepsilon.
Each secret isogeny \varphi_A, \varphi_B is a walk of about \log p/2 steps.
Alice & Bob can choose from about \sqrt{p} secret keys each,
so their keys are in small corners of the key space.
```

<u>Classical</u> attacks:

- ► Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.
Security of SIDH

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Each secret isogeny φ_A, φ_B is a walk of about $\log p/2$ steps. Alice & Bob can choose from about \sqrt{p} secret keys each, so their keys are in small corners of the key space.

<u>Classical</u> attacks:

- ► Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

► Claw finding: claimed $\tilde{\mathcal{O}}(p^{1/6})$. 2019 Jaques–Schank: $\tilde{\mathcal{O}}(p^{1/4})$:

"An adversary with enough quantum memory to run Tani's algorithm with the query-optimal parameters could break SIKE faster by using the classical control hardware to run van Oorschot–Wiener."

► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1: [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1: [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

 \implies Bob learns the parity of *a*.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1:
 [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

 \implies Bob learns the parity of *a*.

Similarly, he can completely recover a in O(n) queries.

- ► Recall: Bob sends P' := φ_B(P) and Q' := φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' := Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1:
 [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

 \implies Bob learns the parity of *a*.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is \approx as hard as breaking SIDH.

 \implies only usable with ephemeral keys or as a KEM "SIKE.".

Tanja Lange

Comparison & open problems

Key bits where all known attacks take 2^{λ} operations (naive serial attack metric, ignoring memory cost):

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36+o(1))\lambda$
compressed	$(14 + o(1))\lambda$	$(21+o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear
ECDH	$(2+o(1))\lambda$	exponential

- What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?
- How is attack affected by occasional errors and non-uniform distributions over the group?

Comparison & open problems

Key bits where all known attacks take 2^{λ} operations (naive serial attack metric, ignoring memory cost):

	pre-quantum	post-quantum
	$(24 \pm o(1)))$	(26 + o(1)))
SIDH, SIKE	$(24 + 0(1))\lambda$	(30 + 0(1))
compressed	$(14 + o(1))\lambda$	$(21 + o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear
ECDH	$(2+o(1))\lambda$	exponential

- What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- How expensive is each CSIDH query? See our 2019 Eurocrypt paper—full 56-page version at https://quantum.isogeny.org/ with detailed analysis and many optimizations.

Comparison & open problems

Key bits where all known attacks take 2^{λ} operations (naive serial attack metric, ignoring memory cost):

	pre-quantum	post-quantum
	$(24 \pm o(1)))$	(26 + o(1)))
SIDH, SIKE	$(24 + 0(1))\lambda$	(30 + 0(1))
compressed	$(14 + o(1))\lambda$	$(21 + o(1))\lambda$
CRS, CSIDH	$(4+o(1))\lambda$	superlinear
ECDH	$(2+o(1))\lambda$	exponential

- What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- How expensive is each CSIDH query? See our 2019 Eurocrypt paper—full 56-page version at https://quantum.isogeny.org/ with detailed analysis and many optimizations.
- What about memory, using parallel AT metric?
- Find more attacks on SIDH. See "How to not break SIDH" https://eprint.iacr.org/2019/558.

Tanja Lange

Isogeny-Based Cryptography