Overview of Code-Based Crypto Assumptions

Tanja Lange
with some slides by Tung Chou and Christiane Peters
Eindhoven University of Technology
Quantum Cryptanalysis of Post-Quantum Cryptography

Hamming code

Parity check matrix $(n=7, k=4)$:

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

An error-free string of 7 bits $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$ satisfies these three equations:

$$
\begin{array}{rrlll}
b_{0}+b_{1} & +b_{3}+b_{4} & & =0 \\
b_{0} & & +b_{2} & +b_{3} & +b_{5} \\
& b_{1}+b_{2} & +b_{3} & & =0 \\
& +b_{6} & =0
\end{array}
$$

If one error occurred, at least one of these equations will not hold. Failure pattern uniquely identifies the error location, e.g., $1,0,1$ means

Hamming code

Parity check matrix $(n=7, k=4)$:

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

An error-free string of 7 bits $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$ satisfies these three equations:

| $b_{0}+b_{1}$ | $+b_{3}+b_{4}$ | | $=0$ |
| ---: | :---: | :---: | :---: | :---: |
| b_{0} | | $+b_{2}+b_{3}$ | |
| $b_{1}+b_{2}+b_{3}$ | | $+b_{5}$ | $=0$ |
| | | $+b_{6}$ | $=0$ |

If one error occurred, at least one of these equations will not hold. Failure pattern uniquely identifies the error location, e.g., $1,0,1$ means b_{1} flipped.

Coding theory

- Names: code word c, error vector e, received word $\mathbf{b}=\mathbf{c}+\mathbf{e}$. length $n, 2^{k}$ code words, $(n-k) \times n$ parity-check matrix H.
- Very common to transform the matrix so that the right part has just 1 on the diagonal (no need to store that).

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

- Many special constructions discovered in 65 years of coding theory: Fast decoding algorithm to find \mathbf{e} given $\mathbf{s}=H \cdot(\mathbf{c}+\mathbf{e})$, whenever e does not have too many bits set.
- 1978 Berlekamp-McEliece-Van Tilborg: decoding problem is NP hard for random codes (random H).
- Use this difference in complexities for encryption.

Code-based encryption

- 1971 Goppa: Fast decoders for many matrices H.
- 1978 McEliece: Use Goppa codes for public-key crypto.
- Original parameters designed for 2^{64} security.
- 2008 Bernstein-Lange-Peters: broken in $\approx 2^{60}$ cycles.
- Easily scale up for higher security.
- 1986 Niederreiter: Simplified and smaller version of McEliece.
- 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.

The McEliece system (with later key-size optimizations)
uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$
to achieve 2^{λ} security against Prange's attack.
Here $c_{0} \approx 0.7418860694$.

Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark-Cain, crediting Omura; 1988 Lee-Brickell; 1988 Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey-Goodman; 1990 van Tilburg; 1991 Dumer; 1991 Coffey-Goodman-Farrell; 1993 Chabanne-Courteau; 1993 Chabaud; 1994 van Tilburg; 1994 Canteaut-Chabanne; 1998 Canteaut-Chabaud; 1998 Canteaut-Sendrier; 2008 Bernstein-Lange-Peters; 2009 Bernstein-Lange-Peters-van Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz-Sendrier; 2010 Bernstein-Lange-Peters; 2011 May-Meurer-Thomae; 2012 Becker-Joux-May-Meurer; 2013 Hamdaoui-Sendrier; 2015 May-Ozerov; 2016 Canto Torres-Sendrier; 2017 Kachigar-Tillich (post-quantum); 2017 Both-May; 2018 Both-May; 2018 Kirshanova (post-quantum).

Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve 2^{λ} security against all these attacks.

Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve 2^{λ} security against all these attacks. Here $c_{0} \approx 0.7418860694$.
- 256 KB public key for 2^{146} pre-quantum security.
- 512 KB public key for 2^{187} pre-quantum security.
- 1024 KB public key for 2^{263} pre-quantum security.

Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve 2^{λ} security against all these attacks. Here $c_{0} \approx 0.7418860694$.
- 256 KB public key for 2^{146} pre-quantum security.
- 512 KB public key for 2^{187} pre-quantum security.
- 1024 KB public key for 2^{263} pre-quantum security.
- Post-quantum (Grover): below 2^{263}, above 2^{131}.

Decoding problem

Decoding problem: find the closest code word $\mathbf{c} \in C$ to a given $\mathbf{x} \in \mathbb{F}_{2}^{n}$, assuming that there is a unique closest code word. Let $\mathbf{x}=\mathbf{c}+\mathbf{e}$. Note that finding \mathbf{e} is an equivalent problem.

- If \mathbf{c} is t errors away from \mathbf{x}, i.e., the Hamming weight of \mathbf{e} is t.

This is called a t-error correcting problem.

- There are lots of code families with fast decoding algorithms, e.g., Reed-Solomon codes, Goppa codes/alternant codes, etc.
- However, the general decoding problem is hard (1978 Berlekamp-McEliece-Van Tilborg).
- Information-set decoding (see later) takes exponential time.

Different views on decoding

- The syndrome of $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is $\mathbf{s}=H \mathbf{x}$. Note $H \mathbf{x}=H(\mathbf{c}+\mathbf{e})=H \mathbf{c}+H \mathbf{e}=H \mathbf{e}$ depends only on \mathbf{e}.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_{2}^{n}$, given $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$, so that $\mathrm{He}=\mathbf{s}$ and \mathbf{e} has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent:

Different views on decoding

- The syndrome of $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is $\mathbf{s}=H \mathbf{x}$. Note $H \mathbf{x}=H(\mathbf{c}+\mathbf{e})=H \mathbf{c}+H \mathbf{e}=H \mathbf{e}$ depends only on \mathbf{e}.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_{2}^{n}$, given $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$, so that $\mathrm{He}=\mathbf{s}$ and \mathbf{e} has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent:

To decode \mathbf{x} with syndrome decoder, compute \mathbf{e} from $H \mathbf{x}$, then $\mathbf{c}=\mathbf{x}+\mathbf{e}$.
To expand syndrome, assume $H=\left(Q^{\top} \mid I_{n-k}\right)$.

Different views on decoding

- The syndrome of $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is $\mathbf{s}=H \mathbf{x}$. Note $H \mathbf{x}=H(\mathbf{c}+\mathbf{e})=H \mathbf{c}+H \mathbf{e}=H \mathbf{e}$ depends only on \mathbf{e}.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_{2}^{n}$, given $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$, so that $\mathrm{He}=\mathbf{s}$ and \mathbf{e} has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent:

To decode \mathbf{x} with syndrome decoder, compute \mathbf{e} from $H \mathbf{x}$, then $\mathbf{c}=\mathbf{x}+\mathbf{e}$.
To expand syndrome, assume $H=\left(Q^{\top} \mid I_{n-k}\right)$.
Then $\mathbf{x}=(00 \ldots 0) \| \mathbf{s}$ satisfies $\mathbf{s}=H \mathbf{x}$.

- Note that this \mathbf{x} is not a solution to the syndrome decoding problem, unless it has very low weight.

The Niederreiter cryptosystem I

Developed in 1986 by Niederreiter as a variant of the 1978 McEliece cryptosystem. This is the schoolbook version.

- Use $n \times n$ permutation matrix P and $n-k \times n-k$ invertible matrix S.
- Public Key: a scrambled parity-check matrix $K=S H P \in \mathbb{F}_{2}^{(n-k) \times n}$.
- Encryption: The plaintext \mathbf{e} is an n-bit vector of weight t.

The ciphertext \mathbf{s} is the ($n-k$)-bit vector

$$
\mathbf{s}=K \mathbf{e}
$$

- Decryption: Find a n-bit vector \mathbf{e} with $\mathrm{wt}(\mathbf{e})=t$ such that $\mathbf{s}=K \mathbf{e}$.
- The passive attacker is facing a t-error correcting problem for the public key, which seems to be random.

The Niederreiter cryptosystem II

- Public Key: a scrambled parity-check matrix $K=S H P$.
- Encryption: The plaintext \mathbf{e} is an n-bit vector of weight t. The ciphertext \mathbf{s} is the $(n-k)$-bit vector

$$
\mathbf{s}=K \mathbf{e}
$$

- Decryption using secret key: Compute

$$
\begin{aligned}
S^{-1} \mathbf{s} & =S^{-1} K \mathbf{e}=S^{-1}(S H P) \mathbf{e} \\
& =H(P \mathbf{e})
\end{aligned}
$$

and observe that $\mathrm{wt}(P \mathbf{e})=t$, because P permutes. Use efficient syndrome decoder for H to find $\mathbf{e}^{\prime}=P \mathbf{e}$ and thus $\mathbf{e}=P^{-1} \mathbf{e}^{\prime}$.

Note on codes

- McEliece proposed to use binary Goppa codes. These are still used today.
- Niederreiter described his scheme using Reed-Solomon codes. These were broken in 1992 by Sidelnikov and Chestakov.
- More corpses on the way: concatenated codes, Reed-Muller codes, several Algebraic Geometry (AG) codes, Gabidulin codes, several LDPC codes, cyclic codes.
- Some other constructions look OK (for now). NIST competition has several entries on QCMDPC codes.
- Rank-metric codes in NIST competition got some scratches (2020 Bardet, Briaud, Bros, Gaborit, Neiger, Ruatta, Tillich).

Security notions and codes

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- The schemes as presented are not CCA-II secure. Fix by using CCA-II transformation (e.g. Fujisaki-Okamoto transform) and turn into KEM by picking random e of weight t, use hash(e) as secret key to encrypt and authenticate (for McEliece or Niederreiter).
- Breaking OWE implies distinguishing key from random or breaking one-wayness for random key.
- We distinguish between generic attacks (such as information-set decoding) and structural attacks (that use the structure of the code).
- Gröbner basis computation is a generally powerful tool for structural attacks.

Generic attack: Brute force

Given K and $\mathbf{s}=K \mathbf{e}$, find \mathbf{e} with $\mathrm{wt}(\mathbf{e})=t$.

Pick any group of t columns of K, add them and compare with \mathbf{s}.
Cost:

Generic attack: Brute force

Given K and $\mathbf{s}=K \mathbf{e}$, find \mathbf{e} with $\mathrm{wt}(\mathbf{e})=t$.

Pick any group of t columns of K, add them and compare with \mathbf{s}.
Cost: $\binom{n}{t}$ sums of t columns.
Can do better so that each try costs only 1 column addition (after some initial additions).

Generic attack: Information-set decoding, 1962 Prange

1. Permute K and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation).
2. Then $K^{\prime}=U K P$ for some permutation matrix P and U the matrix that produces systematic form.
3. This updates \mathbf{s} to $U \mathbf{s}$.
4. If $\mathrm{wt}(U \mathbf{s})=t$ then $\mathbf{e}^{\prime}=(00 \ldots 0) \| U \mathbf{s}$. Output unpermuted version of \mathbf{e}^{\prime}. Else return to 1 to rerandomize.

Generic attack: Information-set decoding, 1962 Prange

Cost: $O\left(\binom{n}{t} /\binom{n-k}{t}\right)$ matrix operations.

2010 Bernstein:
Grover speedup to $O\left(\sqrt{\binom{n}{t} /\binom{n-k}{t}}\right)$

1. Permute K and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation).
2. Then $K^{\prime}=U K P$ for some permutation matrix P and U the matrix that produces systematic form.
3. This updates \mathbf{s} to $U \mathbf{s}$.
4. If $\mathrm{wt}(U \mathbf{s})=t$ then $\mathbf{e}^{\prime}=(00 \ldots 0) \| U \mathbf{s}$. Output unpermuted version of \mathbf{e}^{\prime}. Else return to 1 to rerandomize.

Lee-Brickell attack

1. Permute K and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation). \mathbf{s} is updated.
2. For small p, pick p of the k columns on the left, compute their sum $X \mathbf{p}$. (\mathbf{p} is the vector of weight p).
3. If $\mathrm{wt}(\mathbf{s}+X \mathbf{p})=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{p} \|(\mathbf{s}+X \mathbf{p})$.

Output unpermuted version of \mathbf{e}^{\prime}.
Else return to 2 or return to 1 to rerandomize.

Lee-Brickell attack

Cost: $O\left(\binom{n}{t} /\binom{k}{p}\binom{n-k}{t-p}\right)$ matrix operations $+\binom{k}{p}$ column additions.

1. Permute K and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation). \mathbf{s} is updated.
2. For small p, pick p of the k columns on the left, compute their sum $X \mathbf{p}$. (\mathbf{p} is the vector of weight p).
3. If $\operatorname{wt}(\mathbf{s}+X \mathbf{p})=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{p} \|(\mathbf{s}+X \mathbf{p})$.

Output unpermuted version of \mathbf{e}^{\prime}.
Else return to 2 or return to 1 to rerandomize.

Leon's attack

- Random combinations of p vectors will be dense, so have $\mathrm{wt}(\mathbf{s}+X \mathbf{p}) \sim k / 2$.
- Idea: Introduce early abort by checking
 only ℓ positions (selected by set Z, green lines in picture). ($n-k) \times(n-k)$ identity matrix This forms $\ell \times k$ matrix X_{Z}, length ℓ vector \mathbf{s}_{Z}.
- Inner loop becomes:

1. Pick \mathbf{p} with $\mathrm{wt}(\mathbf{p})=p$.
2. Compute $X_{Z} \mathbf{p}$.
3. If $\mathbf{s}_{Z}+X_{Z} \mathbf{p} \neq 0$ goto 1 . Else compute $X \mathbf{p}$.
4. If $\mathrm{wt}(\mathbf{s}+X \mathbf{p})=t-p$ output unpermuted version of $\mathbf{e}^{\prime}=\mathbf{p} \|(\mathbf{s}+X \mathbf{p})$. Else return to 1 or rerandomize K.

- Note that $\mathbf{s}_{Z}+X_{Z} \mathbf{p}=0$ means that there are no ones in the positions specified by Z. Small loss in success, big speedup.

Stern's attack

- Setup similar to Leon's and Lee-Brickell's attacks.
- Use the early abort trick, so specify set Z.
- Improve chances of finding

			1
			\ddots
	X	Y	Z
			$\cdots 1$

- Split left part of K^{\prime} into two disjoint subsets X and Y.
- Let $A=\left\{\mathbf{a} \in \mathbb{F}_{2}^{k / 2} \mid \mathrm{wt}(\mathbf{a})=p\right\}, B=\left\{\mathbf{b} \in \mathbb{F}_{2}^{k / 2} \mid \mathrm{wt}(\mathbf{b})=p\right\}$.
- Search for words having exactly p ones in X and p ones in Y and exactly $w-2 p$ ones in the remaining columns.
- Do the latter part as a collision search:

Compute $\mathbf{s}_{Z}+X_{Z} \mathbf{a}$ for all (many) $\mathbf{a} \in A$, sort.
Then compute $Y_{Z} \mathbf{b}$ for $\mathbf{b} \in B$ and look for collisions; expand.

- Iterate until word with $\mathrm{wt}(\mathbf{s}+X \mathbf{a}+Y \mathbf{b})=2 p$ is found for some X, Y, Z.
- Select p, ℓ, and the subset of A to minimize overall work.

Binary Goppa code

Let $q=2^{m}$. A binary Goppa code is often defined by

- a list $L=\left(a_{1}, \ldots, a_{n}\right)$ of n distinct elements in \mathbb{F}_{q}, called the support.
- a square-free polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree t such that $g(a) \neq 0$ for all $a \in L . g(x)$ is called the Goppa polynomial.
- E.g. choose $g(x)$ irreducible over \mathbb{F}_{q}.

The corresponding binary Goppa code $\Gamma(L, g)$ is

$$
\left\{\mathbf{c} \in \mathbb{F}_{2}^{n} \left\lvert\, S(\mathbf{c})=\frac{c_{1}}{x-a_{1}}+\frac{c_{2}}{x-a_{2}}+\cdots+\frac{c_{n}}{x-a_{n}} \equiv 0 \bmod g(x)\right.\right\}
$$

- This code is linear $S(\mathbf{b}+\mathbf{c})=S(\mathbf{b})+S(\mathbf{c})$ and has length n.
- Bounds on dimension $k \geq n-m t$ and minimum distance $d \geq 2 t+1$.

How to hide nice code?

- Do not reveal matrix H related to nice-to-decode code.
- Pick a random invertible $(n-k) \times(n-k)$ matrix S and random $n \times n$ permutation matrix P. Put

$$
K=S H P
$$

- K is the public key and S and P together with a decoding algorithm for H form the private key.
- For suitable codes K looks like random matrix.
- How to decode syndrome $\mathbf{s}=K \mathbf{e}$?

How to hide nice code?

- Do not reveal matrix H related to nice-to-decode code.
- Pick a random invertible $(n-k) \times(n-k)$ matrix S and random $n \times n$ permutation matrix P. Put

$$
K=S H P .
$$

- K is the public key and S and P together with a decoding algorithm for H form the private key.
- For suitable codes K looks like random matrix.
- How to decode syndrome $\mathbf{s}=K$ e?
- Computes $S^{-1} \mathbf{s}=S^{-1}(S H P) \mathbf{e}=H(P \mathbf{e})$.
- P permutes, thus $P \mathbf{e}$ has same weight as \mathbf{e}.
- Decode to recover $P \mathbf{e}$, then multiply by P^{-1}.

How to hide nice code?

- For Goppa code use secret polynomial $g(x)$.
- Use secret permutation of the a_{i}, this corresponds to secret permutation of the n positions; this replaces P.
- Use systematic form $K=\left(K^{\prime} \mid I\right)$ for key;
- This implicitly applies S.
- No need to remember S because decoding does not use H.
- Public key size decreased to $(n-k) \times k$.
- Secret key is polynomial g and support $L=\left(a_{1}, \ldots, a_{n}\right)$.

How to hide nice code?

- For Goppa code use secret polynomial $g(x)$.
- Use secret permutation of the a_{i}, this corresponds to secret permutation of the n positions; this replaces P.
- Use systematic form $K=\left(K^{\prime} \mid I\right)$ for key;
- This implicitly applies S.
- No need to remember S because decoding does not use H.
- Public key size decreased to $(n-k) \times k$.
- Secret key is polynomial g and support $L=\left(a_{1}, \ldots, a_{n}\right)$.
- 2000 Sendrier (support splitting) computes code equivalence in polynomial time, but there are many codes.

NIST submission Classic McEliece

- Security asymptotics unchanged by 40 years of cryptanalysis.
- Efficient and straightforward conversion OW-CPA PKE \rightarrow IND-CCA2 KEM.
- Open-source (public domain) implementations.
- Constant-time software implementations.
- FPGA implementation of full cryptosystem.
- No patents.

Metric	mceliece6960119	mceliece8192128
Public-key size	1047319 bytes	1357824 bytes
Secret-key size	13908 bytes	14080 bytes
Ciphertext size	226 bytes	240 bytes
Key-generation time	813812960 cycles	898881136 cycles
Encapsulation time	156624 cycles	172576 cycles
Decapsulation time	298472 cycles	316888 cycles

See https://classic.mceliece.org for more details and parameters.

