Update on post-quantum cryptography

Tanja Lange

Eindhoven University of Technology

11 December 2019
Cryptography

- Motivation #1: Communication channels are spying on our data.
- Motivation #2: Communication channels are modifying our data.

- Literal meaning of cryptography: “secret writing”.
- Security goal #1: **Confidentiality** despite Eve’s espionage.
- Security goal #2: **Integrity**, i.e., recognizing Eve’s sabotage.
Post-quantum cryptography

- Motivation #1: Communication channels are spying on our data.
- Motivation #2: Communication channels are modifying our data.

Sender
“Alice”

“Eve”
with a quantum computer

Receiver
“Bob”

- Literal meaning of cryptography: “secret writing”.
- Security goal #1: **Confidentiality** despite Eve’s espionage.
- Security goal #2: **Integrity**, i.e., recognizing Eve’s sabotage.
- Post-quantum cryptography adds to the model that Eve has a quantum computer.
Post-quantum cryptography: Cryptography designed under the assumption that the attacker (not the user!) has a large quantum computer.
History of post-quantum cryptography

History of post-quantum cryptography

- 2014 EU publishes H2020 call including post-quantum crypto as topic.
- ETSI working group on “Quantum-safe” crypto.
- PQCrypto 2014.
- April 2015 NIST hosts first workshop on post-quantum cryptography
- August 2015 NSA wakes up
August 11, 2015

IAD recognizes that there will be a move, in the not distant future, to a quantum resistant algorithm suite.
August 11, 2015

IAD recognizes that there will be a move, in the not distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.
August 11, 2015

IAD recognizes that there will be a move, in the not distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto, the NSA wants you to use it!”.
August 11, 2015

IAD recognizes that there will be a move, in the not distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto, the NSA wants you to use it!”. Or “NSA says NIST P-384 is post-quantum secure”.
August 11, 2015

IAD recognizes that there will be a move, in the not distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto, the NSA wants you to use it!”. Or “NSA says NIST P-384 is post-quantum secure”. Or “NSA has abandoned ECC.”
NSA announcements

August 11, 2015

IAD recognizes that there will be a move, in the not distant future, to a quantum resistant algorithm suite.

August 19, 2015

IAD will initiate a transition to quantum resistant algorithms in the not too distant future.

NSA comes late to the party and botches its grand entrance.

Worse, now we get people saying “Don’t use post-quantum crypto, the NSA wants you to use it!”. Or “NSA says NIST P-384 is post-quantum secure”. Or “NSA has abandoned ECC.” Or “The NSA can break lattices and wants you to use them.”
Post-quantum becoming mainstream

- PQCrypto 2016: 22–26 Feb in Fukuoka, Japan, > 200 people

- 2016: Every agency posts something (NCSC UK, NCSC NL, NSA).
- 2016: After public input, NIST calls for submissions to “Post-Quantum Cryptography Standardization Project”. Solicits submissions on signatures and encryption (deadline Nov 2017).
4 December 2018: Report on quantum computing

Don’t panic. “Key Finding 1: Given the current state of quantum computing and recent rates of progress, it is highly unexpected that a quantum computer that can compromise RSA 2048 or comparable discrete logarithm-based public key cryptosystems will be built within the next decade.”
4 December 2018: Report on quantum computing

Don’t panic. “Key Finding 1: Given the current state of quantum computing and recent rates of progress, it is highly unexpected that a quantum computer that can compromise RSA 2048 or comparable discrete logarithm-based public key cryptosystems will be built within the next decade.”

Panic. “Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough—and the time frame for transitioning to a new security protocol is sufficiently long and uncertain—that prioritization of the development, standardization, and deployment of post-quantum cryptography is critical for minimizing the chance of a potential security and privacy disaster.”
Systems expected to survive

- Hash-based signatures: very solid security and small public keys. Require only a secure hash function (hard to find second preimages).
- Isogeny-based encryption: new kid on the block, promising short keys and ciphertexts and non-interactive key exchange. Systems rely on hardness of finding isogenies between elliptic curves over finite fields.
- Lattice-based encryption and signatures: possibility for balanced sizes. Security relies on finding short vectors in some (typically special) lattice.

These are categories of mathematical problems; individual systems may be insecure if the problem is not used correctly.
Post-quantum secret-key authenticated encryption

Very easy solutions if secret key k is long uniform random string:
- “One-time pad” for encryption.
- “Wegman–Carter MAC” for authentication.

AES-256: Standardized method to expand 256-bit k into string indistinguishable from long k.

AES introduced in 1998 by Daemen and Rijmen. Security analyzed in papers by dozens of cryptanalysts.

No credible threat from quantum algorithms. Grover costs 2^{128}.

Some recent results assume attacker has quantum access to computation, then some systems are weaker . . . but I’d know if my laptop had turned into a quantum computer.
Post-quantum secret-key authenticated encryption

- Very easy solutions if secret key k is long uniform random string:
 - “One-time pad” for encryption.
 - “Wegman–Carter MAC” for authentication.
- AES-256: Standardized method to expand 256-bit k into string indistinguishable from long k.
- AES introduced in 1998 by Daemen and Rijmen.
 Security analyzed in papers by dozens of cryptanalysts.
- No credible threat from quantum algorithms. Grover costs 2^{128}.
- Some recent results assume attacker has quantum access to computation, then some systems are weaker . . . but I’d know if my laptop had turned into a quantum computer.
NIST Post-Quantum Competition

December 2016, after public feedback: NIST calls for submissions of post-quantum cryptosystems to standardize.

30 November 2017: NIST receives 82 submissions.

Overview from Dustin Moody’s (NIST) talk at Asiacrypt 2017:

<table>
<thead>
<tr>
<th></th>
<th>Signatures</th>
<th>KEM/Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>4</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Code-based</td>
<td>5</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>Multi-variate</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Hash-based</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>59</td>
<td>82</td>
</tr>
</tbody>
</table>
1.5 years ago in the NIST competition . . .

21 December 2017: NIST posts 69 submissions from 260 people.

1.5 years ago . . . there were already attacks

By end of 2017: 8 out of 69 submissions attacked.

Some less security than claimed; some really broken; some attack scripts.
Do cryptographers have any idea what they’re doing?

By end of 2018: **22 out of 69 submissions attacked.**

BIG QUAKE. BIKE. **CFPKM.** Classic McEliece. **Compact LWE.**
CRYSTALS-DILITHIUM. CRYSRTALS-KYBER. **DAGS.** Ding Key Exchange. **DME.** **DRS.** DualModeMS. **Edon-K.** **EMBLEM** and R.EMBLEM. FALCON. FrodoKEM. GeMSS. **Giophantus.**
QC-MDPC KEM. qTESLA. **RaCoSS.** Rainbow. Ramstake. RankSign. **RLCE-KEM.** Round2. **RQC.** **RVB.** SABER. SIKE. **SPHINCS+.** **SRTPI.**
Three Bears. Titanium. **WalnutDSA.**

Some **less security than claimed; some really broken; some attack scripts.**
Some attempts to explain the situation

“What’s safe is lattice-based cryptography.” — Are you sure about that?
Some attempts to explain the situation

“What’s safe is lattice-based cryptography.” — Are you sure about that?

Some attempts to explain the situation

“What’s safe is lattice-based cryptography.” — Are you sure about that?

Many recent papers improving lattice attacks.

e.g. D’Anvers–Vercauteren–Verbauwhede papers in November+December: “On the impact of decryption failures on the security of LWE/LWR based schemes”; “The impact of error dependencies on Ring/Mod-LWE/LWR based schemes”.

Some attempts to explain the situation

“What’s safe is using the portfolio from the European PQCRYPTO project.” — Are you sure about that?
Some attempts to explain the situation

“What’s safe is using the portfolio from the European PQCRYPTO project.” — Are you sure about that?

Tanja Lange
Some attempts to explain the situation

“What’s safe is using the portfolio from the European PQCRYPTO project.” — Are you sure about that?

The portfolio: BIG QUAKE. BIKE. Classic McEliece.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. FrodoKEM. Gui.
KINDI. LUOV. MQDSS. NewHope. NTRU-HRSS-KEM. NTRU Prime.
Picnic. qTESLA. Rainbow. Ramstake. SABER. SPHINCS+.

69 submissions = denial-of-service attack against security evaluation.
Maybe cryptanalysts focused on submissions from outside the project.
Do cryptographers have any idea what they’re doing?

By end of 2018: 22 out of 69 submissions attacked.

BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.

Some less security than claimed; some really broken; some attack scripts.
NIST round two

30 January 2019: 26 candidates retained for second round.

- BIKE.
- Classic McEliece.
- CRYS-TALS-DILITHIUM.
- CRYS-TALS-KYBER.
- FALCON.
- FrodoKEM.
- GeMSS.
- HILA5.
- HQC.
- LAC.
- LAKE.
- LEDAkem.
- LEDApkc.
- LOCKER.
- LUOV.
- MQDSS.
- NewHope.
- NTRUEncrypt.
- NTRU-HRSS-KEM.
- NTRU Prime.
- NTS-KEM.
- Ouroboros-R.
- Picnic.
- qTESLA.
- Rainbow.
- Round2.
- RQC.
- SABER.
- SIKE.
- SPHINCS+.

Some less security than claimed; some really broken; some attack scripts.

Merges: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;
LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.
How to learn more and get involved

- NIST welcomes input on use cases.
- ISO JTC 1/ SC 27 WG 2 will soon post a standing document on PQC.
- Last page has a bunch of links.
On the fast track: hash-based signatures

Pros:
- Security well understood
 1979 Lamport, 1979 Merkle
- Only need secure hash function
- Small public key, fast

Cons:
- Biggish signature
- Stateful
 Adam Langley “for most environments it’s a huge foot-cannon.”
On the fast track: hash-based signatures

Pros:
▶ Security well understood
 1979 Lamport, 1979 Merkle
▶ Only need secure hash function
▶ Small public key, fast
▶ We can count: OS update, code signing, ... do keep state.

Cons:
▶ Biggish signature
▶ Stateful
 Adam Langley “for most environments it’s a huge foot-cannon.”
Standardization progress

- CFRG has published 2 RFCs: RFC 8391 and RFC 8554

Internet Research Task Force (IRTF)	A. Huelsing
Request for Comments: 8391	TU Eindhoven
Category: Informational	D. Butin
ISSN: 2070-1721	TU Darmstadt
	S. Gazdag
	genua GmbH
	J. Rijneveld
	Radboud University
	A. Mohaisen
	University of Central Florida
	May 2018

XMSS: eXtended Merkle Signature Scheme

Internet Research Task Force (IRTF)	D. McGrew
Request for Comments: 8554	M. Curcio
Category: Informational	S. Fluhrer
ISSN: 2070-1721	Cisco Systems
	April 2019

Leighton-Micali Hash-Based Signatures
Standardization progress

- CFRG has published 2 RFCs: RFC 8391 and RFC 8554
- NIST has gone through two rounds of requests for public input, most are positive and recommend standardizing XMSS and LMS. Only concern is about statefulness in general.

Stateful Hash-Based Signatures
Standardization progress

- CFRG has published 2 RFCs: RFC 8391 and RFC 8554
- NIST has gone through two rounds of requests for public input, most are positive and recommend standardizing XMSS and LMS. Only concern is about statefulness in general.

Stateful Hash-Based Signatures

- ISO SC27 JTC1 WG2 has started a study period on stateful hash-based signatures.
Links

- **NIST PQC competition** https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
- **Executive summer school on PQC in Eindhoven** https://pqcschool.org/index.html.
- **PQCRYPTO EU project** https://pqcrypto.eu.org:
 - Expert recommendations.
 - Free software libraries ([libpqcrypto](https://pqcrypto.eu.org/libpqcrypto), pqm4, pqhw).
 - Lots of reports, scientific papers, (overview) presentations.
- **PQCRYPTO summer school 2017** with 21 lectures on video + slides + exercises. https://2017.pqcrypto.org/school:
- **Executive school 2017** (12 lectures), less math, more overview. https://2017.pqcrypto.org/exec
- **PQCrypto 2019** conference.
- **PQCrypto 2018** conference.
- **PQCrypto 2017** conference.
- **PQCrypto 2016** with slides and videos from lectures + school. https://pqcrypto.org: Our survey site.
 - Many pointers: e.g., PQCrypto conference series.
 - Bibliography for 4 major PQC systems.