Code-based crypto for small servers

Tanja Lange

Technische Universiteit Eindhoven

SIAM Conference on Applied Algebraic Geometry 13 July 2019

Code-based encryption

- ▶ 1971 Goppa: Fast decoders for many matrices *H*.
- ▶ 1978 McEliece: Use Goppa codes for public-key crypto.
 - Original parameters designed for 2⁶⁴ security.
 - ▶ 2008 Bernstein–Lange–Peters: broken in $\approx 2^{60}$ cycles.
 - Easily scale up for higher security.
- ▶ 1986 Niederreiter: Simplified and smaller version of McEliece.
- 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.

The McEliece system (with later key-size optimizations) uses $(c_0 + o(1))\lambda^2(\lg \lambda)^2$ -bit keys as $\lambda \to \infty$ to achieve 2^{λ} security against Prange's attack. Here $c_0 \approx 0.7418860694$.

Security analysis

Some papers studying algorithms for attackers: 1962 Prange; 1981 Clark-Cain, crediting Omura; 1988 Lee-Brickell; 1988 Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey-Goodman; 1990 van Tilburg; 1991 Dumer; 1991 Coffey-Goodman-Farrell; 1993 Chabanne-Courteau; 1993 Chabaud; 1994 van Tilburg; 1994 Canteaut-Chabanne; 1998 Canteaut-Chabaud; 1998 Canteaut-Sendrier; 2008 Bernstein-Lange-Peters; 2009 Bernstein-Lange-Peters-van Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010 Bernstein-Lange-Peters; 2011 May-Meurer-Thomae; 2012 Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov; 2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (**post-quantum**); 2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

Consequence of security analysis

The McEliece system (with later key-size optimizations) uses (c₀ + o(1))λ²(lg λ)²-bit keys as λ → ∞ to achieve 2^λ security against all these attacks.

Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses (c₀ + o(1))λ²(lg λ)²-bit keys as λ → ∞ to achieve 2^λ security against all these attacks. Here c₀ ≈ 0.7418860694.
- 256 KB public key for 2¹⁴⁶ pre-quantum security.
- ▶ 512 KB public key for 2¹⁸⁷ pre-quantum security.
- ▶ 1024 KB public key for 2²⁶³ pre-quantum security.

Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses (c₀ + o(1))λ²(lg λ)²-bit keys as λ → ∞ to achieve 2^λ security against all these attacks. Here c₀ ≈ 0.7418860694.
- 256 KB public key for 2¹⁴⁶ pre-quantum security.
- ▶ 512 KB public key for 2¹⁸⁷ pre-quantum security.
- ▶ 1024 KB public key for 2²⁶³ pre-quantum security.
- ▶ Post-quantum (Grover): below 2²⁶³, above 2¹³¹.

The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the McEliece cryptosystem. This is the schoolbook version.

- ► Use n × n permutation matrix P and n − k × n − k invertible matrix S.
- Public Key: a scrambled parity-check matrix $K = SHP \in \mathbb{F}_2^{(n-k) \times n}$.
- ► Encryption: The plaintext e is an *n*-bit vector of weight t. The ciphertext s is the (n - k)-bit vector

$$\mathbf{s} = K\mathbf{e}.$$

- Decryption: Find a *n*-bit vector **e** with wt(**e**) = t such that s = Ke.
- The passive attacker is facing a *t*-error correcting problem for the public key, which seems to be random.

The Niederreiter cryptosystem II

- Public Key: a scrambled parity-check matrix K = SHP.
- ► Encryption: The plaintext e is an *n*-bit vector of weight *t*. The ciphertext s is the (n - k)-bit vector

$$\mathbf{s} = K \mathbf{e}$$

Decryption using secret key: Compute

$$S^{-1}\mathbf{s} = S^{-1}K\mathbf{e} = S^{-1}(SHP)\mathbf{e}$$
$$= H(P\mathbf{e})$$

and observe that $wt(P\mathbf{e}) = t$, because P permutes. Use efficient syndrome decoder for H to find $\mathbf{e}' = P\mathbf{e}$ and thus $\mathbf{e} = P^{-1}\mathbf{e}'$.

Note on codes

- McEliece proposed to use binary Goppa codes. These are still used today.
- Niederreiter described his scheme using Reed-Solomon codes. These were broken in 1992 by Sidelnikov and Chestakov.
- More corpses on the way: concatenated codes, Reed-Muller codes, several Algebraic Geometry (AG) codes, Gabidulin codes, several LDPC codes, cyclic codes.
- Some other constructions look OK (for now).
 NIST competition has several entries on QCMDPC codes.

Binary Goppa code

Let $q = 2^m$. A binary Goppa code is often defined by

- ► a list L = (a₁,..., a_n) of n distinct elements in IF_q, called the support.
- a square-free polynomial g(x) ∈ IF_q[x] of degree t such that g(a) ≠ 0 for all a ∈ L. g(x) is called the Goppa polynomial.
- E.g. choose g(x) irreducible over \mathbb{F}_q .

The corresponding binary Goppa code $\Gamma(L,g)$ is

$$\left\{\mathbf{c} \in \mathbb{F}_2^n \left| S(\mathbf{c}) = \frac{c_1}{x - a_1} + \frac{c_2}{x - a_2} + \dots + \frac{c_n}{x - a_n} \equiv 0 \mod g(x) \right\}$$

- ▶ This code is linear $S(\mathbf{b} + \mathbf{c}) = S(\mathbf{b}) + S(\mathbf{c})$ and has length *n*.
- Bounds on dimension k ≥ n − mt and minumum distance t ≥ 2t + 1.

Reminder: How to hide nice code?

- ► Do not reveal matrix *H* related to nice-to-decode code.
- ▶ Pick a random invertible (n − k) × (n − k) matrix S and random n × n permutation matrix P. Put

$$K = SHP.$$

- ► K is the public key and S and P together with a decoding algorithm for H form the private key.
- ► For suitable codes *K* looks like random matrix.

Reminder: How to hide nice code?

- ► Do not reveal matrix *H* related to nice-to-decode code.
- ▶ Pick a random invertible (n − k) × (n − k) matrix S and random n × n permutation matrix P. Put

$$K = SHP.$$

- ► K is the public key and S and P together with a decoding algorithm for H form the private key.
- ► For suitable codes *K* looks like random matrix.
- For Goppa code use secret polynomial g(x).
- Use secret permutation of the a_i, this corresponds to secret permutation of the n positions; this replaces P.
- Use systematic form K = (K'|I) for key;
 - ► This implicitly applies S.
 - No need to remember S because decoding does not use H.
 - Public key size decreased to $(n k) \times k$.
- Secret key is polynomial g and support $L = (a_1, \ldots, a_n)$.

NIST submission Classic McEliece

- Security asymptotics unchanged by 40 years of cryptanalysis.
- ► Efficient and straightforward conversion OW-CPA PKE → IND-CCA2 KEM.
- Open-source (public domain) implementations.
 - Constant-time software implementations.
 - FPGA implementation of full cryptosystem.
- No patents.

Metric	mceliece6960119	mceliece8192128
Public-key size	1047319 bytes	1357824 bytes
Secret-key size	13908 bytes	14080 bytes
Ciphertext size	226 bytes	240 bytes
Key-generation time	1108833108 cycles	1173074192 cycles
Encapsulation time	153940 cycles	188520 cycles
Decapsulation time	318088 cycles	343756 cycles

See https://classic.mceliece.org for more details. More parameters in round 2.

Key issues for McEliece

- Very conservative system, expected to last; has strongest security track record.
- Ciphertexts are among the shortest.
- Secret keys can be compressed.
- But public keys are really, really big!
- Sending 1MB takes time and bandwidth.

Key issues for McEliece

- Very conservative system, expected to last; has strongest security track record.
- Ciphertexts are among the shortest.
- Secret keys can be compressed.
- But public keys are really, really big!
- Sending 1MB takes time and bandwidth.
- ► Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was too large to be viable in the context of TLS

and even 10KB messages dropped.

Key issues for McEliece

- Very conservative system, expected to last; has strongest security track record.
- Ciphertexts are among the shortest.
- Secret keys can be compressed.
- But public keys are really, really big!
- Sending 1MB takes time and bandwidth.
- ► Google–Cloudlare experiment:

in some cases the public-key + *ciphertext size was too large to be viable in the context of TLS*

and even 10KB messages dropped.

 If server accepts 1MB of public key from any client, an attacker can easily flood memory. This invites DoS attacks.

Goodness, what big keys you have!

Public keys look like this:

$$\mathcal{K} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 & \dots & 1 & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 & \dots & 1 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 1 & 1 & 1 \end{pmatrix}$$

Left part is $(n-k) \times (n-k)$ identity matrix (no need to send) right part is random-looking $(n-k) \times k$ matrix. E.g. n = 6960, k = 5413, so n - k = 1547.

Goodness, what big keys you have!

Public keys look like this:

$$\mathcal{K} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 & \dots & 1 & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 & \dots & 1 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 1 & 1 & 1 \end{pmatrix}$$

Left part is $(n - k) \times (n - k)$ identity matrix (no need to send) right part is random-looking $(n - k) \times k$ matrix. E.g. n = 6960, k = 5413, so n - k = 1547.

Encryption xors secretly selected columns, e.g.

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Can servers avoid storing big keys?

$$\mathcal{K} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 & \dots & 1 & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 & \dots & 1 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 1 & 1 & 1 \end{pmatrix} = (I_{n-k}|\mathcal{K}')$$

- Encryption xors secretly selected columns.
- With some storage and trusted environment: Receive columns of K' one at a time, store and update partial sum.

Can servers avoid storing big keys?

$$\mathcal{K} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 & \dots & 1 & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 & \dots & 1 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 1 & 1 & 1 \end{pmatrix} = (I_{n-k}|\mathcal{K}')$$

- Encryption xors secretly selected columns.
- With some storage and trusted environment: Receive columns of K' one at a time, store and update partial sum.
- On the real Internet, without per-client state:

Can servers avoid storing big keys?

$$\mathcal{K} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 & \dots & 1 & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 & \dots & 1 & 1 & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 1 & 1 & 1 \end{pmatrix} = (I_{n-k}|\mathcal{K}')$$

- Encryption xors secretly selected columns.
- With some storage and trusted environment: Receive columns of K' one at a time, store and update partial sum.
- On the real Internet, without per-client state: Don't reveal intermediate results! Which columns are picked is the secret message! Intermediate results show whether a column was used or not.

McTiny (Bernstein/Lange)

Partition key

$$\mathcal{K}' = \begin{pmatrix} K_{1,1} & K_{1,2} & K_{1,3} & \dots & K_{1,\ell} \\ K_{2,1} & K_{2,2} & K_{2,3} & \dots & K_{2,\ell} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ K_{r,1} & K_{r,2} & K_{r,3} & \dots & K_{r,\ell} \end{pmatrix}$$

- Each submatrix K_{i,j} small enough to fit into network packet (plus some extra).
- Client feeds the $K_{i,j}$ to server & handles storage for the server.
- Server computes $K_{i,j}e_j$, puts result into cookie.
- Cookies are encrypted by server to itself using some temporary symmetric key (same key for all server connections).
 No per-client memory allocation.
- Cookies also encrypted & authenticated to client.
- Client sends several $K_{i,j}e_j$ cookies, receives their combination.
- More stuff to avoid replay & similar attacks.

McTiny (Bernstein/Lange)

Partition key

$$\mathcal{K}' = \begin{pmatrix} K_{1,1} & K_{1,2} & K_{1,3} & \dots & K_{1,\ell} \\ K_{2,1} & K_{2,2} & K_{2,3} & \dots & K_{2,\ell} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ K_{r,1} & K_{r,2} & K_{r,3} & \dots & K_{r,\ell} \end{pmatrix}$$

- Each submatrix K_{i,j} small enough to fit into network packet (plus some extra).
- Client feeds the $K_{i,j}$ to server & handles storage for the server.
- Server computes $K_{i,j}e_j$, puts result into cookie.
- Cookies are encrypted by server to itself using some temporary symmetric key (same key for all server connections).
 No per-client memory allocation.
- Cookies also encrypted & authenticated to client.
- Client sends several $K_{i,j}e_j$ cookies, receives their combination.
- More stuff to avoid replay & similar attacks.
- Several round trips, but no per-client state on the server.