Capstone Project

- NSA program, public since 1993, this is during the “crypto wars”.
- Standards for government, also planned for commercial and private use.
- Advertised as making strong cryptography available, no risk to security of country and citizens.
- NSA program, public since 1993, this is during the “crypto wars”.
- Standards for government, also planned for commercial and private use.
- Advertised as making strong cryptography available, no risk to security of country and citizens.
- New designs (and acronyms):
 - Escrowed Encryption Standard (EES)
 - Law Enforcement Access Field (LEAF)
- Key escrow highly controversial: can be used to spy on citizens and adds weakness to system.
Capstone Project

- NSA program, public since 1993, this is during the “crypto wars”.
- Standards for government, also planned for commercial and private use.
- Advertised as making strong cryptography available, no risk to security of country and citizens.
- New designs (and acronyms):
 - Escrowed Encryption Standard (EES)
 - Law Enforcement Access Field (LEAF)
- Key escrow highly controversial: can be used to spy on citizens and adds weakness to system.
- Most prominent example: Clipper chip.
- Matt Blaze showed how to circumvent escrow part; project stopped.

[Photo by Travis Goodspeed]
Kleptography — Introduction

What is Kleptography?

- Kleptography is the study of stealing information securely (exclusively), efficiently, and subliminally (unnoticeably).
- Stealing from your most trusted “hardware protected systems”, “un-scrutinized software”, systems using security by obscurity, etc.
- It employs Crypto against Crypto! Hiding Crypto in Crypto (as steganography hides text in text).
Kleptography — Introduction

The goal:

- To develop a robust back door within a cryptosystem satisfying:
 1. EXCLUSIVITY: Provides the desired secret information (e.g., private key of the unwary user) only to the attacker,
 2. INDISTINGUISHABILITY: Cannot be detected in black-box implementations (I/O access only as in tamper-resistant systems) except by the attacker; output (values, distribution, time) matches expectation;
 3. FORWARD SECRECY: If a reverse-engineer (i.e., not the attacker) breaches the black-box, then previously stolen information from this box or others cannot be recovered (secure against reverse-engineering).

- The successful reverse-engineer may learn that the attack is carried out (different algorithm is run), BUT will be unable to use the back door.
RSA Key Generation:

Let e be the public RSA exponent shared by all users (e.g., $e = 2^{16} + 1$).

1. Choose a large p randomly (e.g., p is 1024 bits long).
2. If p is composite or $\gcd(e, p - 1) \neq 1$ then goto step 1.
3. Choose a large number q randomly (e.g., q is 1024 bits long).
4. If q is composite or $\gcd(e, q - 1) \neq 1$ then goto step 3.
5. Solve for d given $d \cdot e \equiv 1 \pmod{\phi(n)}$.
6. Output the public key $(n = pq, e)$ and private key d.
The attacker is using a 1024-bit RSA key with public key \((Y, e)\).

1. Choose a large \(s\) randomly (e.g., \(s\) is 1024 bits long).
2. Compute \(p = H(s)\) where \(H\) is a cryptographic hash function.
3. If \(p\) is composite or \(\gcd(e, p - 1) \neq 1\) then goto step 1.
4. Choose a large 1024-bit string \(RND\) randomly.
5. Compute \(c\) to be an encryption of \(s\) under the attacker’s RSA key, i.e., with public key \((Y, e)\), \(c = s^e \mod Y\).
6. Solve for \((q, r)\) in \((c | | RND) = pq + r\) (integer division).
7. If \(q\) is composite or \(\gcd(e, q - 1) \neq 1\) then goto step 1.
8. Solve for \(d\) given \(d \cdot e \equiv 1 \mod \phi(n)\).
9. Output the public key \((n = pq, e)\) and the private key \(d\).
Kleptography — Attacking RSA

Observe:

c is the encryption of s with the attackers key.

\[(c || \text{RND}) = pq + r \implies (c || \text{RND}) - r = pq = n\]

Note that \(r\) is about square root (i.e., about half the bit length) of \(n\). Thus the \((-r)\) operation will not ruin \(c\) by more than one bit (borrow bit).

The value \(c\) is not hidden much by the high order bits of \(n\).

Selling argument

Could sell this as provably constructing \(n\) at random – using that an attacker could compute \(p\) if he could compute RSA decryption. This would sell the RSA backdoor as a security feature!
Recovering the RSA Private Key:

- The attacker obtains the public key \((n, e)\) of the user.
- Let \(u\) be the 1024 most significant bits of \(n\).
- The attacker sets \(c_1 = u\) and \(c_2 = u + 1\).
 \((c_2\) accounts for a potential borrow bit having been taken from the computation \(n = pq = (c||RND) − r\)).
- The attacker decrypts \(c_1\) and \(c_2\) using his private key to get \(s_1\) and \(s_2\) respectively.
- Either \(p_1 = H(s_1)\) or \(p_2 = H(s_2)\) will divide \(n\) evenly.

Only the attacker can perform this operation since only the attacker knows the needed private decryption key.
Features of the attack:

- “Only” the key generation is tempered with.
- All messages observed outside of the black box are legitimate.
- There is no direct connection between the black box and the attacker.
- The security of the klepographic encryption is significantly lower than that of the user’s key – Y has only half the length of n.
- The user’s public key is used as an “subliminal” channel to exfiltrate the private key to the attacker.
Kleptography — Attacking RSA

Features of the attack:

- “Only” the key generation is tempered with.
- All messages observed outside of the black box are legitimate.
- There is no direct connection between the black box and the attacker.
- The security of the klepographic encryption is significantly lower than that of the user’s key – Y has only half the length of n.
- The user’s public key is used as an “subliminal” channel to exfiltrate the private key to the attacker.

What can the attacker do if there is no subliminal channel? (e.g. Diffie-Hellman key exchange)
Diffie-Hellman key exchange:

1. Alice chooses a randomly.
2. Alice sends $A = g^a \mod p$ to Bob.
4. Bob sends $B = g^b \mod p$ to Alice.
5. Alice computes $k = B^a \mod p$.

Observe that $k = B^a = A^b \mod p$ since $g^{ba} = g^{ab} \mod p$.
Kleptography — Attacking Diffie-Hellman

Kleptographic Diffie-Hellman key exchange:

Klepto backdoor in Alice’s device: attackers public key $y_m = g^{x_m}$.

- First exchange:
 - Alice’s device picks a random a_1.
 - Alice’s device computes $A_1 = g^{a_1}$ and Alice sends A_1 to Bob.
 - Alice’s device stores a_1 in non-volatile memory.

- Second exchange:
 - Alice’s device computes $a_2 = H_p y_{A_1}^m \mod p$.
 - Alice’s device computes $A_2 = g^{a_2}$ and Alice sends A_2 to Bob.
 - Alice’s device stores a_2 in non-volatile memory.

- Recovering the Diffie-Hellman key:
 - The attacker obtains A_1 at first passive eavesdropping.
 - The attacker computes $a_2 = H_p A_1 x^m_1 \mod p$.

The attack can be chained for more key exchanges, the attacker misses only the first encrypted communication.
Kleptography — Attacking Diffie-Hellman

Kleptographic Diffie-Hellman key exchange:

Klepto backdoor in Alice’s device: attackers public key \(y_m = g^{x_m} \).

- **First exchange:**
 - Alice’s device picks a random \(a_1 \).
 - Alice’s device computes \(A_1 = g^{a_1} \) and Alice sends \(A_1 \) to Bob.
 - Alice’s device stores \(a_1 \) in non-volatile memory.

- **Second exchange:**
 - Alice’s device computes \(a_2 = H(y_m^{a_1} \mod p) \).
 - Alice’s device computes \(A_2 = g^{a_2} \) and Alice sends \(A_2 \) to Bob.
 - Alice’s device stores \(a_2 \) in non-volatile memory.
Kleptography — Attacking Diffie-Hellman

Kleptographic Diffie-Hellman key exchange:

Klepto backdoor in Alice’s device: attackers public key $y_m = g^{x_m}$.

- **First exchange:**
 - Alice’s device picks a random a_1.
 - Alice’s device computes $A_1 = g^{a_1}$ and Alice sends A_1 to Bob.
 - Alice’s device stores a_1 in non-volatile memory.

- **Second exchange:**
 - Alice’s device computes $a_2 = H(y_m^{a_1} \mod p)$.
 - Alice’s device computes $A_2 = g^{a_2}$ and Alice sends A_2 to Bob.
 - Alice’s device stores a_2 in non-volatile memory.

- **Recovering the Diffie-Hellman key:**
 - The attacker obtains A_1 at first passive eavesdropping.
 - The attacker computes $a_2 = H(A_1^{x_m} \mod p)$.

$$A_1^{x_m} \equiv g^{a_1x_m} \equiv g^{xma_1} \equiv y_m^{a_1} \mod p$$

The attack can be chained for more key exchanges, the attacker misses only the first encrypted communication.
A Secretly Embedded Trapdoor with Universal Protection (SETUP) attack is an algorithmic modification C' of a cryptosystem C with the following properties:

1. **Halting Correctness**: C and C' are efficient algorithms.
2. **Output Indistinguishability**: The outputs of C and C' are computationally indistinguishable to all efficient algorithms except for the attacker.
3. **Confidentiality of C**: The outputs of C do not compromise the security of the cryptosystem that C implements.
4. **Confidentiality of C'**: The outputs of C' only compromise the security of the cryptosystem that C' implements with respect to the attacker.
5. **Ability to compromise C'**: With overwhelming probability the attacker can break/decrypt/cryptanalyze at least one private output of C' given a sufficient number of public outputs of C'.
Fancier Attack on RSA

Let the RSA keys have $2m$ bits, e.g., 3072 for 128-bit security. Attacker’s key is $P_E = aP$ on a secure elliptic curve.

- Combine ECC with interesting RSA facts.
- Coppersmith’s attack (and extensions): can factor efficiently if top $m/2$ bits of p are known (faster with more).
- Can build RSA modulus for any given p and top $\sim m$ bits of n.
Fancier Attack on RSA

Let the RSA keys have $2m$ bits, e.g., 3072 for 128-bit security. Attacker’s key is $P_E = aP$ on a secure elliptic curve.

- Combine ECC with interesting RSA facts.
- Coppersmith’s attack (and extensions): can factor efficiently if top $m/2$ bits of p are known (faster with more).
- Can build RSA modulus for any given p and top $\sim m$ bits of n.
- The device picks random b, computes bP and $k = \text{hash}(bP_E)$.
- Pick random prime p. Compute authenticated encryption c of top half of p under key k. This has length $m/2$ plus the authenticator, e.g., $768+128=896$ bits.
- Put the top part of n equal to an encoding of bP (256 bits, make it look uniform) followed by c, compute q and $n = pq$. Lots of space left!
Fancier Attack on RSA

Let the RSA keys have $2m$ bits, e.g., 3072 for 128-bit security. Attacker’s key is $P_E = aP$ on a secure elliptic curve.

- Combine ECC with interesting RSA facts.
- Coppersmith’s attack (and extensions): can factor efficiently if top $m/2$ bits of p are known (faster with more).
- Can build RSA modulus for any given p and top $\sim m$ bits of n.
- The device picks random b, computes bP and $k = \text{hash}(bP_E)$.
- Pick random prime p. Compute authenticated encryption c of top half of p under key k. This has length $m/2$ plus the authenticator, e.g., $768+128=896$ bits.

- Put the top part of n equal to an encoding of bP (256 bits, make it look uniform) followed by c, compute q and $n = pq$. Lots of space left!

- Attacker decodes and trial decrypts. If authenticator works it’s a klepto device. Then use known bits of p to factor n.
Random numbers are important

- Cryptography needs random numbers to generate long-term secret keys for encryption and signatures.
- Many schemes expect random (or pseudorandom) numbers, e.g.
 - ephemeral keys for DH key exchange,
 - nonces for digital signatures,
 - nonces in authenticated encryption.
- Nonce reuse can reveal long-term secret keys (e.g. PlayStation disaster)
- DSA/ECDSA are so touchy that biased nonces are enough to break them.
Random numbers are important to the NSA

- Cryptography needs random numbers to generate long-term secret keys for encryption and signatures.
- Many schemes expect random (or pseudorandom) numbers, e.g.
 - ephemeral keys for DH key exchange,
 - nonces for digital signatures,
 - nonces in authenticated encryption.
- Nonce reuse can reveal long-term secret keys (e.g. PlayStation disaster)
- DSA/ECDSA are so touchy that biased nonces are enough to break them.

Snowden at SXSW:

[...] we know that these encryption algorithms we are using today work typically it is the random number generators that are attacked as opposed to the encryption algorithms themselves.
Use of randomness in internet protocols.

Client

- Generate client random (ě 28 bytes)
- Generate session ID, server random, a, signature nonce (ď 32 + 28 + 32 + 32 bytes)
- Generate b (46 bytes)

Server random, session ID, cert(pk), aP, sigbP, Finished

MS = PRF(xpabPq, “master secret”, client random || server random)
Use of randomness in internet protocols.

Client
- Generate client random (≥ 28 bytes)
- Generate b (46 bytes)

Server
- Generate session ID, server random, a, signature nonce (≤ 32 + 28 + 32 + 32 bytes)

\[MS = \text{PRF}(x(abP), \text{"master secret"}, \text{client random } \|	ext{ server random}) \]
Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits. Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed s_0:

\[
\begin{align*}
 s_0 & \xrightarrow{f(s_0)} s_1 & s_2 & \xrightarrow{f(s_2)} s_3 & \ldots \\
 g(s_0) & \downarrow & g(s_1) & \downarrow & g(s_2) & \downarrow & g(s_3) \\
 r_0 & \downarrow & r_1 & \downarrow & r_2 & \downarrow & r_3
\end{align*}
\]

XXX’s mission: Predict the “random” output bits. Create protocols that directly output r_n for some reason.
Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits. Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed s_0:

$$\begin{align*}
& s_0 \xrightarrow{f(s_0)} s_1 \xrightarrow{f(s_1)} s_2 \xrightarrow{f(s_2)} s_3 \xrightarrow{f(s_3)} \ldots \\
& g(s_0) \quad g(s_1) \quad g(s_2) \quad g(s_3) \\
& r_0 \quad r_1 \quad r_2 \quad r_3
\end{align*}$$

XXX’s mission: Predict the “random” output bits.
Create protocols that directly output r_n for some reason.
Design f, g with back door from r_n to s_{n+1}: i.e., get $f(s)$ from $g(s)$.
Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits. Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed s_0:

$$
\begin{align*}
 s_0 & \xrightarrow{f(s_0)} s_1 & \xrightarrow{f(s_1)} s_2 & \xrightarrow{f(s_2)} s_3 & \xrightarrow{f(s_3)} \ldots \\
 g(s_0) & \downarrow & g(s_1) & \downarrow & g(s_2) & \downarrow & g(s_3) \\
 r_0 & \downarrow & r_1 & \downarrow & r_2 & \downarrow & r_3
\end{align*}
$$

XXX's mission: Predict the “random” output bits.
Create protocols that directly output r_n for some reason.
Design f, g with back door from r_n to s_{n+1}: i.e., get $f(s)$ from $g(s)$.
Standardize this design of f, g.
Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits. Random bits are used as secret keys, DSA nonces, …

The usual structure, starting from short seed s_0:

XXX’s mission: Predict the “random” output bits. Create protocols that directly output r_n for some reason. Design f, g with back door from r_n to s_{n+1}: i.e., get $f(s)$ from $g(s)$. Standardize this design of f, g. Convince users to switch to this design: e.g., publish “security proof”.

Elliptic curves

If P, Q are random points on a strong elliptic curve then it’s hard to predict sP given sQ.

But if we know $P = dQ$ then it’s easy: $sP = sdQ$.

Let’s choose random Q, random d, define $P = dQ$. Standardize this P; Q; $f(s) = sP$; $g(s) = sQ$.
Elliptic curves

If P, Q are random points on a strong elliptic curve then it’s hard to predict sP given sQ.

But if we know $P = dQ$ then it’s easy: $sP = sdQ$.

Let’s choose random Q, random d, define $P = dQ$. Standardize this P, Q; $f(s) = sP$; $g(s) = sQ$.

Wait a minute:
Curve points (x, y) don’t look like random strings.
They satisfy public curve equation: $y^2 = x^3 - 3x + \text{constant}$.
This won’t pass public review.
Elliptic curves

If P, Q are random points on a strong elliptic curve then it’s hard to predict sP given sQ.

But if we know $P = dQ$ then it’s easy: $sP = sdQ$.

Let’s choose random Q, random d, define $P = dQ$. Standardize this $P; Q; f(s) = sP; g(s) = sQ$.

Wait a minute:
Curve points (x, y) don’t look like random strings.
They satisfy public curve equation: $y^2 = x^3 - 3x + \text{constant}$. This won’t pass public review.

Solution: Let’s throw away y and some bits of x.
Define $f(s) = x(sP)$, $g(s) = \text{ext}(x(sQ))$ where ext omits 16 bits.
Not a big computation for us to recover sQ from $g(s)$.
Earliest public source (?) June 2004, draft of ANSI X9.82:

Extract gives all but the top 16 bits \(\Rightarrow \) about \(2^{15} \) points \(sQ \) match given string.

Claim:
Dual_EC_DRBG is based on the following hard problem, sometimes known as the “elliptic curve discrete logarithm problem” (ECDLP): given points \(P \) and \(Q \) on an elliptic curve of order \(n \), find \(a \) such that \(Q = aP \).
Various public warning signals:

- Gjøsteen (March 2006): output sequence is biased.
- Brown (March 2006): security “proof”
 “This proof makes essential use of Q being random.” If d with $dQ = P$ is known then $dR_i = S_{i+1}$, concludes that there might be distinguisher.
- Sidorenko & Schoenmakers (May 2006): output sequence is even more biased. Answer: Too late to change, already implemented.
- Shumow & Ferguson (August 2007): Backdoor if d is known.
- NIST SP800-90 gets appendix about choosing points verifiably at random, but requires use of standardized P, Q for FIPS-140 validation.
September 2013: NSA Bullrun program

- (TS//SI//REL TO USA, FVEY) Influence policies, standards and specification for commercial public key technologies.
September 2013: NSA Bullrun program

- (TS//SI//REL TO USA, FVEY) Influence policies, standards and specification for commercial public key technologies.

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [...] called the Dual EC DRBG standard.
NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [...] called the Dual EC DRBG standard.

...but surely nobody uses that!?!
September 2013: NSA Bullrun program

- (TS//SI//REL TO USA, FVEY) Influence policies, standards and specification for commercial public key technologies.

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [...] called the Dual EC DRBG standard.

...but surely nobody uses that!?!?

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,
September 2013: NSA Bullrun program

- Influence policies, standards and specification for commercial public key technologies.

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [...] called the Dual EC DRBG standard.

...but surely nobody uses that!?!?

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;

RSA’s BSAFE has Dual EC DRBG enabled as default.

NIST re-opens discussions on SP800.90; recommends against using Dual EC.

RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.
As a key part of a campaign to embed encryption software that it could crack into widely used computer products, the U.S. National Security Agency arranged a secret $10 million contract with RSA, one of the most influential firms in the computer security industry, Reuters has learned.

Documents leaked by former NSA contractor Edward Snowden show that the NSA created and promulgated a flawed formula for generating random numbers to create a "back door" in encryption products, the New York Times reported in September. Reuters later reported that RSA became the most important distributor of that formula by rolling it into a software tool called Bsafe that is used to enhance security in personal computers and many other products.

Indisclosed until now was that RSA received $10 million in a deal that set the NSA formula as the preferred, or default, method for number generation in the BSafe software, according to two sources familiar with the contract. Although that sum might seem paltry, it represented more than a third of the revenue that the relevant division at RSA had taken in during the entire previous year, securities filings show.
December 22, 2013

Recent press coverage has asserted that RSA entered into a “secret contract” with the NSA to incorporate a known flawed random number generator into its BSAFE encryption libraries. We categorically deny this allegation.

We have worked with the NSA, both as a vendor and an active member of the security community. We have never kept this relationship a secret and in fact have openly publicized it. Our explicit goal has always been to strengthen commercial and government security.

Key points about our use of Dual EC DRBG in BSAFE are as follows:

• We made the decision to use Dual EC DRBG as the default in BSAFE toolkits in 2004, in the context of an industry-wide effort to develop newer, stronger methods of encryption. At that time, the NSA had a trusted role in the community-wide effort to strengthen, not weaken, encryption.

• This algorithm is only one of multiple choices available within BSAFE toolkits, and users have always been free to choose whichever one best suits their needs.

• We continued using the algorithm as an option within BSAFE toolkits as it gained acceptance as a NIST standard and because of its value in FIPS compliance. When concern surfaced around the algorithm in 2007, we continued to rely upon NIST as the arbiter of that discussion.

• When NIST issued new guidance recommending no further use of this algorithm in September 2013, we adhered to that guidance, communicated that recommendation to customers, and discussed the change openly in the security community.
Common TLS implementations:

- RSA’s BSAFE
 - RSA BSAFE Share for Java (BSAFE Java)
 - RSA BSAFE Share for C and C++ (BSAFE C)
- Microsoft’s SChannel
- OpenSSL

All of these offer Dual EC.
Common TLS implementations:

- RSA’s BSAFE
 - RSA BSAFE Share for Java (BSAFE Java)
 - RSA BSAFE Share for C and C++ (BSAFE C)
- Microsoft’s SChannel
- OpenSSL

All of these offer Dual EC.

Remember: NSA paid RSA Security $10 million to use Dual EC as the default RNG!
Here: elliptic curve over finite filed with NIST prime P-256.
(NIST SP800-90A also defines curves for P-384 and P-521.)

The elliptic curve is defined over \mathbb{F}_p with $p = 2^{256} - 2^{224} + 2^{192} + 2^96 - 1$.
The curve is given in short Weierstrass form

$$E : y^2 = x^3 - 3x + b,$$
where

$$b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b.$$

Dual EC defines two points, a base point P and a second point Q:

$$P_x = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,$$
$$P_y = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5;$$

$$Q_x = 0xc97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efca67c59852018192,$$
$$Q_y = 0xb28ef557ba31dfcbbd21ac46e2a91e3c304f44cb87058ada2cb815151e610046.$$

24/43
Points \(Q \) and \(P \) on an elliptic curve.
Points Q and P on an elliptic curve.

\[s_1 = x(s_0P) \]
Points Q and P on an elliptic curve.

32 bytes $s_1 = x(s_0P)$

$r_1 = x(s_1Q)$

s_1 r_1
Points Q and P on an elliptic curve.

$$s_0 \xrightarrow{32 \text{ bytes}} s_1 = x(s_0P)$$

$$s_1 \xrightarrow{32 \text{ bytes}} s_2 = x(s_1Q)$$

$$s_2 \xrightarrow{32 \text{ bytes}} s_3 = x(s_2P)$$

$$s_3 \xrightarrow{32 \text{ bytes}} s_4 = x(s_3Q)$$
Points Q and P on an elliptic curve.
Points Q and P on an elliptic curve.

\[s_1 = x(s_0 P) \]
\[s_2 = x(s_1 P) \]
\[r_1 = x(s_1 Q) \]
\[r_2 = x(s_2 Q) \]
Points Q and P on an elliptic curve.
Points Q and P on an elliptic curve.

1. $s_1 = x(s_0 P)$
2. $s_2 = x(s_1 P)$
3. $s_3 = x(s_2 P)$

$r_1 = x(s_1 Q)$
$r_2 = x(s_2 Q)$
$r_3 = x(s_3 Q)$

32 bytes
30 bytes
Points Q and P on an elliptic curve.
Points Q and P on an elliptic curve.
Points Q and P on an elliptic curve.

s_0 32 bytes $s_1 = x(s_0 P)$ $r_1 = x(s_1 Q)$ 30 bytes

s_1 $s_2 = x(s_1 P)$ $r_2 = x(s_2 Q)$

s_2 $s_3 = x(s_2 P)$ $r_3 = x(s_3 Q)$

s_3 $s_4 = x(s_3 P)$
Points Q and P on an elliptic curve.

\[s_0, 32 \text{ bytes} \]
\[s_1 = x(s_0 P) \]
\[r_1 = x(s_1 Q) \]
\[s_2 = x(s_1 P) \]
\[s_3 = x(s_2 P) \]
\[s_4 = x(s_3 P) \]

\[30 \text{ bytes} \]

ECDLP!
Points Q and $P = dQ$ on an elliptic curve.
Points \(Q \) and \(P = dQ \) on an elliptic curve.
Points Q and $P = dQ$ on an elliptic curve.
Points Q and $P = dQ$ on an elliptic curve.
Points Q and $P = dQ$ on an elliptic curve.

$R_c = (r_c, y(r_c))$
Points Q and $P = dQ$ on an elliptic curve.

$R_c = (r_c, y(r_c))$
Points Q and $P = dQ$ on an elliptic curve.

$$R_c = (r_c, y(r_c))$$
Shumow and Ferguson – the Basic Attack

\[s_0 \rightarrow s_1 = x(s_0 P) \]
\[r_1 = x(s_1 Q) \]
\[s_1 \rightarrow s_2 = x(s_1 P) \]
\[r_2 = x(s_2 Q) \]
\[s_2 \rightarrow s_3 = x(s_2 P) \]
\[r_3 = x(s_3 Q) \]

32 bytes
30 bytes
Dual EC — NIST SP800-90 in June 2006

\[
\begin{align*}
 t_1 & \quad \text{\(s_0\)} & \quad \text{\(s_1\)} & \quad \text{\(s_2\)} & \quad \text{\(s_3\)} \\
 \text{\(s_0\)} & \quad \text{\(s_1\)} & \quad \text{\(s_2\)} & \quad \text{\(s_3\)} \\
 \text{\(r_1\)} & \quad \text{\(r_2\)} & \quad \text{\(r_3\)} & \\
\end{align*}
\]

\[t_1 \quad \oplus H(adin_1) \quad x(\bullet P) \quad s_0 \]

\[s_0 \quad x(\bullet Q) \quad s_1 \quad x(\bullet Q) \quad s_2 \quad x(\bullet Q) \quad s_3 \]

\[s_0 \quad s_1 \quad s_2 \quad s_3 \]

\[t_1 \quad t_2 \quad t_2 \quad t_2 \]

\[\oplus H(adin_2) \quad x(\bullet P) \quad x(\bullet P) \quad \oplus H(adin_4) \]

\[\text{\(t_1\)} \quad \text{\(t_2\)} \quad \text{\(t_2\)} \quad \text{\(t_2\)} \]

\[\text{\(H(adin_1)\)} \quad \text{\(H(adin_2)\)} \quad \text{\(H(adin_2)\)} \quad \text{\(H(adin_4)\)} \]

\[\text{\(s_0\)} \quad \text{\(s_1\)} \quad \text{\(s_2\)} \quad \text{\(s_3\)} \]

\[\text{\(r_1\)} \quad \text{\(r_2\)} \quad \text{\(r_3\)} \]

\[\text{\(t_1\)} \quad \text{\(t_2\)} \quad \text{\(t_2\)} \quad \text{\(t_2\)} \]
Dual EC — NIST SP800-90 in June 2006
Dual EC — NIST SP800-90 in June 2006

\[s_0 \xrightarrow{\oplus H(adin_1)} t_1 \xrightarrow{x(P)} x(dR_c) \]

\[s_2 \xrightarrow{\oplus H(adin_2)} t_2 \xrightarrow{x(P)} x(Q) \]

\[? \]

\[s_3 \xrightarrow{\oplus H(adin_4)} \]

\[r_c \]

\[r_2 \]

\[r_3 \]
Dual EC — NIST SP800-90 in June 2006
Dual EC — NIST SP800-90 in March 2007
Dual EC — NIST SP800-90 in March 2007

Diagram:

- s_0: $t_1 \cdot \oplus H(adin_1)$
- s_1: $x(\bullet P)$
- s_2: $t_3 \cdot \oplus H(adin_3)$
- s_3: $x(\bullet P)$
- s_4: $x(\bullet P)$
- s_5: $\oplus H(adin_6)$

r_c: $x(\bullet Q)$

r_3: $x(\bullet Q)$

r_4: $x(\bullet Q)$
Dual EC — NIST SP800-90 in March 2007
In the real world, the attack is more complicated. Targets of the attack:

- RSA’s BSAFE
 - RSA BSAFE Share for Java (BSAFE Java)
 - RSA BSAFE Share for C and C++ (BSAFE C)
- Microsoft’s SChannel
- OpenSSL

The points P and Q have been replaced with known $P = dQ$; this required some reverse engineering of BSAFE and SChannel.
Attack targets:

In the real world, the attack is more complicated. Targets of the attack:

- RSA’s BSAFE
 - RSA BSAFE Share for Java (BSAFE Java)
 - RSA BSAFE Share for C and C++ (BSAFE C)
- Microsoft’s SChannel
- OpenSSL-fixed

The points P and Q have been replaced with known $P = dQ$; this required some reverse engineering of BSAFE and SChannel.
Attack — Example: BSAFE-Java

- Server random
- ECDHE priv. key
- ECDSA nonce

Exposes longterm secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
| s_0 | server random | ECDHE priv. key | ECDSA nonce |
Attack — Example: BSAFE-Java

\[s_0 \]

\[x(\bullet P) \rightarrow s_1 \]

server random ECDHE priv. key ECDSA nonce

Exposes longterm secret key!
Impersonation attack possible!
Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

\[s_0 \]
\[x(\bullet P) \] \[s_1 \]
\[x(\bullet Q) \] \[r_1 \]

average cost: 2

Exposes longterm secret key!

Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

\[s_0 = x(\bullet P) \]

\[s_1 = x(\bullet Q) \]

\[r_1 \]

server random ECDHE priv. key ECDSA nonce

average cost: 2

Exposes longterm secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

- \(s_0 \rightarrow x(P) \rightarrow s_1 \)
- \(s_2 \rightarrow x(P) \rightarrow s_1 \)
- \(s_1 \rightarrow x(Q) \rightarrow r_1 \)

- server random
- ECDHE priv. key
- ECDSA nonce

Average cost: 31

Exposes longterm secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

- s_0
 - $x(\cdot P)$

- s_1
 - $x(\cdot Q)$

- r_1

- server random

- ECDHE priv. key

- ECDSA nonce

Average cost: 2
Attack — Example: BSAFE-Java

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(Q)} r_1 \xrightarrow{\text{server random}} \]

- ECDHE priv. key
- ECDSA nonce

Impersonation attack possible!
Exposes long-term secret key!
Attack — Example: BSAFE-Java

\[
\begin{align*}
&x(P) \\
&s_0 & s_2
\end{align*}
\]

\[
\begin{align*}
&s_1 & x(Q) & r_1 \\
&s_3 & x(Q) & r_3
\end{align*}
\]

- server random
- ECDHE priv. key
- ECDSA nonce

- average cost: 2

Exposes long-term secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

\[s_0 \quad x(P) \quad s_1 \quad x(Q) \quad r_1 \quad \text{server random} \]

\[s_2 \quad x(P) \quad s_3 \quad x(Q) \quad r_3 \quad \text{ECDHE priv. key} \]

Average cost: 31

Exposes long-term secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
29/43

Attack — Example: BSAFE-Java

s_0
$x(P)$

s_1
$x(Q)$

r_1

server random

s_2
$x(P)$

s_3
$x(Q)$

r_3

ECDHE priv. key

s_4

ECDHE public key

Impersonation attack possible!

Exposes long-term secret key!

Average cost: 2

// department of mathematics and computer science
Attack — Example: BSAFE-Java

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(Q)} r_1 \]
\[s_2 \xrightarrow{x(P)} s_3 \xrightarrow{x(Q)} r_3 \]
\[s_4 \xrightarrow{x(P)} s_5 \xrightarrow{x(Q)} r_4 \]

- \(s_0 \): Server random
- \(s_1 \): ECDHE priv. key
- \(s_2 \): ECDSA nonce
- \(s_3 \): ECDHE priv. key
- \(s_4 \): ECDSA nonce
- \(s_5 \): ECDSA nonce

Average cost: \(2^{31} \)
Attack — Example: BSAFE-Java

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(Q)} r_1 \xrightarrow{\text{server random}} \]

\[s_2 \xrightarrow{x(P)} s_3 \xrightarrow{x(Q)} r_3 \xrightarrow{\text{ECDHE priv. key}} \]

\[s_4 \xrightarrow{x(P)} s_5 \xrightarrow{x(Q)} r_4 \xrightarrow{\text{ECDSA nonce}} \]

Exposes long-term secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

- s_0
 - $x(\cdot P)$
 - s_1
 - $x(\cdot Q)$
 - r_1
 - server random

- s_2
 - $x(\cdot P)$
 - s_3
 - $x(\cdot Q)$
 - r_3
 - ECDHE priv. key

- s_4
 - $x(\cdot P)$
 - s_5
 - $x(\cdot P)$
 - r_4
 - ECDSA nonce

Average cost: 2^{31}

Exposes longterm secret key!
Impersonation attack possible!
Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(Q)} r_1 \xrightarrow{\text{server random}} \]
\[s_2 \xrightarrow{x(P)} s_3 \xrightarrow{x(Q)} r_3 \xrightarrow{\text{ECDHE priv. key}} \]
\[s_4 \xrightarrow{x(P)} s_5 \xrightarrow{x(P)} r_4 \xrightarrow{\text{ECDSA nonce}} \]

\[r_1, r_3, r_4 \]

Average cost: 2

Exposes long-term secret key!

Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

\[s_0 \]
\[x(P) \]
\[s_1 \]
\[x(Q) \]
\[r_1 \]
\[\text{server random} \]
\[ECDHE priv. key \]
\[P \]
\[s_2 \]
\[x(P) \]
\[s_3 \]
\[x(Q) \]
\[r_3 \]
\[ECDHE public key \]
\[r_4 \]
\[s_4 \]
\[x(P) \]
\[s_5 \]
\[x(P) \]

Average cost: 31

Exposes longterm secret key!
Impersonation attack possible!
Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

s_0: $x(P)
ightarrow s_1$, $x(Q)
ightarrow r_1$

s_1: $x(P)
ightarrow s_2$

s_2: $x(P)
ightarrow s_3$, $x(Q)
ightarrow r_3$

s_3: $x(P)
ightarrow s_4$

s_4: $x(P)
ightarrow r_4$

s_5: $x(P)
ightarrow r_s$

Server random

ECDHE priv. key

ECDHE public key

ECDSA nonce

ECDSA signature

Average cost: 2

Exposes longterm secret key!

Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

![Diagram of the attack example]

- s_0, s_2, s_5
- s_1, s_3, s_4
- r_1, r_3, r_4
- Server random
- ECDHE private key
- ECDSA nonce
- ECDHE public key
- ECDSA signature

Average cost: 2^{31}

Exposes long-term secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

\[s_0 \quad x(\cdot P) \quad s_1 \quad x(\cdot Q) \quad r_c \quad \text{server random} \]

\[s_2 \quad x(\cdot P) \quad s_3 \quad x(\cdot Q) \quad r_3 \quad \text{ECDHE priv. key} \]

\[s_4 \quad x(\cdot P) \quad s_5 \quad x(\cdot Q) \quad r_4 \quad \text{ECDSA nonce} \]

\[\text{ECDHE public key} \quad \text{ECDSA signature} \]

Average cost: 2

Exposes longterm secret key!
Impersonation attack possible!

Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

ECDHE priv. key

ECDHE public key

ECDSA nonce

ECDSA signature

s_0

s_c

s_3

s_4

s_5

server random

$x(dR)$

$x(\bullet P)$

$x(\bullet Q)$

$x(\bullet P)$

$x(\bullet Q)$

$x(\bullet P)$

$x(\bullet Q)$

$x(\bullet P)$

average cost: 2
Attack — Example: BSAFE-Java

- s_0
- $x(P)$
- s_c
- $x(P)$
- s_3
- $x(Q)$
- r_c
- $x(P)$
- r_3
- $x(Q)$
- r_4
- $x(P)$
- s_5

server random

ECDHE priv. key

ECDHE public key

ECDHE priv. key

ECDSA nonce

ECDSA signature

Average cost: $\frac{31}{5}$

Exposes long-term secret key!
Impersonation attack possible!
Also BSAFE-Java easily identifiable by watermark.
Attack — Example: BSAFE-Java

- s_0
- $x(P)$
- $x(dR)$
- $x(Q)$
- r_c
- Server random
- s_c
- $x(P)$
- $x(P)$
- s_3
- $x(Q)$
- r_3
- s_4
- $x(Q)$
- r_4
- s_5
- $x(P)$

- ECDHE priv. key
- ECDSA nonce
- ECDHE public key
- ECDSA signature
Attack — Example: BSAFE-Java

average cost: $2^{31}(C_v + 5C_f)$
Attack — Example: BSAFE-Java

Exposes longterm secret key! Impersonation attack possible!

average cost: $2^{31}(C_v + 5C_f)$
Attack — Example: BSAFE-Java

Exposes longterm secret key! Impersonation attack possible!

average cost: $2^{31}(C_v + 5C_f)$

Also BSAFE-Java easily identifiable by watermark.
s_0

session ID server random DHE key
Attack — BSAFE-C

\[s_0 \]

\[x(\bullet P) \]

\[s_1 \]

session ID server random DHE key
Attack — BSAFE-C

\[s_0 \]
\[x(\bullet P) \]
\[s_1 \]
\[x(\bullet Q) \]
\[r_1 \]

session ID server random DHE key
Attack — BSAFE-C

\[s_0 \]
\[x(\bullet P) \]
\[s_1 \]
\[x(\bullet Q) \]
\[r_1 \]

session ID
server random
DHE key
Attack — BSAFE-C

session ID server random DHE key
Attack — BSAFE-C

The diagram illustrates the key exchange process in the BSAFE-C protocol.

1. **s_0**
 - $x(\cdot P)$
 - s_1
 - $x(\cdot Q)$
 - r_1

2. **s_2**
 - $x(\cdot P)$
 - $x(\cdot Q)$
 - r_2

The session ID, server random, and DHE key are highlighted.

/ department of mathematics and computer science
Attack — BSAFE-C

\[s_0 \]
\[x(\bullet P) \]
\[s_1 \]
\[x(\bullet P) \]
\[s_2 \]
\[x(\bullet Q) \]
\[r_1 \]
\[x(\bullet Q) \]
\[r_2 \]

session ID
server random
DHE key

average cost:

\[30 \]
Attack — BSAFE-C

\[s_0 \]
\[x(P) \]
\[s_1 \]
\[x(P) \]
\[s_2 \]
\[x(P) \]
\[s_3 \]

session ID
server random
DHE key
Attack — BSAFE-C

s₀

\[x(\bullet P)\]

s₁

\[x(\bullet Q)\]

r₁

s₂

\[x(\bullet P)\]

s₃

\[x(\bullet Q)\]

r₂

average cost:

\[30\]
Attack — BSAFE-C

\[
\begin{align*}
& s_0 \\
& x(\bullet P) \\
& s_1 \\
& x(\bullet P) \\
& s_2 \\
& x(\bullet P) \\
& s_3 \\
& x(\bullet Q) \\
& r_1 \\
& x(\bullet Q) \\
& r_2 \\
& \text{session ID} \\
& \text{server random} \\
& \text{DHE key}
\end{align*}
\]
Attack — BSAFE-C

\[
\begin{align*}
& s_0 \\
& x(P) \\
& s_1 \\
& x(P) \\
& r_1 \\
& x(Q) \\
& s_2 \\
& x(P) \\
& r_2 \\
& x(Q) \\
& s_3 \\
& x(P) \\
& s_4 \\
& x(P) \\
& \text{session ID} \\
& \text{server random} \\
& \text{DHE key}
\end{align*}
\]
Attack — BSAFE-C

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(P)} s_2 \xrightarrow{x(P)} s_3 \xrightarrow{x(P)} s_4 \]

\[r_1 \xrightarrow{x(Q)} r_2 \xrightarrow{x(Q)} r_4 \]

- session ID
- server random
- DHE key
Attack — BSAFE-C

\[s_0 \]
\[x(\cdot P) \]
\[s_1 \]
\[x(\cdot P) \]
\[s_2 \]
\[x(\cdot P) \]
\[s_3 \]
\[x(\cdot P) \]
\[s_4 \]
\[x(\cdot P) \]
\[s_5 \]

\[r_1 \]
\[x(\cdot Q) \]
\[r_2 \]
\[x(\cdot Q) \]
\[r_4 \]
\[x(\cdot Q) \]

session ID
server random
DHE key
Attack — BSAFE-C

\[
s_0 \xrightarrow{x(\cdot P)} s_1 \xrightarrow{x(\cdot P)} s_2 \xrightarrow{x(\cdot P)} s_3 \xrightarrow{x(\cdot P)} s_4 \xrightarrow{x(\cdot P)} s_5
\]

\[
s_0 \xrightarrow{x(\cdot Q)} r_1 \xrightarrow{x(\cdot Q)} r_2 \xrightarrow{x(\cdot Q)} r_4
\]

Average cost: 30
Attack — BSAFE-C

\[s_0 \rightarrow x(P) \rightarrow s_1 \rightarrow x(Q) \rightarrow r_1 \]

\[s_3 \rightarrow x(P) \rightarrow s_2 \rightarrow x(Q) \rightarrow r_2 \]

\[s_5 \rightarrow x(P) \rightarrow s_4 \rightarrow x(Q) \rightarrow r_4 \]

session ID server random EDH key
Attack — BSAFE-C

s_0

s_1

s_2

s_3

s_4

s_5

x(\cdot P)

x(\cdot P)

x(\cdot P)

x(\cdot P)

x(\cdot P)

r_1

r_2

r_3

r_4

session ID

server random

EDH key

average cost: $30\cdot 2^{15}$
Attack — BSAFE-C

Session ID

Server Random

EDH Key

Average cost:
Attack — BSAFE-C

- s_0
 - $x(P)$
 - $x(Q)$
 - $x(dR)$

- s_1
 - $x(P)$
 - $x(Q)$

- s_c
 - $x(P)$
 - $x(Q)$

- s_3
 - $x(P)$

- s_4
 - $x(Q)$

- s_5
 - $x(P)$

- r_c

- session ID
- server random
- EDH key

Average cost:

$\frac{2}{3}$
Attack — BSAFE-C

session ID

server random

EDH key

\begin{align*}
\text{s}_0 &= x(P) \\
\text{s}_1 &= x(P') \\
\text{s}_c &= x(P) \\
\text{s}_3 &= x(P) \\
\text{s}_4 &= x(Q) \\
\text{s}_5 &= x(P) \\
\text{r}_c &= x(dR) \\
\text{r}_2 &= x(P') \\
\text{r}_4 &= x(Q) \\
\end{align*}

average cost:

\[30 \]
Attack — BSAFE-C

\[\text{session ID} \rightarrow x(P) \rightarrow s_0 \rightarrow x(dR) \rightarrow s_1 \rightarrow x(Q) \rightarrow r_c \]

\[\text{server random} \rightarrow x(P) \rightarrow s_c \rightarrow x(Q) \rightarrow r_2 \]

\[\text{EDH key} \rightarrow x(P) \rightarrow s_3 \rightarrow x(Q) \rightarrow r_4 \]

average cost: \(\frac{\text{average}}{2} \)
Attack — BSAFE-C

\[s_0 \xrightarrow{x(\cdot P)} s_1 \xrightarrow{x(\cdot dR)} r_c \]
\[s_3 \xrightarrow{x(\cdot P)} s_c \xrightarrow{x(\cdot Q)} r_2 \]
\[s_4 \xrightarrow{x(\cdot Q)} \]

session ID
server random
EDH key
Attack — BSAFE-C

Session ID

Server Random

EDH Key

Session ID

Server Random

EDH Key

Average cost: \(\frac{30}{15} \)
Attack — BSAFE-C

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(dR)} r_c \]

\[s_3 \xrightarrow{x(P)} s_c \]

\[s_4 \xrightarrow{x(P)} r_2 \]

\[s_5 \xrightarrow{x(P)} r_4 \]

- session ID
- server random
- EDH key

Average cost: \(\frac{215}{16} \)
average cost: \(2^{15}(C_v + C_f) \)
Attack — BSAFE-C

average cost: \(30 \cdot 2^{15}(C_v + C_f) \)
Attack — SChannel

\[s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(Q)} r_1 \text{ session ID } \%	ext{20,000} \]

\[s_1 \xrightarrow{x(P)} s_2 \xrightarrow{x(Q)} r_2 \]

\[s_2 \xrightarrow{x(P)} s_3 \xrightarrow{x(Q)} r_3 \text{ ECDHE priv. key} \]

\[s_3 \xrightarrow{x(P)} s_4 \xrightarrow{x(Q)} r_4 \text{ ECDHE public key} \]

\[s_4 \xrightarrow{x(P)} s_5 \xrightarrow{x(Q)} r_5 \text{ server random} \]

\[s_5 \xrightarrow{x(P)} s_6 \text{ ECDSA nonce} \]

\[s_6 \xrightarrow{x(P)} \]

\[\text{average cost: } 2 \text{, } 33 \]

\[x \cdot \text{p} \]
Attack — SChannel

- \(s_0 \)
- \(x(P) \)
- \(x(Q) \)
- \(r_1 \)
- session ID
- %20,000

- \(s_1 \)
- \(x(P) \)
- \(x(Q) \)
- \(r_2 \)
- ECDHE priv. key

- \(s_2 \)
- \(x(P) \)
- \(x(Q) \)
- \(r_4 \)
- ECDHE public key

- \(s_3 \)
- \(x(P) \)
- \(x(Q) \)
- \(r_5 \)
- server random

- \(s_4 \)
- \(x(P) \)
- \(x(Q) \)
- \(r_5 \)
- ECDSA nonce

- \(s_5 \)
- \(x(P) \)
- \(x(Q) \)
- \(r_5 \)
- ECDSA signature

- \(s_6 \)
- \(x(P) \)
- \(x(Q) \)

Average cost: 2
Attack — SChannel

- **s₀**: Session ID
- **s₁**: ECDHE priv. key
- **s₂**: ECDHE public key
- **s₃**: Server random
- **s₄**: ECDSA nonce
- **s₅**: ECDSA signature
- **s₆**: ECDHE priv. key

- **r₁**: Average cost: 2
- **r₂**: ECDHE public key

- **x(P)**: Encryption function
- **x(Q)**: Decryption function

- **x(dR)**: Decryption with random

- **%20,000**: Session ID

Diagram shows the flow of data and operations in an SChannel attack scenario.
Attack — SChannel

s_0
$x(\cdot P)$
r_c
$\% 20,000$

s_1
$x(\cdot P)$

dR

s_c
$x(\cdot P)$
$x(\cdot Q)$

s_3
$x(\cdot P)$

s_4
$x(\cdot P)$
$x(\cdot Q)$

s_5
$x(\cdot P)$
$x(\cdot Q)$

s_6

dR

$\% 20,000$

session ID

server random

$ECDHE$ priv. key

$ECDHE$ public key

$ECDSA$ nonce

$ECDSA$ signature

average cost: 2
Attacks — SChannel

- Session ID
- ECDHE private key
- ECDHE public key
- Server random
- ECDSA nonce
- ECDSA signature

Average cost: 20,000
Attack — SChannel

average cost: $2^{33}(C_v + C_f) + 2^{17}(5C_f)$
Attack — SChannel (cont.)

prev. connection curr. connection

\[s_{-4} \xrightarrow{x(P)} s_{-2} \xrightarrow{x(P)} s_{-1} \xrightarrow{x(Q)} s_{0} \xrightarrow{x(Q)} s'_{0} \xrightarrow{x(P)} s_{1} \xrightarrow{x(Q)} s_{2} \xrightarrow{x(P)} s_{3} \]

\[r_{-3} \xrightarrow{x(Q)} r_{-1} \xrightarrow{x(Q)} r_{0} \xrightarrow{x(Q)} r_{1} \xrightarrow{x(Q)} r_{2} \]

server random

ECDSA nonce

ECDSA signature

session ID

ECDHE priv. key

ECDHE public key

average cost: 2

\[p \quad c \quad v \quad \\]
Attack — SChannel (cont.)

prev. connection

curr. connection

\[
\begin{align*}
\text{s}_4 & \xrightarrow{x(P)} \text{s}_2 \\
\text{s}_3 & \xrightarrow{x(Q)} \text{r}_3 \\
\text{s}_1 & \xrightarrow{x(Q)} \text{r}_1 \\
\text{s}_0 & \xrightarrow{x(Q)} \text{r}_0 \\
\text{s}_3 & \xrightarrow{x(P)} \text{s}_2
\end{align*}
\]

- server random
- ECDSA nonce
- ECDSA signature
- session ID
- ECDHE priv. key
- ECDHE public key

average cost: 2
Attack — SChannel (cont.)

prev. connection

curr. connection

server random

ECDSA nonce

ECDSA signature

ECDSA signature

ECDHE priv. key

ECDHE public key

average cost: 2
Attack — SChannel (cont.)

(prev. connection) current connection

server random

ECDSA nonce

ECDSA signature

ECDHE priv. key

ECDHE public key

average cost: 2.31
Attack — SChannel (cont.)

\[
\begin{align*}
\text{prev. connection} & \quad \text{curr. connection} \\
\text{s}_{-4} & \quad x(\cdot P) \quad x(\cdot P) \quad x(\cdot P) \\
\text{s}_{-2} & \quad x(dR) \\
\text{rc} & \quad x(\cdot Q) \\
\text{server random} & \\
\text{s}_c & \quad x(\cdot P) \\
\text{ECDSA nonce} & \\
\text{ECDSA signature} & \\
\text{s}_0 & \quad x(\cdot Q) \\
\text{s}_1 & \quad x(\cdot Q) \\
\text{s}_2 & \quad x(\cdot Q) \\
\text{s}_3 & \\
\text{r}_c & \\
\text{r}_{-1} & \quad x(\cdot Q) \\
\text{r}_0 & \\
\text{r}_1 & \quad x(\cdot Q) \\
\text{r}_2 & \\
\text{session ID} & \\
\text{ECDHE priv. key} & \\
\text{ECDHE public key} & \\
\text{average cost: } 2^{31}(C_V + 4C_f)
\end{align*}
\]
Attack — OpenSSL-fixed
Attack — OpenSSL-fixed

\[
\begin{align*}
\text{session ID} & \quad \text{server random} \\
\text{ECDHE key} & \quad \text{ECDHE public key}
\end{align*}
\]
Attack — OpenSSL-fixed

$s_0 \oplus H(adin_1) \rightarrow t_1$
$x(P) \rightarrow s_2$
$x(Q) \rightarrow r_c$

$s_3 \oplus H(adin_4) \rightarrow t_4$
$x(P) \rightarrow s_4$
$x(Q) \rightarrow r_2$

$s_5 \oplus H(adin_6) \rightarrow t_6$
$x(P) \rightarrow s_6$
$x(Q) \rightarrow r_4$

$s_8 \rightarrow s_7$

session ID

server random

ECDHE key

ECDHE public key

average cost: 2

/ department of mathematics and computer science
Attack — OpenSSL-fixed

\[s_0 \oplus H(adin_1) \]
\[t_1 \]
\[x(P) \]
\[s_2 \]
\[r_c \]
\[x(dR) \]
\[s_3 \oplus H(adin_4) \]
\[t_4 \]
\[x(P) \]
\[s_4 \]
\[r_2 \]
\[x(Q) \]
\[s_5 \oplus H(adin_6) \]
\[t_6 \]
\[x(P) \]
\[s_6 \]
\[x(Q) \]
\[r_4 \]
\[s_7 \]
\[x(Q) \]
\[r_6 \]
\[s_8 \]
\[x(P) \]

session ID
server random
ECDHE key
ECDHE public key

average cost: 2
Attack — OpenSSL-fixed

\[s_0 \oplus H(adin_1) \]
\[t_1 \]
\[x(P) \]
\[x(Q) \]
\[r_c \]
\[session \ ID \]

\[s_3 \oplus H(adin_4) \]
\[t_4 \]
\[x(P) \]
\[x(Q) \]
\[r_2 \]

\[s_5 \oplus H(adin_6) \]
\[t_6 \]
\[x(P) \]
\[x(Q) \]
\[r_4 \]

\[s_7 \]
\[x(P) \]
\[x(Q) \]
\[r_6 \]
\[ECDHE \ key \]

\[s_8 \]
\[x(P) \]

average cost: 2

/ department of mathematics and computer science
average cost: $2^{15}(C_v + C_f) + 2^{20+k+l}(2C_f) + 2^{13}(5C_f)$
Attack — Attack Timings

<table>
<thead>
<tr>
<th>Attack</th>
<th>Intel Xeon CPU</th>
<th>16 × AMD CPU CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. Time (min)</td>
<td># for 1s</td>
</tr>
<tr>
<td>BSAFE-C v1.1</td>
<td>0.26</td>
<td>16</td>
</tr>
<tr>
<td>BSAFE-Java v1.1</td>
<td>641</td>
<td>38,500</td>
</tr>
<tr>
<td>SChannel I</td>
<td>619</td>
<td>37,100</td>
</tr>
<tr>
<td>SChannel II</td>
<td>1,760</td>
<td>106,000</td>
</tr>
<tr>
<td>OpenSSL-fixed I</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td>OpenSSL-fixed II</td>
<td>707</td>
<td>44,200</td>
</tr>
<tr>
<td>OpenSSL-fixed III</td>
<td>$2^k \cdot 707$</td>
<td>$2^k \cdot 44,200$</td>
</tr>
</tbody>
</table>
Attack — Attack Timings

<table>
<thead>
<tr>
<th>Attack</th>
<th>Intel Xeon CPU Avg. Time (min)</th>
<th># for 1s</th>
<th>16 × AMD CPU Tot. Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAFE-C v1.1</td>
<td>0.26</td>
<td>16</td>
<td>0.04</td>
</tr>
<tr>
<td>BSAFE-Java v1.1</td>
<td>641</td>
<td>38,500</td>
<td>63.96</td>
</tr>
<tr>
<td>SChannel I</td>
<td>619</td>
<td>37,100</td>
<td>62.97</td>
</tr>
<tr>
<td>SChannel II</td>
<td>1,760</td>
<td>106,000</td>
<td>182.64</td>
</tr>
<tr>
<td>OpenSSL-fixed I</td>
<td>0.04</td>
<td>3</td>
<td>0.02</td>
</tr>
<tr>
<td>OpenSSL-fixed II</td>
<td>707</td>
<td>44,200</td>
<td>83.32</td>
</tr>
<tr>
<td>OpenSSL-fixed III</td>
<td>$2^k \cdot 707$</td>
<td>$2^k \cdot 44,200$</td>
<td>$2^k \cdot 83.32$</td>
</tr>
</tbody>
</table>
Dual EC with P-384 and P-521

32 bytes

$s_0 \xrightarrow{x(P)} s_1 \xrightarrow{x(Q)} r_1$

$s_1 \xrightarrow{x(P)} s_2 \xrightarrow{x(P)} \ldots$

server random

3 bytes
Dual EC with P-384 and P-521

\[s_0 \xrightarrow{x(\cdot P)} s_1 \xrightarrow{x(\cdot Q)} r_1 \]

\[s_2 \xrightarrow{x(\cdot P)} \ldots \]

48 bytes

server random
Dual EC with P-384 and P-521

s_0

$x(dR)$

s_2

server random

48 bytes

$x(P)$

144 bits!
Draft for a proposed TLS extension named “Extended Random”:

- allows client to request up to 2^{16} random bytes,
- has a weak motivation:
 The rationale for this as stated by DoD is that the public randomness for each side should be at least twice as long as the security level for cryptographic parity, which makes the 224 bits of randomness provided by the current TLS random values insufficient.
- was co-authored by an employee of NSA.
Draft Proposal – Extended Random

\[x(\bullet P) \]

\[x(\bullet Q) \]

\[s_0 \]

\[s_1 \]

\[s_2 \]

\[r_1 \]

extended random
Draft Proposal – Extended Random

\[
s_0 \xrightarrow{x(P)} x(dR) \xrightarrow{x(P)} s_2\]

extended random
How did we get here . . .

Official editors of SP800-90 are Elaine Barker and John Kelsey.

No editors stated for ANSI X9.82 nor for ISO 18031.

Interesting Dec 2013 slide deck by John Kelsey *800 – 90 and Dual EC DRBG.*

- Standardization effort by NIST and NSA, with some participation from CSE.
- Most of work on standards done by US federal employees (NIST and NSA, with some help from CSE).
- The standard Dual EC parameters P and Q come ultimately from designers of Dual EC DRBG at NSA.
Interesting documents, e.g.

Soul Searching

NSA had previously done background work on DualEC DRBG.
When objections arose we went back, studied the previous work, supplemented it with some new results and began the painful process of Pre-Publication Review.

This is most likely a reaction to the research on biases.
9.12 Choosing a DRBG Algorithm
Almost no system designer starts out with the idea that he's going to generate good random bits. Instead, he typically starts with some goal he wishes to accomplish, then decides on

X.2 DRBGs Based on Block Ciphers

[[This is all assuming my block cipher based schemes are acceptable to the NSA guys doing the review.--JMK]]

X.3 DRBGs Based on Hard Problems

[[Okay, so here's the limit of my competence. Can Don or Dan or one of the NSA guys with some number theory/algebraic geometry background please look this over? Thanks! --JMK]]

[[I'm really blowing smoke here. Would someone with some actual understanding of these attacks please save me from diving off a cliff right here? --JMK]]
An elliptic curve random number generator avoids escrow keys by choosing a point Q on the elliptic curve as verifiably random. An arbitrary string is chosen and a hash of that string computed. The hash is then converted to a field element of the desired field, the field element regarded as the x-coordinate of a point Q on the elliptic curve and the x-coordinate is tested for validity on the desired elliptic curve. If valid, the x-coordinate is decompressed to the point Q, wherein the choice of which is the two points is also derived from the hash value. Intentional use of escrow keys can provide for back up functionality. The relationship between P and Q is used as an escrow key and stored by for a security domain. The administrator logs the output of the generator to reconstruct the random number with the escrow key.
Certicom patents

The Canadian company Certicom (now part of Blackberry) has patents in multiple countries on

- Dual EC exploitation: the use of Dual EC for key escrow (i.e., for a deliberate back door)
- Dual EC escrow avoidance: modifying Dual EC to avoid key escrow.

The patent filing history also shows that

- Certicom knew the Dual EC back door by 2005;
- NSA was informed of the Dual EC back door by 2005, even if they did not know it earlier;
- the patent application, including examples of Dual EC exploitation, was publicly available in July 2006, just a month after SP800-90 was standardized.

http://projectbullrun.org/dual-ec/patent.html
Summary

Dual EC — a standardized back door:

- (co-)authored by NSA,
Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),

How to fix it?

Don't use Dual EC!
Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
Summary

Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
Summary

Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
- proven to be practical in various TLS libraries,
- was default RNG in RSA’s BSAFE library,
- back door becomes even stronger with proposed Extended Random,
- it is not only standardized but even patented.

How to fix it?

Don’t use Dual EC!
Summary

Dual EC — a standardized back door:
- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
- proven to be practical in various TLS libraries,
- was default RNG in RSA’s BSAFE library,
Summary

Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
- proven to be practical in various TLS libraries,
- was default RNG in RSA’s BSAFE library,
- back door becomes even stronger with proposed Extended Random,

How to fix it?

Don’t use Dual EC!
Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
- proven to be practical in various TLS libraries,
- was default RNG in RSA’s BSAFE library,
- back door becomes even stronger with proposed Extended Random,
- it is not only standardized but even patented.

How to fix it?

Don’t use Dual EC!
Summary

Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
- proven to be practical in various TLS libraries,
- was default RNG in RSA’s BSAFE library,
- back door becomes even stronger with proposed Extended Random,
- it is not only standardized but even patented.

How to fix it?

Don’t use Dual EC!
Dual EC — a standardized back door:

- (co-)authored by NSA,
- may contain a back door (can neither be proven nor disproven),
- allows the back-door owner to compute all future random outputs,
- makes flaw in DSS a back door that allows impersonation,
- proven to be practical in various TLS libraries,
- was default RNG in RSA’s BSAFE library,
- back door becomes even stronger with proposed Extended Random,
- it is not only standardized but even patented.

Don’t use Dual EC!