# Code-Based Cryptography 

Tanja Lange<br>with some slides by Tung Chou and Christiane Peters

Technische Universiteit Eindhoven
PQCRYPTO Mini-School and Workshop
28 June 2018

## Error correction

- Digital media is exposed to memory corruption.
- Many systems check whether data was corrupted in transit:
- ISBN numbers have check digit to detect corruption.
- ECC RAM detects up to two errors and can correct one error. 64 bits are stored as 72 bits: extra 8 bits for checks and recovery.
- In general, $k$ bits of data get stored in $n$ bits, adding some redundancy.
- If no error occurred, these $n$ bits satisfy $n-k$ parity check equations; else can correct errors from the error pattern.
- Good codes can correct many errors without blowing up storage too much; offer guarantee to correct $t$ errors (often can correct or at least detect more).
- To represent these check equations we need a matrix.



## Hamming code

Parity check matrix $(n=7, k=4)$ :

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

An error-free string of 7 bits $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$ satisfies these three equations:

| $b_{0}+b_{1}$ | $+b_{3}+b_{4}$ |  | $=0$ |  |
| ---: | :--- | :--- | :--- | :--- |
| $b_{0}$ |  | $+b_{2}+b_{3}$ |  |  |
|  | $b_{1}+b_{2}+b_{3}$ |  | $=0$ |  |
|  |  | $+b_{6}$ | $=0$ |  |

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., $1,0,1$ means

## Hamming code

Parity check matrix $(n=7, k=4)$ :

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

An error-free string of 7 bits $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$ satisfies these three equations:

| $b_{0}+b_{1}$ | $+b_{3}+b_{4}$ |  | $=0$ |  |
| ---: | :--- | :--- | :--- | :--- |
| $b_{0}$ |  | $+b_{2}+b_{3}$ |  |  |
|  | $b_{1}+b_{2}$ | $+b_{3}$ |  | $=0$ |
|  |  | $+b_{6}$ | $=0$ |  |

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., $1,0,1$ means $b_{1}$ flipped.

## Hamming code

Parity check matrix $(n=7, k=4)$ :

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

An error-free string of 7 bits $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$ satisfies these three equations:

$$
\begin{array}{rlllll}
b_{0}+b_{1} & & +b_{3}+b_{4} & & =0 \\
b_{0} & & +b_{2} & +b_{3} & & \\
& b_{1} & +b_{2} & +b_{3} & & =0 \\
& +b_{6} & =0
\end{array}
$$

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., $1,0,1$ means $b_{1}$ flipped.

In math notation, the failure pattern is $H \cdot \mathbf{b}$.

## Coding theory

- Names: code word $\mathbf{c}$, error vector $\mathbf{e}$, received word $\mathbf{b}=\mathbf{c}+\mathbf{e}$.
- Very common to transform the matrix so that the right part has just 1 on the diagonal (no need to store that).

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

- Many special constructions discovered in 65 years of coding theory:
- Large matrix $H$.
- Fast decoding algorithm to find $\mathbf{e}$ given $\mathbf{s}=H \cdot(\mathbf{c}+\mathbf{e})$, whenever e does not have too many bits set.
- Given large $H$, usually very hard to find fast decoding algorithm.
- Use this difference in complexities for encryption.


## Code-based encryption

- 1971 Goppa: Fast decoders for many matrices H.
- 1978 McEliece: Use Goppa codes for public-key crypto.
- Original parameters designed for $2^{64}$ security.
- 2008 Bernstein-Lange-Peters: broken in $\approx 2^{60}$ cycles.
- Easily scale up for higher security.
- 1986 Niederreiter: Simplified and smaller version of McEliece.
- 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve $2^{\lambda}$ security against Prange's attack.
Here $c_{0} \approx 0.7418860694$.


## Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark-Cain, crediting Omura; 1988 Lee-Brickell; 1988
Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey-Goodman;
1990 van Tilburg; 1991 Dumer; 1991 Coffey-Goodman-Farrell; 1993
Chabanne-Courteau; 1993 Chabaud; 1994 van Tilburg; 1994
Canteaut-Chabanne; 1998 Canteaut-Chabaud; 1998 Canteaut-Sendrier;
2008 Bernstein-Lange-Peters; 2009 Bernstein-Lange-Peters-van
Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz-Sendrier; 2010
Bernstein-Lange-Peters; 2011 May-Meurer-Thomae; 2012
Becker-Joux-May-Meurer; 2013 Hamdaoui-Sendrier; 2015 May-Ozerov; 2016 Canto Torres-Sendrier; 2017 Kachigar-Tillich (post-quantum); 2017 Both-May; 2018 Both-May; 2018 Kirshanova (post-quantum).

## Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve $2^{\lambda}$ security against all these attacks.


## Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve $2^{\lambda}$ security against all these attacks. Here $c_{0} \approx 0.7418860694$.
- 256 KB public key for $2^{146}$ pre-quantum security.
- 512 KB public key for $2^{187}$ pre-quantum security.
- 1024 KB public key for $2^{263}$ pre-quantum security.


## Consequence of security analysis

- The McEliece system (with later key-size optimizations) uses $\left(c_{0}+o(1)\right) \lambda^{2}(\lg \lambda)^{2}$-bit keys as $\lambda \rightarrow \infty$ to achieve $2^{\lambda}$ security against all these attacks. Here $c_{0} \approx 0.7418860694$.
- 256 KB public key for $2^{146}$ pre-quantum security.
- 512 KB public key for $2^{187}$ pre-quantum security.
- 1024 KB public key for $2^{263}$ pre-quantum security.
- Post-quantum (Grover): below $2^{263}$, above $2^{131}$.


## Linear codes

A binary linear code $C$ of length $n$ and dimension $k$ is a $k$-dimensional subspace of $\mathbb{F}_{2}^{n}$.
$C$ is usually specified as

- the row space of a generating matrix $G \in \mathbb{F}_{2}^{k \times n}$

$$
C=\left\{\mathbf{m} G \mid \mathbf{m} \in \mathbb{F}_{2}^{k}\right\}
$$

- the kernel space of a parity-check matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$

$$
C=\left\{\mathbf{c} \mid H \mathbf{c}^{\top}=0, \mathbf{c} \in \mathbb{F}_{2}^{n}\right\}
$$

Leaving out the $\top$ from now on.

## Example

$$
\begin{gathered}
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \\
\mathbf{c}=(111) G=(10011) \text { is a codeword. }
\end{gathered}
$$

## Example

$$
\begin{gathered}
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \\
\mathbf{c}=(111) G=(10011) \text { is a codeword. }
\end{gathered}
$$

Linear codes are linear:
The sum of two codewords is a codeword:

## Example

$$
\begin{gathered}
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \\
\mathbf{c}=(111) G=(10011) \text { is a codeword } .
\end{gathered}
$$

Linear codes are linear:
The sum of two codewords is a codeword:

$$
\mathbf{c}_{1}+\mathbf{c}_{2}=\mathbf{m}_{1} G+\mathbf{m}_{2} G=\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right) G .
$$

Same with parity-check matrix:

## Example

$$
\begin{gathered}
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \\
\mathbf{c}=(111) G=(10011) \text { is a codeword. }
\end{gathered}
$$

Linear codes are linear:
The sum of two codewords is a codeword:

$$
\mathbf{c}_{1}+\mathbf{c}_{2}=\mathbf{m}_{1} G+\mathbf{m}_{2} G=\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right) G
$$

Same with parity-check matrix:

$$
H\left(\mathbf{c}_{1}+\mathbf{c}_{2}\right)=H \mathbf{c}_{1}+H \mathbf{c}_{2}=0+0=0 .
$$

## Hamming weight and distance

- The Hamming weight of a word is the number of nonzero coordinates.

$$
\mathrm{wt}(1,0,0,1,1)=3
$$

- The Hamming distance between two words in $\mathbb{F}_{2}^{n}$ is the number of coordinates in which they differ.

$$
d((1,1,0,1,1),(1,0,0,1,1))=
$$

## Hamming weight and distance

- The Hamming weight of a word is the number of nonzero coordinates.

$$
\mathrm{wt}(1,0,0,1,1)=3
$$

- The Hamming distance between two words in $\mathbb{F}_{2}^{n}$ is the number of coordinates in which they differ.

$$
d((1,1,0,1,1),(1,0,0,1,1))=1
$$

## Hamming weight and distance

- The Hamming weight of a word is the number of nonzero coordinates.

$$
\mathrm{wt}(1,0,0,1,1)=3
$$

- The Hamming distance between two words in $\mathbb{F}_{2}^{n}$ is the number of coordinates in which they differ.

$$
d((1,1,0,1,1),(1,0,0,1,1))=1
$$

The Hamming distance between $\mathbf{x}$ and $\mathbf{y}$ equals the Hamming weight of $\mathbf{x}+\mathbf{y}$ :

$$
d((1,1,0,1,1),(1,0,0,1,1))=\operatorname{wt}(0,1,0,0,0)
$$

## Minimum distance

- The minimum distance of a linear code $C$ is the smallest Hamming weight of a nonzero codeword in $C$.

$$
d=\min _{0 \neq \mathbf{c} \in C}\{w t(\mathbf{c})\}=\min _{\mathbf{b} \neq \mathbf{c} \in C}\{d(\mathbf{b}, \mathbf{c})\}
$$

- In code with minimum distance $d=2 t+1$, any vector $\mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathrm{wt}(\mathbf{e}) \leq t$ is uniquely decodable to $\mathbf{c}$; i. e. there is no closer code word.


## Decoding problem

Decoding problem: find the closest codeword $\mathbf{c} \in C$ to a given $\mathbf{x} \in \mathbb{F}_{2}^{n}$, assuming that there is a unique closest codeword. Let $\mathbf{x}=\mathbf{c}+\mathbf{e}$. Note that finding $\mathbf{e}$ is an equivalent problem.

- If $\mathbf{c}$ is $t$ errors away from $\mathbf{x}$, i.e., the Hamming weight of $\mathbf{e}$ is $t$, this is called a $t$-error correcting problem.
- There are lots of code families with fast decoding algorithms, e.g., Reed-Solomon codes, Goppa codes/alternant codes, etc.
- However, the general decoding problem is hard: Information-set decoding (see later) takes exponential time.


## The McEliece cryptosystem I

- Let $C$ be a length- $n$ binary Goppa code $\Gamma$ of dimension $k$ with minimum distance $2 t+1$ where $t \approx(n-k) / \log _{2}(n)$; original parameters (1978) $n=1024, k=524, t=50$.
- The McEliece secret key consists of a generator matrix $G$ for $\Gamma$, an efficient $t$-error correcting decoding algorithm for $\Gamma$; an $n \times n$ permutation matrix $P$ and a nonsingular $k \times k$ matrix $S$.
- $n, k, t$ are public; but $\Gamma, P, S$ are randomly generated secrets.
- The McEliece public key is the $k \times n$ matrix $G^{\prime}=S G P$.


## The McEliece cryptosystem II

- Encrypt: Compute $\mathbf{m} G^{\prime}$ and add a random error vector $\mathbf{e}$ of weight $t$ and length $n$. Send $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$.
- Decrypt: Compute $\mathbf{y} P^{-1}=\mathbf{m} G^{\prime} P^{-1}+\mathbf{e} P^{-1}=(\mathbf{m} S) G+\mathbf{e} P^{-1}$. This works because $\mathbf{e} P^{-1}$ has the same weight as $\mathbf{e}$


## The McEliece cryptosystem II

- Encrypt: Compute $\mathbf{m} G^{\prime}$ and add a random error vector $\mathbf{e}$ of weight $t$ and length $n$. Send $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$.
- Decrypt: Compute $\mathbf{y} P^{-1}=\mathbf{m} G^{\prime} P^{-1}+\mathbf{e} P^{-1}=(\mathbf{m} S) G+\mathbf{e} P^{-1}$. This works because $\mathbf{e} P^{-1}$ has the same weight as $\mathbf{e}$ because $P$ is a permutation matrix. Use fast decoding to find $\mathbf{m} S$ and $\mathbf{m}$.
- Attacker is faced with decoding $\mathbf{y}$ to nearest codeword $\mathbf{m} G^{\prime}$ in the code generated by $G^{\prime}$.
This is general decoding if $G^{\prime}$ does not expose any structure.


## Systematic form

- A systematic generator matrix is a generator matrix of the form $\left(I_{k} \mid Q\right)$ where $I_{k}$ is the $k \times k$ identity matrix and $Q$ is a $k \times(n-k)$ matrix (redundant part).
- Classical decoding is about recovering $m$ from $c=m G$; without errors $m$ equals the first $k$ positions of $c$.


## Systematic form

- A systematic generator matrix is a generator matrix of the form $\left(I_{k} \mid Q\right)$ where $I_{k}$ is the $k \times k$ identity matrix and $Q$ is a $k \times(n-k)$ matrix (redundant part).
- Classical decoding is about recovering $m$ from $c=m G$; without errors $m$ equals the first $k$ positions of $c$.
- Easy to get parity-check matrix from systematic generator matrix, use $H=\left(Q^{\top} \mid I_{n-k}\right)$.


## Systematic form

- A systematic generator matrix is a generator matrix of the form $\left(I_{k} \mid Q\right)$ where $I_{k}$ is the $k \times k$ identity matrix and $Q$ is a $k \times(n-k)$ matrix (redundant part).
- Classical decoding is about recovering $m$ from $c=m G$; without errors $m$ equals the first $k$ positions of $c$.
- Easy to get parity-check matrix from systematic generator matrix, use $H=\left(Q^{\top} \mid I_{n-k}\right)$.
Then

$$
H(\mathbf{m} G)^{\top}=H G^{\top} \mathbf{m}^{\top}=\left(Q^{\top} \mid I_{n-k}\right)\left(I_{k} \mid Q\right)^{\top} \mathbf{m}^{\top}=0
$$

## Different views on decoding

- The syndrome of $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is $\mathbf{s}=H \mathbf{x}$. Note $H \mathbf{x}=H(\mathbf{c}+\mathbf{e})=H \mathbf{c}+H \mathbf{e}=H \mathbf{e}$ depends only on $\mathbf{e}$.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_{2}^{n}$ given $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$ so that $H \mathbf{e}=\mathbf{s}$ and $\mathbf{e}$ has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent:


## Different views on decoding

- The syndrome of $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is $\mathbf{s}=H \mathbf{x}$. Note $H \mathbf{x}=H(\mathbf{c}+\mathbf{e})=H \mathbf{c}+H \mathbf{e}=H \mathbf{e}$ depends only on $\mathbf{e}$.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_{2}^{n}$ given $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$ so that $H \mathbf{e}=\mathbf{s}$ and $\mathbf{e}$ has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent: To decode $\mathbf{x}$ with syndrome decoder, compute $\mathbf{e}$ from Hx , then $\mathbf{c}=\mathbf{x}+\mathbf{e}$.
To expand syndrome, assume $H=\left(Q^{\top} \mid I_{n-k}\right)$.


## Different views on decoding

- The syndrome of $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is $\mathbf{s}=H \mathbf{x}$. Note $H \mathbf{x}=H(\mathbf{c}+\mathbf{e})=H \mathbf{c}+H \mathbf{e}=H \mathbf{e}$ depends only on $\mathbf{e}$.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_{2}^{n}$ given $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$ so that $H \mathbf{e}=\mathbf{s}$ and $\mathbf{e}$ has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent: To decode $\mathbf{x}$ with syndrome decoder, compute $\mathbf{e}$ from Hx , then $\mathbf{c}=\mathbf{x}+\mathbf{e}$.
To expand syndrome, assume $H=\left(Q^{\top} \mid I_{n-k}\right)$. Then $\mathbf{x}=(00 \ldots 0) \| \mathbf{s}$ satisfies $\mathbf{s}=H \mathbf{x}$.
- Note that this $\mathbf{x}$ is not a solution to the syndrome decoding problem, unless it has very low weight.


## The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the McEliece cryptosystem. This is the schoolbook version.

- Use $n \times n$ permutation matrix $P$ and $n-k \times n-k$ invertible matrix $S$.
- Public Key: a scrambled parity-check matrix $K=S H P \in \mathbb{F}_{2}^{(n-k) \times n}$.
- Encryption: The plaintext $\mathbf{e}$ is an $n$-bit vector of weight $t$. The ciphertext $\mathbf{s}$ is the $(n-k)$-bit vector

$$
\mathbf{s}=K \mathbf{e}
$$

- Decryption: Find a $n$-bit vector $\mathbf{e}$ with $\mathrm{wt}(\mathbf{e})=t$ such that $\mathbf{s}=K \mathbf{e}$.
- The passive attacker is facing a $t$-error correcting problem for the public key, which seems to be random.


## The Niederreiter cryptosystem II

- Public Key: a scrambled parity-check matrix $K=S H P$.
- Encryption: The plaintext $\mathbf{e}$ is an $n$-bit vector of weight $t$. The ciphertext $\mathbf{s}$ is the $(n-k)$-bit vector

$$
\mathbf{s}=K \mathbf{e}
$$

- Decryption using secret key: Compute

$$
\begin{aligned}
S^{-1} \mathbf{s} & =S^{-1} K \mathbf{e}=S^{-1}(S H P) \mathbf{e} \\
& =H(P \mathbf{e})
\end{aligned}
$$

and observe that $\mathrm{wt}(P \mathbf{e})=1$, because $P$ permutes. Use efficient syndrome decoder for $H$ to find $\mathbf{e}^{\prime}=P \mathbf{e}$ and thus $\mathbf{e}=P^{-1} \mathbf{e}^{\prime}$.

## Note on codes

- McEliece proposed to use binary Goppa codes. These are still used today.
- Niederreiter described his scheme using Reed-Solomon codes. These were broken in 1992 by Sidelnikov and Chestakov.
- More corpses on the way: concatenated codes, Reed-Muller codes, several Algebraic Geometry (AG) codes, Gabidulin codes, several LDPC codes, cyclic codes.
- Some other constructions look OK (for now). NIST competition has several entries on QCMDPC codes.


## Binary Goppa code

Let $q=2^{m}$. A binary Goppa code is often defined by

- a list $L=\left(a_{1}, \ldots, a_{n}\right)$ of $n$ distinct elements in $\mathbb{F}_{q}$, called the support.
- a square-free polynomial $g(x) \in \mathbb{F}_{q}[x]$ of degree $t$ such that $g(a) \neq 0$ for all $a \in L . g(x)$ is called the Goppa polynomial.
- E.g. choose $g(x)$ irreducible over $\mathbb{F}_{q}$.

The corresponding binary Goppa code $\Gamma(L, g)$ is
$\left\{\mathbf{c} \in \mathbb{F}_{2}^{n} \left\lvert\, S(\mathbf{c})=\frac{c_{1}}{x-a_{1}}+\frac{c_{2}}{x-a_{2}}+\cdots+\frac{c_{n}}{x-a_{n}} \equiv 0 \bmod g(x)\right.\right\}$

- This code is linear $S(\mathbf{b}+\mathbf{c})=S(\mathbf{b})+S(\mathbf{c})$ and has length $n$.
- What can we say about the dimension and minimum distance?


## Dimension of $\Gamma(L, g)$

- $g\left(a_{i}\right) \neq 0$ implies $\operatorname{gcd}\left(x-a_{i}, g(x)\right)=1$, thus get polynomials

$$
\left(x-a_{i}\right)^{-1} \equiv f_{i}(x) \equiv \sum_{j=0}^{t-1} f_{i, j} x^{j} \bmod g(x)
$$

via XGCD. All this is over $\mathbb{F}_{q}=\mathbb{F}_{2^{m}}$.

- In this form, $S(\mathbf{c}) \equiv 0 \bmod g(x)$ means

$$
\sum_{i=1}^{n} c_{i}\left(\sum_{j=0}^{t-1} f_{i, j} x^{j}\right)=\sum_{j=0}^{t-1}\left(\sum_{i=1}^{n} c_{i} f_{i, j}\right) x^{j}=0
$$

meaning that for each $0 \leq j \leq t-1$ :

$$
\sum_{i=1}^{n} c_{i} f_{i, j}=0
$$

- These are $t$ conditions over $\mathbb{F}_{q}$, so tm conditions over $\mathbb{F}_{2}$. Giving an $t m \times n$ parity check matrix over $\mathbb{F}_{2}$.
- Some rows might be linearly dependent, so $k \geq n-t m$.


## Nice parity check matrix

Assume $g(x)=\sum_{i=0}^{t} g_{i} x^{i}$ monic, i.e., $g_{t}=1$.

$$
\begin{aligned}
H & =\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
g_{t-1} & 1 & 0 & \ldots & 0 \\
g_{t-2} & g_{t-1} & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{1} & g_{2} & g_{3} & \ldots & 1
\end{array}\right) \cdot\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{1}^{t-1} & a_{2}^{t-1} & a_{3}^{t-1} & \cdots & a_{n}^{t-1}
\end{array}\right) \\
& \cdot\left(\begin{array}{ccccc}
\frac{1}{g\left(a_{1}\right)} & 0 & 0 & \cdots & 0 \\
0 & \frac{1}{g\left(a_{2}\right)} & 0 & \cdots & 0 \\
0 & 0 & \frac{1}{g\left(a_{3}\right)} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \frac{1}{g\left(a_{n}\right)}
\end{array}\right)
\end{aligned}
$$

Minimum distance of $\Gamma(L, g)$. Put $s(x)=S(\mathbf{c})$

$$
s(x)=\sum_{i=1}^{n} c_{i} /\left(x-a_{i}\right)
$$

## Minimum distance of $\Gamma(L, g)$. Put $s(x)=S(\mathbf{c})$

$$
\begin{aligned}
s(x) & =\sum_{i=1}^{n} c_{i} /\left(x-a_{i}\right) \\
& =\left(\sum_{i=1}^{n} c_{i} \prod_{j \neq i}\left(x-a_{j}\right)\right) / \prod_{i=1}^{n}\left(x-a_{i}\right) \equiv 0 \bmod g(x) .
\end{aligned}
$$

- $g\left(a_{i}\right) \neq 0$ implies $\operatorname{gcd}\left(x-a_{i}, g(x)\right)=1$, so $g(x)$ divides $\sum_{i=1}^{n} c_{i} \prod_{j \neq i}\left(x-a_{j}\right)$.
- Let $\mathbf{c} \neq 0$ have small weight $\mathrm{wt}(\mathbf{c})=w \leq t=\operatorname{deg}(g)$. For all $i$ with $c_{i}=0, x-a_{i}$ appears in every summand.


## Minimum distance of $\Gamma(L, g)$. Put $s(x)=S(\mathbf{c})$

$$
\begin{aligned}
s(x) & =\sum_{i=1}^{n} c_{i} /\left(x-a_{i}\right) \\
& =\left(\sum_{i=1}^{n} c_{i} \prod_{j \neq i}\left(x-a_{j}\right)\right) / \prod_{i=1}^{n}\left(x-a_{i}\right) \equiv 0 \bmod g(x) .
\end{aligned}
$$

- $g\left(a_{i}\right) \neq 0$ implies $\operatorname{gcd}\left(x-a_{i}, g(x)\right)=1$, so $g(x)$ divides $\sum_{i=1}^{n} c_{i} \prod_{j \neq i}\left(x-a_{j}\right)$.
- Let $\mathbf{c} \neq 0$ have small weight $\mathrm{wt}(\mathbf{c})=w \leq t=\operatorname{deg}(g)$. For all $i$ with $c_{i}=0, x-a_{i}$ appears in every summand. Cancel out those $x-a_{i}$ with $c_{i}=0$.
- The denominator is now $\prod_{i, c_{i} \neq 0}\left(x-a_{i}\right)$, of degree $w$.
- The numerator now has degree $w-1$ and $\operatorname{deg}(g)>w-1$ implies that the numerator is $=0($ without reduction $\bmod g)$, which is a contradiction to $\mathbf{c} \neq 0$, so $\mathrm{wt}(\mathbf{c})=w \geq t+1$.


## Better minimum distance for $\Gamma(L, g)$

- Let $\mathbf{c} \neq 0$ have small weight $\mathrm{wt}(\mathbf{c})=w$.
- Put $f(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)^{c_{i}}$ with $c_{i} \in\{0,1\}$.
- Then the derivative $f^{\prime}(x)=\sum_{i=1}^{n} c_{i} \prod_{j \neq i}\left(x-a_{i}\right)^{c_{i}}$.
- Thus $s(x)=f^{\prime}(x) / f(x) \equiv 0 \bmod g(x)$.
- As before this implies $g(x)$ divides the numerator $f^{\prime}(x)$.
- Note that over $\mathbb{F}_{2^{m}}$ :

$$
\left(f_{2 i+1} x^{2 i+1}\right)^{\prime}=f_{2 i+1} x^{2 i}, \quad\left(f_{2 i} x^{2 i}\right)^{\prime}=0 \cdot f_{2 i} x^{2 i-1}=0
$$

thus $f^{\prime}(x)$ contains only terms of even degree and $\operatorname{deg}\left(f^{\prime}\right) \leq w-1$. Assume $w$ odd, thus $\operatorname{deg}\left(f^{\prime}\right)=w-1$.

- Note that over $\mathbb{F}_{2^{m}}:(x+1)^{2}=x^{2}+1$


## Better minimum distance for $\Gamma(L, g)$

- Let $\mathbf{c} \neq 0$ have small weight $\mathrm{wt}(\mathbf{c})=w$.
- Put $f(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)^{c_{i}}$ with $c_{i} \in\{0,1\}$.
- Then the derivative $f^{\prime}(x)=\sum_{i=1}^{n} c_{i} \prod_{j \neq i}\left(x-a_{i}\right)^{c_{i}}$.
- Thus $s(x)=f^{\prime}(x) / f(x) \equiv 0 \bmod g(x)$.
- As before this implies $g(x)$ divides the numerator $f^{\prime}(x)$.
- Note that over $\mathbb{F}_{2^{m}}$ :

$$
\left(f_{2 i+1} x^{2 i+1}\right)^{\prime}=f_{2 i+1} x^{2 i}, \quad\left(f_{2 i} x^{2 i}\right)^{\prime}=0 \cdot f_{2 i} x^{2 i-1}=0
$$

thus $f^{\prime}(x)$ contains only terms of even degree and $\operatorname{deg}\left(f^{\prime}\right) \leq w-1$. Assume $w$ odd, thus $\operatorname{deg}\left(f^{\prime}\right)=w-1$.

- Note that over $\mathbb{F}_{2^{m}}:(x+1)^{2}=x^{2}+1$ and in general

$$
f^{\prime}(x)=\sum_{i=0}^{(w-1) / 2} f_{2 i+1} x^{2 i}=\left(\sum_{i=0}^{(w-1) / 2} \sqrt{f_{2 i+1}} x^{i}\right)^{2}=F^{2}(x) .
$$

- Since $g(x)$ is square-free, $g(x)$ divides $F(x)$, thus $w \geq 2 t+1$.


## Decoding of $\mathbf{c}+\mathbf{e}$ in $\Gamma(L, g)$

- Decoding works with polynomial arithmetic.
- Fix e. Let $\sigma(x)=\prod_{i, e_{i} \neq 0}\left(x-a_{i}\right)$. Same as $f(x)$ before for $\mathbf{c}$.
- $\sigma(x)$ is called error locator polynomial. Given $\sigma(x)$ can factor it to retrieve error positions, $\sigma\left(a_{i}\right)=0 \Leftrightarrow$ error in $i$.
- Split into odd and even terms: $\sigma(x)=A^{2}(x)+x B^{2}(x)$.
- Note as before $s(x)=\sigma^{\prime}(x) / \sigma(x)$ and $\sigma^{\prime}(x)=B^{2}(x)$.
- Thus

$$
\begin{aligned}
& B^{2}(x) \equiv \sigma(x) s(x) \equiv\left(A^{2}(x)+x B^{2}(x)\right) s(x) \bmod g(x) \\
& B^{2}(x)(x+1 / s(x)) \equiv A^{2}(x) \bmod g(x)
\end{aligned}
$$

- Put $v(x) \equiv \sqrt{x+1 / s(x)} \bmod g(x)$, then $A(x) \equiv B(x) v(x) \bmod g(x)$.
- Can compute $v(x)$ from $s(x)$.
- Use XGCD on $v$ and $g$, stop part-way when

$$
A(x)=B(x) v(x)+h(x) g(x)
$$

with $\operatorname{deg}(A) \leq\lfloor t / 2\rfloor, \operatorname{deg}(B) \leq\lfloor(t-1) / 2\rfloor$.

## Reminder: How to hide nice code?

- Do not reveal matrix $H$ related to nice-to-decode code.
- Pick a random invertible $(n-k) \times(n-k)$ matrix $S$ and random $n \times n$ permutation matrix $P$. Put

$$
K=S H P
$$

- K is the public key and $S$ and $P$ together with a decoding algorithm for $H$ form the private key.
- For suitable codes $K$ looks like random matrix.
- How to decode syndrome $\mathbf{s}=K \mathbf{e}$ ?


## Reminder: How to hide nice code?

- Do not reveal matrix $H$ related to nice-to-decode code.
- Pick a random invertible $(n-k) \times(n-k)$ matrix $S$ and random $n \times n$ permutation matrix $P$. Put

$$
K=S H P
$$

- K is the public key and $S$ and $P$ together with a decoding algorithm for $H$ form the private key.
- For suitable codes $K$ looks like random matrix.
- How to decode syndrome $\mathbf{s}=K \mathbf{e}$ ?
- Computes $S^{-1} \mathbf{s}=S^{-1}(S H P) \mathbf{e}=H(P \mathbf{e})$.
- $P$ permutes, thus $P$ e has same weight as $\mathbf{e}$.
- Decode to recover $P \mathbf{e}$, then multiply by $P^{-1}$.


## How to hide nice code?

- For Goppa code use secret polynomial $g(x)$.
- Use secret permutation of the $a_{i}$, this corresponds to secret permutation of the $n$ positions; this replaces $P$.
- Use systematic form $K=\left(K^{\prime} \mid I\right)$ for key;
- This implicitly applies $S$.
- No need to remember $S$ because decoding does not use $H$.
- Public key size decreased to $(n-k) \times k$.
- Secret key is polynomial $g$ and support $L=\left(a_{1}, \ldots, a_{n}\right)$.


## McBits (Bernstein, Chou, Schwabe, CHES 2013)

- Encryption is super fast anyways (just a vector-matrix multiplication).
- Main step in decryption is decoding of Goppa code. The McBits software achieves this in constant time.
- Decoding speed at $2^{128}$ pre-quantum security: $(n ; t)=(4096 ; 41)$ uses 60493 Ivy Bridge cycles.
- Decoding speed at $2^{263}$ pre-quantum security: $(n ; t)=(6960 ; 119)$ uses 306102 Ivy Bridge cycles.
- Grover speedup is less than halving the security level, so the latter parameters offer at least $2^{128}$ post-quantum security.
- More at https://binary.cr.yp.to/mcbits.html.

Do not use the schoolbook versions!

## Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

- Assume that the decoding algorithm decodes up to $t$ errors, i. e. it decodes $\mathbf{y}=\mathbf{c}+\mathbf{e}$ to $\mathbf{c}$ if $\mathrm{wt}(\mathbf{e}) \leq t$.
- Eve intercepts ciphertext $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$. Eve poses as Alice towards Bob and sends him tweaks of $\mathbf{y}$. She uses Bob's reactions (success of failure to decrypt) to recover m.
- Assume $\operatorname{wt}(\mathbf{e})=t$. (Else flip more bits till Bob fails).
- Eve sends $\mathbf{y}_{i}=\mathbf{y}+\mathbf{e}_{i}$ for $\mathbf{e}_{i}$ the $i$-th unit vector. If Bob returns error, position $i$ in $\mathbf{e}$ is 0 (so the number of errors has increased to $t+1$ and Bob fails). Else position $i$ in $\mathbf{e}$ is 1 .
- After $k$ steps Eve knows the first $k$ positions of $\mathbf{m} G^{\prime}$ without error. Invert the $k \times k$ submatrix of $G^{\prime}$ to get $\mathbf{m}$


## Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

- Assume that the decoding algorithm decodes up to $t$ errors, i. e. it decodes $\mathbf{y}=\mathbf{c}+\mathbf{e}$ to $\mathbf{c}$ if $\mathrm{wt}(\mathbf{e}) \leq t$.
- Eve intercepts ciphertext $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$. Eve poses as Alice towards Bob and sends him tweaks of $\mathbf{y}$. She uses Bob's reactions (success of failure to decrypt) to recover m.
- Assume $\operatorname{wt}(\mathbf{e})=t$. (Else flip more bits till Bob fails).
- Eve sends $\mathbf{y}_{i}=\mathbf{y}+\mathbf{e}_{i}$ for $\mathbf{e}_{i}$ the $i$-th unit vector. If Bob returns error, position $i$ in $\mathbf{e}$ is 0 (so the number of errors has increased to $t+1$ and Bob fails). Else position $i$ in $\mathbf{e}$ is 1 .
- After $k$ steps Eve knows the first $k$ positions of $\mathbf{m} G^{\prime}$ without error. Invert the $k \times k$ submatrix of $G^{\prime}$ to get $\mathbf{m}$ assuming it is invertible.
- Proper attack: figure out invertible submatrix of $G^{\prime}$ at beginning; recover matching $k$ coordinates.


## More on sloppy Alice

- This attack has Eve send Bob variations of the same ciphertext; so Bob will think that Alice is sloppy.
- Note, this is more complicated if $\mathbb{F}_{q}$ instead of $\mathbb{F}_{2}$ is used.
- Other name: reaction attack. (1999 Hall, Goldberg, and Schneier)
- Attack also works on Niederreiter version:


## More on sloppy Alice

- This attack has Eve send Bob variations of the same ciphertext; so Bob will think that Alice is sloppy.
- Note, this is more complicated if $\mathbb{F}_{q}$ instead of $\mathbb{F}_{2}$ is used.
- Other name: reaction attack. (1999 Hall, Goldberg, and Schneier)
- Attack also works on Niederreiter version: Bitflip cooresponds to sending $\mathbf{s}_{i}=\mathbf{s}+K_{i}$, where $K_{i}$ is the $i$-th column of $K$.
- More involved but doable (for McEliece and Niederreiter) if decryption requires exactly $t$ errors.


## Berson's attack

- Eve knows $\mathbf{y}_{1}=\mathbf{m} G^{\prime}+\mathbf{e}_{1}$ and $\mathbf{y}_{2}=\mathbf{m} G^{\prime}+\mathbf{e}_{2}$; these have the same $\mathbf{m}$.


## Berson's attack

- Eve knows $\mathbf{y}_{1}=\mathbf{m} G^{\prime}+\mathbf{e}_{1}$ and $\mathbf{y}_{2}=\mathbf{m} G^{\prime}+\mathbf{e}_{2}$; these have the same $\mathbf{m}$.
- Then $\mathbf{y}_{1}+\mathbf{y}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}=\overline{\mathbf{e}}$. This has weight in $[0,2 t]$.
- If $\mathrm{wt}(\overline{\mathbf{e}})=2 t$ :


## Berson's attack

- Eve knows $\mathbf{y}_{1}=\mathbf{m} G^{\prime}+\mathbf{e}_{1}$ and $\mathbf{y}_{2}=\mathbf{m} G^{\prime}+\mathbf{e}_{2}$; these have the same $\mathbf{m}$.
- Then $\mathbf{y}_{1}+\mathbf{y}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}=\overline{\mathbf{e}}$. This has weight in $[0,2 t]$.
- If $\mathrm{wt}(\overline{\mathbf{e}})=2 t$ :

All zero positions in $\overline{\mathbf{e}}$ are error free in both ciphertexts. Invert $G^{\prime}$ in those columns to recover $\mathbf{m}$ as in previous attack.

- Else:


## Berson's attack

- Eve knows $\mathbf{y}_{1}=\mathbf{m} G^{\prime}+\mathbf{e}_{1}$ and $\mathbf{y}_{2}=\mathbf{m} G^{\prime}+\mathbf{e}_{2}$; these have the same $\mathbf{m}$.
- Then $\mathbf{y}_{1}+\mathbf{y}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}=\overline{\mathbf{e}}$. This has weight in $[0,2 t]$.
- If $\mathrm{wt}(\overline{\mathbf{e}})=2 t$ :

All zero positions in $\overline{\mathbf{e}}$ are error free in both ciphertexts. Invert $G^{\prime}$ in those columns to recover $\mathbf{m}$ as in previous attack.

- Else: ignore the $2 w=\mathrm{wt}(\overline{\mathbf{e}})<2 t$ positions in $G^{\prime}$ and $\mathbf{y}_{1}$. Solve decoding problem for $k \times(n-2 w)$ generator matrix $G^{\prime \prime}$ and vector $\mathbf{y}_{1}^{\prime}$ with $t-w$ errors; typically much easier.


## Formal security notions

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- However, the schemes as presented are not CCA-II secure:
- Given challenge $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$, Eve can ask for decryptions of anything but $\mathbf{y}$.


## Formal security notions

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- However, the schemes as presented are not CCA-II secure:
- Given challenge $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$, Eve can ask for decryptions of anything but $\mathbf{y}$.
- Eve picks a random code word $\mathbf{c}=\overline{\mathbf{m}} G^{\prime}$, asks for decryption of $\mathbf{y}+\mathbf{c}$.
- This is different from challenge $\mathbf{y}$, so Bob answers.


## Formal security notions

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- However, the schemes as presented are not CCA-II secure:
- Given challenge $\mathbf{y}=\mathbf{m} G^{\prime}+\mathbf{e}$, Eve can ask for decryptions of anything but $\mathbf{y}$.
- Eve picks a random code word $\mathbf{c}=\overline{\mathbf{m}} G^{\prime}$, asks for decryption of $\mathbf{y}+\mathbf{c}$.
- This is different from challenge $\mathbf{y}$, so Bob answers.
- Answer is $\mathbf{m}+\overline{\mathbf{m}}$.
- Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto transform) or (easier) KEM/DEM version: pick random e of weight $t$, use hash(e) as secret key to encrypt and authenticate (for McEliece or Niederreiter).


## Generic attack: Brute force

Given $K$ and $\mathbf{s}=K \mathbf{e}$, find $\mathbf{e}$ with $\mathrm{wt}(\mathbf{e})=t$.


Pick any group of $t$ columns of $K$, add them and compare with $\mathbf{s}$.
Cost:

## Generic attack: Brute force

Given $K$ and $\mathbf{s}=K \mathbf{e}$, find $\mathbf{e}$ with $\mathrm{wt}(\mathbf{e})=t$.


Pick any group of $t$ columns of $K$, add them and compare with $\mathbf{s}$.
Cost: $\binom{n}{t}$ sums of $t$ columns.
Can do better so that each try costs only 1 column addition (after some initial additions).
Cost: $O\binom{n}{t}$ sums of $t$ columns.

Generic attack: Information-set decoding, 1962 Prange


1. Permute $K$ and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation).
2. Then $K^{\prime}=U K P$ for some permutation matrix $P$ and $U$ the matrix that produces systematic form.
3. This updates $\mathbf{s}$ to $U \mathbf{s}$.
4. If $\mathrm{wt}(U \mathbf{s})=t$ then $\mathbf{e}^{\prime}=(00 \ldots 0) \| U \mathbf{s}$.

Output unpermuted version of $\mathbf{e}^{\prime}$.
5. Else return to 1 to rerandomize.

Cost:

Generic attack: Information-set decoding, 1962 Prange


1. Permute $K$ and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation).
2. Then $K^{\prime}=U K P$ for some permutation matrix $P$ and $U$ the matrix that produces systematic form.
3. This updates $\mathbf{s}$ to $U \mathbf{s}$.
4. If $\mathrm{wt}(U \mathbf{s})=t$ then $\mathbf{e}^{\prime}=(00 \ldots 0) \| U \mathbf{s}$.

Output unpermuted version of $\mathbf{e}^{\prime}$.
5. Else return to 1 to rerandomize.

Cost: $O\left(\binom{n}{t} /\binom{n-k}{t}\right)$ matrix operations.

## Lee-Brickell attack



1. Permute $K$ and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation). $\mathbf{s}$ is updated.
2. For small $p$, pick $p$ of the $k$ columns on the left, compute their sum $X \mathbf{p}$. ( $\mathbf{p}$ is the vector of weight $p$ ).
3. If $\mathrm{wt}(\mathbf{s}+X \mathbf{p})=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{p} \|(\mathbf{s}+X \mathbf{p})$.

Output unpermuted version of $\mathbf{e}^{\prime}$.
4. Else return to 2 or return to 1 to rerandomize.

Cost:

## Lee-Brickell attack



1. Permute $K$ and bring to systematic form $K^{\prime}=\left(X \mid I_{n-k}\right)$. (If this fails, repeat with other permutation). $\mathbf{s}$ is updated.
2. For small $p$, pick $p$ of the $k$ columns on the left, compute their sum $X \mathbf{p}$. ( $\mathbf{p}$ is the vector of weight $p$ ).
3. If $\mathrm{wt}(\mathbf{s}+X \mathbf{p})=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{p} \|(\mathbf{s}+X \mathbf{p})$.

Output unpermuted version of $\mathbf{e}^{\prime}$.
4. Else return to 2 or return to 1 to rerandomize.

Cost: $O\left(\binom{n}{t} /\binom{k}{p}\binom{n-k}{t-p}\right)$ [matrix operations $+\binom{k}{p}$ column additions].

## Leon's attack

- Setup similar to Lee-Brickell's attack.
- Random combinations of $p$ vectors will be dense, so have $\mathrm{wt}(\mathbf{s}+X \mathbf{p}) \sim k / 2$.

- Idea: Introduce early abort by checking
$(n-k) \times(n-k)$ identity matrix only $\ell$ positions (selected by set $Z$, green lines in the picture). This forms $\ell \times k$ matrix $X_{Z}$, length- $\ell$ vector $\mathbf{s}_{Z}$.
- Inner loop becomes:

1. Pick $\mathbf{p}$ with $\mathrm{wt}(\mathbf{p})=p$.
2. Compute $X_{Z} \mathbf{p}$.
3. If $\mathbf{s}_{Z}+X_{Z} \mathbf{p} \neq 0$ goto 1 .
4. Else compute $X \mathbf{p}$.
4.1 If $\mathrm{wt}(\mathbf{s}+X \mathbf{p})=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{p} \|(\mathbf{s}+X \mathbf{p})$.

Output unpermuted version of $\mathbf{e}^{\prime}$.
4.2 Else return to 1 or rerandomize $K$.

- Note that $\mathbf{s}_{Z}+X_{Z} \mathbf{p}=0$ means that there are no ones in the positions specified by $Z$. Small loss in success, big speedup.


## Stern's attack

- Setup similar to Leon's and Lee-Brickell's attacks.
- Use the early abort trick, so specify set $Z$.
- Improve chances of finding
 $\mathbf{p}$ with $\mathbf{s}+X_{Z} \mathbf{p}=0$ :
- Split left part of $K^{\prime}$ into two disjoint subsets $X$ and $Y$.
- Let $A=\left\{\mathbf{a} \in \mathbb{F}_{2}^{k / 2} \mid \mathrm{wt}(\mathbf{a})=p\right\}, B=\left\{\mathbf{b} \in \mathbb{F}_{2}^{k / 2} \mid \mathrm{wt}(\mathbf{b})=p\right\}$.
- Search for words having exactly $p$ ones in $X$ and $p$ ones in $Y$ and exactly $w-2 p$ ones in the remaining columns.
- Do the latter part as a collision search: Compute $\mathbf{s}_{Z}+X_{Z} \mathbf{a}$ for all (many) $\mathbf{a} \in A$, sort. Then compute $Y_{z} \mathbf{b}$ for $\mathbf{b} \in B$ and look for collisions; expand.
- Iterate until word with $\mathrm{wt}(\mathbf{s}+X \mathbf{a}+Y \mathbf{b})=2 p$ is found for some $X, Y, Z$.
- Select $p, \ell$, and the subset of $A$ to minimize overall work.


## Running time in practice

2008 Bernstein, Lange, Peters.

- Wrote attack software against original McEliece parameters, decoding 50 errors in a $[1024,524]$ code.
- Lots of optimizations, e.g. cheap updates between $\mathbf{s}_{Z}+X_{Z} \mathbf{a}$ and next value for a; optimized frequency of $K$ randomization.
- Attack on a single computer with a 2.4 GHz Intel Core 2 Quad Q6600 CPU would need, on average, 1400 days ( $2^{58} \mathrm{CPU}$ cycles) to complete the attack.
- About 200 computers involved, with about 300 cores.
- Most of the cores put in far fewer than 90 days of work; some of which were considerably slower than a Core 2.
- Computation used about 8000 core-days.
- Error vector found by Walton cluster at SFI/HEA Irish Centre of High-End Computing (ICHEC).


## Information-set decoding

Methods differ in where the "errors" are allowed to be.
$\longleftarrow \longleftrightarrow ~ n-k \longrightarrow$
Lee-Brickell


Stern
$\square p=p, t-2 p$

Running time is exponential for Goppa parameters $n, k, d$.

## Information-set decoding

Methods differ in where the errors are allowed to be.
$\square$
Lee-Brickell
$\square p-t-p$


| $p$ | $t-p$ |
| :---: | :---: |

Stern
$p p, p=t-2 p$

Ball-collision decoding/Dumer/Finiasz-Sendrier

| $p$ |
| :---: |
| $\longleftarrow k_{1} \longrightarrow \longleftarrow \square q$ |

2011 May-Meurer-Thomae and 2012 Becker-Joux-May-Meurer refine multi-level collision search. No change in exponent for Goppa parameters $n, k, d$.

## Improvements

- Increase $n$ : The most obvious way to defend McEliece's cryptosystem is to increase the code length $n$.
- Allow values of $n$ between powers of 2: Get considerably better optimization of (e.g.) the McEliece public-key size.
- Use list decoding to increase $t$ : Unique decoding is ensured by CCA2-secure variants.
- Decrease key size by using fields other than $\mathbb{F}_{2}$ (wild McEliece).
- Decrease key size \& be faster by using other codes. Needs security analysis: some codes have too much structure.


## More exciting codes

- We distinguish between generic attacks (such as information-set decoding) and structural attacks (that use the structure of the code).
- Gröbner basis computation is a generally powerful tool for structural attacks.
- Cyclic codes need to store only top row of matrix, rest follows by shifts. Quasi-cyclic: multiple cyclic blocks.
- QC Goppa: too exciting, too much structure.
- Interesting candidate: Quasi-cyclic Moderate-Density Parity-Check (QC-MDPC) codes, due to Misoczki, Tillich, Sendrier, and Barreto (2012).
Very efficient but practical problem if the key is reused (Asiacrypt 2016).
- Hermitian codes, general algebraic geometry codes.
- Please help us update https://pqcrypto.org/code.html.

