Twisted Hessian Curves

Tanja Lange
 Technische Universiteit Eindhoven

joint work with
Daniel J. Bernstein
Chitchanok Chuengsatiansup
\& David Kohel
cr.yp.to/papers.html\#hessian

Diffie-Hellman key exchange

Pick some generator P,
ie. some group element (using additive notation here).
Alice's
Bob's
secret key a
secret key 6

\downarrow
Bob's
public key
b P
\{Alice, Bob\}'s \{Bob, Alice\}'s
shared secret $a b P$
shared secret baP

Diffie-Hellman key exchange

Pick some generator P,
ie. some group element
(using additive notation here).
Alice's
Bob's
secret key a secret key b

public key

 b P\{Alice, Bob\}'s \quad Bob, Alice\}'s shared secret $=$ shared secret $a b P$ $b a P$

What does P look like \& how to compute $P+Q$?

Usual lecture on ECC

Can use any field k.
Can use any nonsingular curve
$y^{2}+a_{1} x y+a_{3} y=$
$x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.
"Nonsingular": no $(x, y) \in \bar{k} \times \bar{k}$ simultaneously satisfies
$y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+$ $a_{4} x+a_{6}$ and $2 y+a_{1} x+a_{3}=0$ and $a_{1} y=3 x^{2}+2 a_{2} x+a_{4}$.

Easy to check nonsingularity.
Almost all curves are nonsingular when k is large.

Addition on Weierstrass curve

$v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Disaster if $u_{1}=u_{2}$.
Crypto needs to deal with adversarial inputs.

Doubling on Weierstrass curve

$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.
Disaster if $v_{1}=0$.

In most cases
$\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=$
$\left(u_{3}, v_{3}\right)$ where $\left(u_{3}, v_{3}\right)=$
$\left(\lambda^{2}-u_{1}-u_{2}, \lambda\left(u_{1}-u_{3}\right)-v_{1}\right)$.
$u_{1} \neq u_{2}$, "addition" (alert!):
$\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+1 \mathbf{S}$.
$\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$ and $v_{1} \neq 0$, "doubling" (alert!):
$\lambda=\left(3 u_{1}^{2}+2 a_{2} u_{1}+a_{4}\right) /\left(2 v_{1}\right)$.
Total cost $1 \mathbf{I}+2 \mathbf{M}+2 \mathbf{S}$.

Also handle some exceptions:
$\left(u_{1}, v_{1}\right)=\left(u_{2},-v_{2}\right) ; \infty$ as input.

Fun lecture on ECC (=Edwards)

Change the curve on which Alice and Bob work.
y

$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$.

The Edwards addition law
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$
is a group law for the curve
$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Some calculation required: addition result is on curve; addition law is associative.

Other parts of proof are easy: addition law is commutative;
$(0,1)$ is neutral element;
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$

Can use addition law for doubling. Addition law is strongly unified.

Can use addition law for doubling. Addition law is strongly unified.

Can prove that
the denominators are never 0 .
Addition law is complete.

Can use addition law for doubling. Addition law is strongly unified.

Can prove that
the denominators are never 0 .
Addition law is complete.
The proof relies on
choosing non-square d
in $x^{2}+y^{2}=1+d x^{2} y^{2}$.

Edwards curves are cool

1986 Chudnovsky-Chudnovsky, "Sequences of numbers generated by addition in formal groups and new primality and factorization tests":
"The crucial problem becomes
the choice of the model
of an algebraic group variety,
where computations mod p are the least time consuming."

Most important computations:
ADD is $P, Q \mapsto P+Q$.
DBL is $P \mapsto 2 P$.
"It is preferable to use
models of elliptic curves
lying in low-dimensional spaces,
for otherwise the number of
coordinates and operations is
increasing. This limits us ... to
4 basic models of elliptic curves."
Short Weierstrass:
$y^{2}=x^{3}+a x+b$.
Jacobi intersection:
$s^{2}+c^{2}=1, a s^{2}+d^{2}=1$.
Jacobi quartic: $y^{2}=x^{4}+2 a x^{2}+1$.
Hessian: $x^{3}+y^{3}+1=3 d x y$.
$y^{2}=x^{3}-0.4 x+0.7$

The Weierstrass turtle: old, trusted and slow. Warning: (picture) incomplete!

$x^{2}+y^{2}=1-300 x^{2} y^{2}$

$x^{2}=y^{4}-1.9 y^{2}+1$

The Jacobi-quartic squid: can be extended to
XXYZZR
giant squid.

Hessian curves $X^{3}+Y^{3}+Z^{3}=d X Y Z$

Credited to Sylvester
by 1986 Chudnovsky-Chudnovsky:
$X_{3}=Y_{1} X_{2} \cdot Y_{1} Z_{2}-Z_{1} Y_{2} \cdot X_{1} Y_{2}$,
$Y_{3}=X_{1} Z_{2} \cdot X_{1} Y_{2}-Y_{1} X_{2} \cdot Z_{1} X_{2}$,
$Z_{3}=Z_{1} Y_{2} \cdot Z_{1} X_{2}-X_{1} Z_{2} \cdot Y_{1} Z_{2}$.
2001 Joye-Quisquater:
$2\left(X_{1}: Y_{1}: Z_{1}\right)=$
$\left(Z_{1}: X_{1}: Y_{1}\right)+\left(Y_{1}: Z_{1}: X_{1}\right)$
so can use ADD to double.
"Unified addition formulas,"
helpful against side channels.
But need to permute inputs.

The Hessian-ray: uniform

Mar

Twisted Hessian curves

2009 Bernstein-Kohel-Lange 2015 B-Chuengsatiansup-K-L Permute coordinates, introduce parameter a.
$H / k: a X^{3}+Y^{3}+Z^{3}=d X Y Z$,
with $a\left(27 a-d^{3}\right) \neq 0$.
Use ($0:-1: 1$) as neutral element.
$-\left(X_{1}: Y_{1}: Z_{1}\right)=\left(X_{1}: Z_{1}: Y_{1}\right)$
Addition
$X_{3}=X_{1}^{2} Y_{2} Z_{2}-X_{2}^{2} Y_{1} Z_{1}$,
$Y_{3}=Z_{1}^{2} X_{2} Y_{2}-Z_{2}^{2} X_{1} Y_{1}$,
$Z_{3}=Y_{1}^{2} X_{2} Z_{2}-Y_{2}^{2} X_{1} Z_{1}$.
Fails for doubling.

Rotated addition

$X_{3}^{\prime}=Z_{2}^{2} X_{1} Z_{1}-Y_{1}^{2} X_{2} Y_{2}$,
$Y_{3}^{\prime}=Y_{2}^{2} Y_{1} Z_{1}-a X_{1}^{2} X_{2} Z_{2}$,
$Z_{3}^{\prime}=a X_{2}^{2} X_{1} Y_{1}-Z_{1}^{2} Y_{2} Z_{2}$.
Works for doubling.
Works for any two points if a is not a cube in k.

Complete addition law for twisted Hessian curves.

Addition much faster than on Weierstrass curves.
Doubling not much slower.
Very efficient tripling formulas.

Results

Faster than Weierstrass.

Paper has double-base chain algorithm to use DBL and TPL.

Not good for constant time, fine for signature verification, factorization, math,...

Comparison with Weierstrass showing multiplications saved vs. bitlength of scalar.

Mar2015

Twisted Hessian curves beat
Weierstrass!
First time cofactor 3 helps.

Something completely different

1985 H. Lange-Ruppert:
$A(\bar{k})$ has a complete system
of addition laws, degree $\leq(3,3)$.
Symmetry \Rightarrow degree $\leq(2,2)$.
"The proof is nonconstructive...
To determine explicitly a complete system of addition laws requires tedious computations already in the easiest case of an elliptic curve in Weierstrass normal form."

1985 Lange-Ruppert:
Explicit complete system
of 3 addition laws
for short Weierstrass curves.
Reduce formulas to 53 monomials by introducing extra variables
$x_{i} y_{j}+x_{j} y_{i}, x_{i} y_{j}-x_{j} y_{i}$.
1987 Lange-Ruppert:
Explicit complete system
of 3 addition laws
for long Weierstrass curves.

$$
\begin{aligned}
& Y_{3}^{(2)}=Y_{1}^{2} Y_{2}^{2}+a_{1} X_{2} Y_{1}^{2} Y_{2}+\left(a_{1} a_{2}-3 a_{3}\right) X_{1} X_{2}^{2} Y_{1} \\
& +a_{3} Y_{1}^{2} Y_{2} Z_{2}-\left(a_{2}^{2}-3 a_{4}\right) X_{1}^{2} X_{2}^{2} \\
& +\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) X_{2} Y_{1} \\
& +\left(a_{1}^{2} a_{4}-2 a_{1} a_{2} a_{3}+3 a_{3}^{2}\right) X_{1}^{2} X_{2} Z_{2} \\
& -\left(a_{2} a_{4}-9 a_{6}\right) X_{1} X_{2}\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +\left(3 a_{1} a_{6}-a_{3} a_{4}\right)\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Y_{1} Z_{2} \\
& +\left(3 a_{1}^{2} a_{6}-2 a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}+3 a_{2} a_{6}-a_{4}^{2}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) \\
& -\left(3 a_{2} a_{6}-a_{4}^{2}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(X_{1} Z_{2}-X_{2} Z_{1}\right) \\
& +\left(a_{1}^{3} a_{6}-a_{1}^{2} a_{3} a_{4}+a_{1} a_{2} a_{3}^{2}-a_{1} a_{4}^{2}+4 a_{1} a_{2} a_{6}-a_{3}^{3}-3 a_{3} a_{6}\right) Y_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{4} a_{6}-a_{1}^{3} a_{3} a_{4}+5 a_{1}^{2} a_{2} a_{6}+a_{1}^{2} a_{2} a_{3}^{2}-a_{1} a_{2} a_{3} a_{4}-a_{1} a_{3}^{3}-3 a_{1} a_{3} a_{6}\right. \\
& \left.-a_{1}^{2} a_{4}^{2}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}+4 a_{2}^{2} a_{6}-a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{1} Z_{1} Z_{2}^{2} \\
& +\left(a_{1}^{2} a_{2} a_{6}-a_{1} a_{2} a_{3} a_{4}+3 a_{1} a_{3} a_{6}+a_{2}^{2} a_{3}^{2}-a_{2} a_{4}^{2}\right. \\
& \left.+4 a_{2}^{2} a_{6}-2 a_{3}^{2} a_{4}-3 a_{4} a_{6}\right) X_{2} Z_{1}^{2} Z_{2} \\
& +\left(a_{1}^{3} a_{3} a_{6}-a_{1}^{2} a_{3}^{2} a_{4}+a_{1}^{2} a_{4} a_{6}+a_{1} a_{2} a_{3}^{3}\right. \\
& +4 a_{1} a_{2} a_{3} a_{6}-2 a_{1} a_{3} a_{4}^{2}+a_{2} a_{3}^{2} a_{4} \\
& \left.+4 a_{2} a_{4} a_{6}-a_{3}^{4}-6 a_{3}^{2} a_{6}-a_{4}^{3}-9 a_{6}^{2}\right) Z_{1}^{2} Z_{2}^{2}, \\
& Z_{3}^{(2)}=3 X_{1} X_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)+Y_{1} Y_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right)+3 a_{1} X_{1}^{2} X_{2}^{2} \\
& +a_{1}\left(2 X_{1} Y_{2}+Y_{1} X_{2}\right) Y_{1} Z_{2}+a_{1}^{2} X_{1} Z_{2}\left(2 X_{2} Y_{1}+X_{1} Y_{2}\right) \\
& +a_{2} X_{1} X_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +a_{2}\left(X_{1} Y_{2}+X_{2} Y_{1}\right)\left(X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{1}^{3} X_{1}^{2} X_{2} Z_{2}+a_{1} a_{2} X_{1} X_{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +3 a_{3} X_{1} X_{2}^{2} Z_{1}+a_{3} Y_{1} Z_{2}\left(Y_{1} Z_{2}+2 Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{1} Z_{2}\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +2 a_{1} a_{3} X_{2} Y_{1} Z_{1} Z_{2}+a_{4}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) Z_{1} Z_{2} \\
& +a_{4}\left(X_{1} Z_{2}+X_{2} Z_{1}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) \\
& +\left(a_{1}^{2} a_{3}+a_{1} a_{4}\right) X_{1} Z_{2}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right)+a_{2} a_{3} X_{2} Z_{1}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) \\
& +a_{3}^{2} Y_{1} Z_{1} Z_{2}^{2}+\left(a_{3}^{2}+3 a_{6}\right)\left(Y_{1} Z_{2}+Y_{2} Z_{1}\right) Z_{1} Z_{2} \\
& +a_{1} a_{3}^{2}\left(2 X_{1} Z_{2}+X_{2} Z_{1}\right) Z_{1} Z_{2}+3 a_{1} a_{6} X_{1} Z_{1} Z_{2}^{2} \\
& +a_{3} a_{4}\left(X_{1} Z_{2}+2 X_{2} Z_{1}\right) Z_{1} Z_{2}+\left(a_{3}^{3}+3 a_{3} a_{6}\right) Z_{1}^{2} Z_{2}^{2} .
\end{aligned}
$$

1995 Bosma-Lenstra:
Explicit complete system of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.

1995 Bosma-Lenstra:
Explicit complete system
of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.
Previous slide in this talk:
Bosma-Lenstra $Y_{3}^{\prime}, Z_{3}^{\prime}$.

1995 Bosma-Lenstra:
Explicit complete system
of 2 addition laws
for long Weierstrass curves:
$X_{3}, Y_{3}, Z_{3}, X_{3}^{\prime}, Y_{3}^{\prime}, Z_{3}^{\prime}$
$\in \mathbf{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right.$,
$\left.X_{1}, Y_{1}, Z_{1}, X_{2}, Y_{2}, Z_{2}\right]$.
Previous slide in this talk:
Bosma-Lenstra $Y_{3}^{\prime}, Z_{3}^{\prime}$.
Actually, slide shows
Publish $\left(Y_{3}^{\prime}\right)$, Publish $\left(Z_{3}^{\prime}\right)$,
where Publish introduces typos.

What this means:
For all fields k,
all \mathbf{P}^{2} Weierstrass curves
$E / k: Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=$
$X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}$,
all $P_{1}=\left(X_{1}: Y_{1}: Z_{1}\right) \in E(k)$,
all $P_{2}=\left(X_{2}: Y_{2}: Z_{2}\right) \in E(k)$:
$\left(X_{3}: Y_{3}: Z_{3}\right)$
is $P_{1}+P_{2}$ or (0:0:0);
$\left(X_{3}^{\prime}: Y_{3}^{\prime}: Z_{3}^{\prime}\right)$
is $P_{1}+P_{2}$ or (0:0:0);
at most one of these is $(0: 0: 0)$.

2009 Bernstein-Lange:
For all fields k with $2 \neq 0$, all $\mathbf{P}^{1} \times \mathbf{P}^{1}$ Edwards curves E / k : $X^{2} T^{2}+Y^{2} Z^{2}=Z^{2} T^{2}+d X^{2} Y^{2}$,
all $P_{1}, P_{2} \in E(k)$,
$P_{1}=\left(\left(X_{1}: Z_{1}\right),\left(Y_{1}: T_{1}\right)\right)$,
$P_{2}=\left(\left(X_{2}: Z_{2}\right),\left(Y_{2}: T_{2}\right)\right):$
$\left(X_{3}: Z_{3}\right)$ is $x\left(P_{1}+P_{2}\right)$ or $(0: 0)$;
$\left(X_{3}^{\prime}: Z_{3}^{\prime}\right)$ is $x\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(Y_{3}: T_{3}\right)$ is $y\left(P_{1}+P_{2}\right)$ or $(0: 0)$; $\left(Y_{3}^{\prime}: T_{3}^{\prime}\right)$ is $y\left(P_{1}+P_{2}\right)$ or $(0: 0)$; at most one of these is ($0: 0$).

$$
\begin{aligned}
X_{3} & =X_{1} Y_{2} Z_{2} T_{1}+X_{2} Y_{1} Z_{1} T_{2} \\
Z_{3} & =Z_{1} Z_{2} T_{1} T_{2}+d X_{1} X_{2} Y_{1} Y_{2} \\
Y_{3} & =Y_{1} Y_{2} Z_{1} Z_{2}-X_{1} X_{2} T_{1} T_{2} \\
T_{3} & =Z_{1} Z_{2} T_{1} T_{2}-d X_{1} X_{2} Y_{1} Y_{2} \\
X_{3}^{\prime} & =X_{1} Y_{1} Z_{2} T_{2}+X_{2} Y_{2} Z_{1} T_{1} \\
Z_{3}^{\prime} & =X_{1} X_{2} T_{1} T_{2}+Y_{1} Y_{2} Z_{1} Z_{2} \\
Y_{3}^{\prime} & =X_{1} Y_{1} Z_{2} T_{2}-X_{2} Y_{2} Z_{1} T_{1} \\
T_{3}^{\prime} & =X_{1} Y_{2} Z_{2} T_{1}-X_{2} Y_{1} Z_{1} T_{2}
\end{aligned}
$$

Much, much, much simpler than Lange-Ruppert, Bosma-Lenstra.
Also much easier to prove.

2015 Bernstein-Chuengsatiansup-Kohel-Lange:

Twisted Hessian curves H / k : $a X^{3}+Y^{3}+Z^{3}=d X Y Z$ in $\mathbf{P}^{2}:$
$X_{3}=X_{1}^{2} Y_{2} Z_{2}-X_{2}^{2} Y_{1} Z_{1}$,
$Y_{3}=Z_{1}^{2} X_{2} Y_{2}-Z_{2}^{2} X_{1} Y_{1}$,
$Z_{3}=Y_{1}^{2} X_{2} Z_{2}-Y_{2}^{2} X_{1} Z_{1}$.
$X_{3}^{\prime}=Z_{2}^{2} X_{1} Z_{1}-Y_{1}^{2} X_{2} Y_{2}$,
$Y_{3}^{\prime}=Y_{2}^{2} Y_{1} Z_{1}-a X_{1}^{2} X_{2} Z_{2}$,
$Z_{3}^{\prime}=a X_{2}^{2} X_{1} Y_{1}-Z_{1}^{2} Y_{2} Z_{2}$.
At most one of these is $(0: 0: 0)$.
Coincide if both defined.

