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What does P look like &

how to compute P + Q?



Usual lecture on ECC

Can use any field k.

Can use any nonsingular curve

y2 + a1xy + a3y =

x3 + a2x
2 + a4x + a6.

“Nonsingular”: no (x; y) 2 k̄� k̄

simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x + a4.

Easy to check nonsingularity.

Almost all curves are nonsingular

when k is large.



Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�
P1

�P2

��(P1 + P2)
99999999999999999999 �P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Disaster if u1 = u2.

Crypto needs to deal with

adversarial inputs.



Doubling on Weierstrass curve

v2 = u3 � u

�
P1

�
�2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

Disaster if v1 = 0.



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2); 1 as input.



Fun lecture on ECC (=Edwards)

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)
�

P1 = (x1; y1)
�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1� 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).



Can use addition law for doubling.

Addition law is strongly unified.
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the denominators are never 0.

Addition law is complete.



Can use addition law for doubling.

Addition law is strongly unified.

Can prove that

the denominators are never 0.

Addition law is complete.

The proof relies on

choosing non-square d

in x2 + y2 = 1 + dx2y2.



Edwards curves are cool



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P + Q.

DBL is P 7! 2P .



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax + b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



y2 = x3 � 0:4x + 0:7





x2 + y2 = 1� 300x2y2





x2 = y4 � 1:9y2 + 1





Hessian curves X3+Y 3+Z3=dXY Z

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.



x3 � y3 + 1 = 0:3xy

















Twisted Hessian curves

2009 Bernstein–Kohel–Lange

2015 B–Chuengsatiansup–K–L

Permute coordinates, introduce

parameter a.

H=k : aX3 + Y 3 + Z3 = dXY Z,

with a(27a� d3) 6= 0.

Use (0:�1:1) as neutral element.

�(X1 : Y1 : Z1) = (X1 : Z1 : Y1).

Addition

X3 = X2
1Y2Z2 �X2

2Y1Z1;

Y3 = Z2
1X2Y2 � Z2

2X1Y1;

Z3 = Y 2
1 X2Z2 � Y 2

2 X1Z1:

Fails for doubling.



Rotated addition

X 0

3 = Z2
2X1Z1 � Y 2

1 X2Y2,

Y 0

3 = Y 2
2 Y1Z1 � aX2

1X2Z2,

Z 0

3 = aX2
2X1Y1 � Z2

1Y2Z2.

Works for doubling.

Works for any two points if a is

not a cube in k.

Complete addition law for twisted

Hessian curves.

Addition much faster than on

Weierstrass curves.

Doubling not much slower.

Very efficient tripling formulas.



Results

Faster than Weierstrass.

Paper has double-base chain

algorithm to use DBL and TPL.

Not good for constant time,

fine for signature verification,

factorization, math,: : :

Comparison with Weierstrass

showing multiplications saved

vs. bitlength of scalar.
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Twisted Hessian curves beat

Weierstrass!

First time cofactor 3 helps.



Something completely different

1985 H. Lange–Ruppert:

A(k) has a complete system

of addition laws, degree � (3; 3).

Symmetry ) degree � (2; 2).

“The proof is nonconstructive: : :

To determine explicitly a

complete system of addition laws

requires tedious computations

already in the easiest case

of an elliptic curve

in Weierstrass normal form.”



1985 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for short Weierstrass curves.

Reduce formulas to 53 monomials

by introducing extra variables

xiyj + xjyi, xiyj � xjyi.

1987 Lange–Ruppert:

Explicit complete system

of 3 addition laws

for long Weierstrass curves.
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3 ; Z
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3
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X1; Y1; Z1; X2; Y2; Z2].
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1995 Bosma–Lenstra:

Explicit complete system

of 2 addition laws

for long Weierstrass curves:

X3; Y3; Z3; X
0

3; Y
0

3 ; Z
0

3

2 Z[a1; a2; a3; a4; a6;

X1; Y1; Z1; X2; Y2; Z2].

Previous slide in this talk:

Bosma–Lenstra Y 0

3 ; Z
0

3.

Actually, slide shows

Publish(Y 0

3);Publish(Z 0

3),

where Publish introduces typos.



What this means:

For all fields k,

all P2 Weierstrass curves

E=k : Y 2Z + a1XY Z + a3Y Z
2 =

X3 + a2X
2Z + a4XZ

2 + a6Z
3,

all P1 = (X1 : Y1 : Z1) 2 E(k),

all P2 = (X2 : Y2 : Z2) 2 E(k):

(X3 : Y3 : Z3)

is P1 + P2 or (0 : 0 : 0);

(X 0

3 : Y 0

3 : Z 0

3)

is P1 + P2 or (0 : 0 : 0);

at most one of these is (0 : 0 : 0).



2009 Bernstein–Lange:

For all fields k with 2 6= 0,

all P1 � P1 Edwards curves E=k :

X2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2,

all P1; P2 2 E(k),

P1 = ((X1 : Z1); (Y1 : T1)),

P2 = ((X2 : Z2); (Y2 : T2)):

(X3 : Z3) is x(P1 + P2) or (0 : 0);

(X 0

3 : Z 0

3) is x(P1 + P2) or (0 : 0);

(Y3 : T3) is y(P1 + P2) or (0 : 0);

(Y 0

3 : T 0

3) is y(P1 + P2) or (0 : 0);

at most one of these is (0 : 0).



X3 = X1Y2Z2T1 + X2Y1Z1T2;

Z3 = Z1Z2T1T2 + dX1X2Y1Y2;

Y3 = Y1Y2Z1Z2 �X1X2T1T2;

T3 = Z1Z2T1T2 � dX1X2Y1Y2;

X 0

3 = X1Y1Z2T2 + X2Y2Z1T1;

Z 0

3 = X1X2T1T2 + Y1Y2Z1Z2;

Y 0

3 = X1Y1Z2T2 �X2Y2Z1T1;

T 0

3 = X1Y2Z2T1 �X2Y1Z1T2:

Much, much, much simpler than

Lange–Ruppert, Bosma–Lenstra.

Also much easier to prove.



2015 Bernstein–Chuengsatiansup–

Kohel–Lange:

Twisted Hessian curves H=k :

aX3 + Y 3 + Z3 = dXY Z in P2:

X3 = X2
1Y2Z2 �X2

2Y1Z1;

Y3 = Z2
1X2Y2 � Z2

2X1Y1;

Z3 = Y 2
1 X2Z2 � Y 2

2 X1Z1:

X 0

3 = Z2
2X1Z1 � Y 2

1 X2Y2;

Y 0

3 = Y 2
2 Y1Z1 � aX2

1X2Z2;

Z 0

3 = aX2
2X1Y1 � Z2

1Y2Z2:

At most one of these is (0 : 0 : 0).

Coincide if both defined.


