Twisted Hessian Curves

Tanja Lange

Technische Universiteit Eindhoven

joint work with Daniel J. Bernstein Chitchanok Chuengsatiansup & David Kohel

cr.yp.to/papers.html#hessian

Diffie-Hellman key exchange

Pick some generator P, i.e. some group element (using additive notation here). Alice's Bob's secret key b secret key a Bob's Alice's public key public key bPa.P {Alice, Bob}'s {Bob, Alice}'s shared secret shared secret ab Pb a P

Diffie-Hellman key exchange

Pick some generator P, i.e. some group element (using additive notation here). Alice's Bob's secret key b secret key a Alice's Bob's public key public key bPa P{Alice, Bob}'s {Bob, Alice}'s shared secret shared secret ab Pb a P

What does *P* look like & how to compute P + Q?

Usual lecture on ECC

Can use any field k.

Can use any nonsingular curve $y^2 + a_1xy + a_3y =$ $x^3 + a_2x^2 + a_4x + a_6.$

"Nonsingular": no $(x, y) \in \overline{k} \times \overline{k}$ simultaneously satisfies $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ and $2y + a_1x + a_3 = 0$ and $a_1y = 3x^2 + 2a_2x + a_4$.

Easy to check nonsingularity. Almost all curves are nonsingular when *k* is large.

Addition on Weierstrass curve

Slope $\lambda = (v_2 - v_1)/(u_2 - u_1)$. Disaster if $u_1 = u_2$. Crypto needs to deal with adversarial inputs.

Doubling on Weierstrass curve

$v^2 = u^3 - u$

Slope $\lambda = (3u_1^2 - 1)/(2v_1)$. Disaster if $v_1 = 0$.

In most cases

$$(u_1, v_1) + (u_2, v_2) =$$

 (u_3, v_3) where $(u_3, v_3) =$
 $(\lambda^2 - u_1 - u_2, \lambda(u_1 - u_3) - v_1).$

 $u_1
eq u_2$, "addition" (alert!): $\lambda = (v_2 - v_1)/(u_2 - u_1).$ Total cost 1I + 2M + 1S.

 $(u_1, v_1) = (u_2, v_2) \text{ and } v_1 \neq 0,$ "doubling" (alert!): $\lambda = (3u_1^2 + 2a_2u_1 + a_4)/(2v_1).$ Total cost $1\mathbf{I} + 2\mathbf{M} + 2\mathbf{S}.$

Also handle some exceptions: $(u_1, v_1) = (u_2, -v_2); \infty$ as input.

Fun lecture on ECC (=Edwards)

Change the curve on which Alice and Bob work.

 $x^2 + y^2 = 1 - 30x^2y^2.$ Sum of (x_1, y_1) and (x_2, y_2) is $((x_1y_2+y_1x_2)/(1-30x_1x_2y_1y_2),$ $(y_1y_2-x_1x_2)/(1+30x_1x_2y_1y_2)).$ The Edwards addition law $(x_1, y_1) + (x_2, y_2) =$ $((x_1y_2+y_1x_2)/(1-30x_1x_2y_1y_2),$ $(y_1y_2-x_1x_2)/(1+30x_1x_2y_1y_2))$ is a group law for the curve $x^2 + y^2 = 1 - 30x^2y^2.$

Some calculation required: addition result is on curve; addition law is associative.

Other parts of proof are easy: addition law is commutative; (0, 1) is neutral element; $(x_1, y_1) + (-x_1, y_1) = (0, 1).$

Can use addition law for doubling. Addition law is **strongly unified**.

Can use addition law for doubling. Addition law is **strongly unified**.

Can prove that the denominators are never 0. Addition law is **complete**. Can use addition law for doubling. Addition law is **strongly unified**.

Can prove that the denominators are never 0. Addition law is **complete**.

The proof relies on choosing *non-square d* in $x^2 + y^2 = 1 + dx^2y^2$.

Edwards curves are cool

1986 Chudnovsky–Chudnovsky, "Sequences of numbers generated by addition in formal groups and new primality and factorization tests":

"The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod *p* are the least time consuming."

Most important computations: ADD is $P, Q \mapsto P + Q$. DBL is $P \mapsto 2P$. "It is preferable to use models of elliptic curves lying in low-dimensional spaces, for otherwise the number of coordinates and operations is increasing. This limits us ... to 4 basic models of elliptic curves."

Short Weierstrass: $y^2 = x^3 + ax + b$.

Jacobi intersection: $s^2 + c^2 = 1$, $as^2 + d^2 = 1$. Jacobi quartic: $y^2 = x^4 + 2ax^2 + 1$. Hessian: $x^3 + y^3 + 1 = 3dxy$.

$y^2 = x^3 - 0.4x + 0.7$

$x^2 + y^2 = 1 - 300x^2y^2$

$x^2 = y^4 - 1.9y^2 + 1$

<u>Hessian curves $X^3 + Y^3 + Z^3 = dXYZ$ </u>

Credited to Sylvester by 1986 Chudnovsky–Chudnovsky:

$$X_{3} = Y_{1}X_{2} \cdot Y_{1}Z_{2} - Z_{1}Y_{2} \cdot X_{1}Y_{2},$$

$$Y_{3} = X_{1}Z_{2} \cdot X_{1}Y_{2} - Y_{1}X_{2} \cdot Z_{1}X_{2},$$

$$Z_{3} = Z_{1}Y_{2} \cdot Z_{1}X_{2} - X_{1}Z_{2} \cdot Y_{1}Z_{2}.$$

2001 Joye–Quisquater: $2(X_1 : Y_1 : Z_1) =$ $(Z_1 : X_1 : Y_1) + (Y_1 : Z_1 : X_1)$ so can use ADD to double.

"Unified addition formulas," helpful against side channels. But need to permute inputs.

$x^3 - y^3 + 1 = 0.3xy$

Twisted Hessian curves

2009 Bernstein–Kohel–Lange 2015 B–Chuengsatiansup–K–L Permute coordinates, introduce parameter *a*.

 $H/k: aX^3 + Y^3 + Z^3 = dXYZ$, with $a(27a - d^3) \neq 0$.

Use (0:-1:1) as neutral element. $-(X_1:Y_1:Z_1) = (X_1:Z_1:Y_1).$

Addition

Rotated addition

Works for doubling.

Works for any two points if a is not a cube in k.

Complete addition law for twisted Hessian curves.

Addition much faster than on Weierstrass curves.

Doubling not much slower.

Very efficient tripling formulas.

<u>Results</u>

Faster than Weierstrass.

Paper has double-base chain algorithm to use DBL and TPL.

Not good for constant time, fine for signature verification, factorization, math,...

Comparison with Weierstrass showing multiplications saved vs. bitlength of scalar.

Twisted Hessian curves beat Weierstrass! First time cofactor 3 helps.

Something completely different

1985 H. Lange–Ruppert: $A(\overline{k})$ has a complete system of addition laws, degree $\leq (3, 3)$. Symmetry \Rightarrow degree $\leq (2, 2)$.

"The proof is nonconstructive... To determine explicitly a complete system of addition laws requires tedious computations already in the easiest case of an elliptic curve in Weierstrass normal form." 1985 Lange–Ruppert: Explicit complete system of 3 addition laws for short Weierstrass curves.

Reduce formulas to 53 monomials by introducing extra variables $x_i y_j + x_j y_i$, $x_i y_j - x_j y_i$.

1987 Lange–Ruppert: Explicit complete system of 3 addition laws for long Weierstrass curves.

$$\begin{split} Y_{3}^{(2)} &= Y_{1}^{2} Y_{2}^{2} + a_{1} X_{2} Y_{1}^{2} Y_{2} + (a_{1} a_{2} - 3a_{3}) X_{1} X_{2}^{2} Y_{1} \\ &+ a_{3} Y_{1}^{2} Y_{2} Z_{2} - (a_{2}^{2} - 3a_{4}) X_{1}^{2} X_{2}^{2} \\ &+ (a_{1} a_{4} - a_{2} a_{3})(2X_{1} Z_{2} + X_{2} Z_{1}) X_{2} Y_{1} \\ &+ (a_{1}^{2} a_{4} - 2a_{1} a_{2} a_{3} + 3a_{3}^{2}) X_{1}^{2} X_{2} Z_{2} \\ &- (a_{2} a_{4} - 9a_{6}) X_{1} X_{2} (X_{1} Z_{2} + X_{2} Z_{1}) Y_{1} Z_{2} \\ &+ (3a_{1}^{2} a_{6} - 2a_{1} a_{3} a_{4} + a_{2} a_{3}^{2} + 3a_{2} a_{6} - a_{4}^{2}) X_{1} Z_{2} (X_{1} Z_{2} + 2X_{2} Z_{1}) \\ &+ (3a_{1}^{2} a_{6} - 2a_{1} a_{3} a_{4} + a_{2} a_{3}^{2} + 3a_{2} a_{6} - a_{4}^{2}) X_{1} Z_{2} (X_{1} Z_{2} + 2X_{2} Z_{1}) \\ &- (3a_{2} a_{6} - a_{4}^{2}) (X_{1} Z_{2} + X_{2} Z_{1}) (X_{1} Z_{2} - X_{2} Z_{1}) \\ &+ (a_{1}^{3} a_{6} - a_{1}^{2} a_{3} a_{4} + a_{1} a_{2} a_{3}^{2} - a_{1} a_{4}^{2} + 4a_{1} a_{2} a_{6} - a_{3}^{3} - 3a_{1} a_{3} a_{6}) \\ &- a_{1}^{2} a_{4}^{2} + a_{2}^{2} a_{3}^{2} - a_{2} a_{4}^{2} + 4a_{2}^{2} a_{6} - a_{3}^{2} a_{4} - a_{3} a_{4} - a_{1} a_{3}^{3} - 3a_{1} a_{3} a_{6} \\ &- a_{1}^{2} a_{4}^{2} + a_{2}^{2} a_{3}^{2} - a_{2} a_{4}^{2} + 4a_{2}^{2} a_{6} - a_{3}^{2} a_{4} - 3a_{4} a_{6}) X_{1} Z_{1} Z_{2}^{2} \\ &+ (a_{1}^{4} a_{5} - a_{1} a_{2} a_{3} a_{4} + 3a_{1} a_{3} a_{6} + a_{2}^{2} a_{3}^{2} - a_{2} a_{4}^{2} \\ &+ 4a_{2}^{2} a_{6} - 2a_{3}^{2} a_{4} - 3a_{4} a_{6}) X_{2} Z_{1}^{2} Z_{2} \\ &+ (a_{1}^{3} a_{3} a_{6} - a_{1}^{2} a_{3}^{2} a_{4} + a_{1}^{2} a_{4} a_{6} + a_{1} a_{2} a_{3}^{3} \\ &+ 4a_{2} a_{4} a_{6} - a_{4}^{4} - 6a_{3}^{2} a_{6} - a_{3}^{4} - 9a_{6}^{2}) Z_{1}^{2} Z_{2}^{2} \\ &+ (a_{1}^{3} a_{3} a_{6} - a_{4}^{2} - 6a_{3}^{2} a_{6} - a_{4}^{4} - 9a_{6}^{2}) Z_{1}^{2} Z_{2}^{2} \\ &+ a_{1} (2X_{1} Y_{2} + Y_{2} Y_{1}) + Y_{1} Y_{2} (Y_{1} Z_{2} + Y_{2} Z_{1}) + a_{1} X_{1}^{2} X_{2}^{2} \\ &+ a_{1} (2X_{1} Y_{2} + Y_{2} Y_{1}) (X_{1} Z_{2} + X_{2} Z_{1}) \\ &+ a_{2} (X_{1} Y_{2} + Y_{2} Y_{1}) (X_{1} Z_{2} + X_{2} Z_{1}) \\ &+ a_{3} X_{1} X_{2}^{2} (Y_{1} Z_{2} + Y_{2} Z_{1}) \\ &+ a_{3} X_{1} X_{2}^{2} (Y_{1} Z_$$

1995 Bosma–Lenstra: Explicit complete system of 2 addition laws for long Weierstrass curves: $X_3, Y_3, Z_3, X'_3, Y'_3, Z'_3$ $\in \mathbb{Z}[a_1, a_2, a_3, a_4, a_6, X_1, Y_1, Z_1, X_2, Y_2, Z_2].$ 1995 Bosma–Lenstra: Explicit complete system of 2 addition laws for long Weierstrass curves: $X_3, Y_3, Z_3, X'_3, Y'_3, Z'_3$ $\in \mathbb{Z}[a_1, a_2, a_3, a_4, a_6, X_1, Y_1, Z_1, X_2, Y_2, Z_2].$

Previous slide in this talk: Bosma–Lenstra Y'_3 , Z'_3 .

1995 Bosma–Lenstra: Explicit complete system of 2 addition laws for long Weierstrass curves: $X_3, Y_3, Z_3, X_3', Y_3', Z_3'$ $\in \mathbf{Z}[a_1, a_2, a_3, a_4, a_6,$ $X_1, Y_1, Z_1, X_2, Y_2, Z_2$]. Previous slide in this talk:

Bosma–Lenstra Y'_3, Z'_3 . Actually, slide shows Publish(Y'_3), Publish(Z'_3), where Publish introduces typos. What this means:

For all fields k. all \mathbf{P}^2 Weierstrass curves $E/k: Y^2Z + a_1XYZ + a_3YZ^2 =$ $X^3 + a_2 X^2 Z + a_4 X Z^2 + a_6 Z^3$, all $P_1 = (X_1 : Y_1 : Z_1) \in E(k)$, all $P_2 = (X_2 : Y_2 : Z_2) \in E(k)$: $(X_3:Y_3:Z_3)$ is $P_1 + P_2$ or (0:0:0); $(X'_3:Y'_3:Z'_3)$

is $P_1 + P_2$ or (0:0:0);

at most one of these is (0:0:0).

2009 Bernstein-Lange:

For all fields k with $2 \neq 0$, all $\mathbf{P}^1 \times \mathbf{P}^1$ Edwards curves E/k: $X^2T^2 + Y^2Z^2 = Z^2T^2 + dX^2Y^2$,

all $P_1, P_2 \in E(k)$, $P_1 = ((X_1 : Z_1), (Y_1 : T_1)),$ $P_2 = ((X_2 : Z_2), (Y_2 : T_2)):$

 $(X_3 : Z_3)$ is $x(P_1 + P_2)$ or (0:0); $(X'_3 : Z'_3)$ is $x(P_1 + P_2)$ or (0:0); $(Y_3 : T_3)$ is $y(P_1 + P_2)$ or (0:0); $(Y'_3 : T'_3)$ is $y(P_1 + P_2)$ or (0:0); at most one of these is (0:0).

 $X_3 = X_1 Y_2 Z_2 T_1 + X_2 Y_1 Z_1 T_2$ $Z_3 = Z_1 Z_2 T_1 T_2 + dX_1 X_2 Y_1 Y_2$ $Y_3 = Y_1 Y_2 Z_1 Z_2 - X_1 X_2 T_1 T_2$ $T_3 = Z_1 Z_2 T_1 T_2 - dX_1 X_2 Y_1 Y_2$ $X_3' = X_1 Y_1 Z_2 T_2 + X_2 Y_2 Z_1 T_1,$

 $Z'_{3} = X_{1}X_{2}T_{1}T_{2} + Y_{1}Y_{2}Z_{1}Z_{2},$ $Y'_{3} = X_{1}Y_{1}Z_{2}T_{2} - X_{2}Y_{2}Z_{1}T_{1},$ $T'_{3} = X_{1}Y_{2}Z_{2}T_{1} - X_{2}Y_{1}Z_{1}T_{2}.$

Much, much, much simpler than Lange–Ruppert, Bosma–Lenstra. Also much easier to prove. 2015 Bernstein–Chuengsatiansup– Kohel–Lange:

Twisted Hessian curves H/k: $aX^3 + Y^3 + Z^3 = dXYZ$ in \mathbf{P}^2 :

At most one of these is (0 : 0 : 0). Coincide if both defined.