#### Batch NFS

Tanja Lange Technische Universiteit Eindhoven

joint work with

D. J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

#### Notation

In this talk  $\log L$  means  $(1+o(1))(\log N)^{1/3}(\log\log N)^{2/3}$ . L is often written  $(L_N(1/3))$  or  $(L_N(1/3))^{1+o(1)}$ .

In general,  $\log L_{\mathcal{N}}(\alpha) = (1+o(1))(\log \mathcal{N})^{\alpha}(\log\log \mathcal{N})^{1-\alpha}$ .

lpha=0: polynomial time  $\log L_N(lpha)=(1+o(1))(\log\log N).$  lpha=1: exponential time  $\log L_N(lpha)=(1+o(1))(\log N).$ 

Exponents of L in this talk are limited to  $10^{-6}\mathbf{Z}$ .

# Breaking RSA-1024

2003 Shamir-Tromer, 2003 Lenstra-Tromer-Shamir-Kortsmit-Dodson-Hughes-Leyland, 2005 Geiselmann-Shamir-Steinwandt-Tromer, 2005 Franke-Kleinjung-Paar-Pelzl-Priplata-Stahlke, etc.: RSA-1024 is breakable in a year by an attack machine costing  $<10^9$  dollars.

# Breaking RSA-1024

2003 Shamir-Tromer, 2003 Lenstra-Tromer-Shamir-Kortsmit-Dodson-Hughes-Leyland, 2005 Geiselmann-Shamir-Steinwandt-Tromer, 2005 Franke-Kleinjung-Paar-Pelzl-Priplata-Stahlke, etc.: RSA-1024 is breakable in a year by an attack machine costing  $<10^9$  dollars.

So the Internet switched to RSA-2048, and we no longer care about RSA-1024 security, right?

# Breaking RSA-1024

2003 Shamir-Tromer, 2003 Lenstra-Tromer-Shamir-Kortsmit-Dodson-Hughes-Leyland, 2005 Geiselmann-Shamir-Steinwandt-Tromer, 2005 Franke-Kleinjung-Paar-Pelzl-Priplata-Stahlke, etc.: RSA-1024 is breakable in a year by an attack machine costing  $< 10^9$  dollars.

So the Internet switched to RSA-2048, and we no longer care about RSA-1024 security, right?

Wrong!

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key signed by org's RSA-1024 key

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key signed by org's RSA-1024 key signed by an RSA-2048 key

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key signed by org's RSA-1024 key signed by an RSA-2048 key signed by a root RSA-1024 key

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key signed by org's RSA-1024 key signed by an RSA-2048 key signed by a root RSA-1024 key signed by an RSA-2048 key.

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key signed by org's RSA-1024 key signed by an RSA-2048 key signed by a root RSA-1024 key signed by an RSA-2048 key.

Most "DNSSEC" signatures follow a similar pattern.

Example: The IP address of dnssec-deployment.org is signed by an RSA-1024 key signed by an RSA-2048 key signed by org's RSA-1024 key signed by an RSA-2048 key signed by a root RSA-1024 key signed by an RSA-2048 key.

Most "DNSSEC" signatures follow a similar pattern.

Another example: SSL has used many millions of RSA-1024 keys. Imagine that an attacker has recorded tons of SSL traffic.

#### Users seem unconcerned:

- 1. "The attack machine costs more than this RSA key is worth."
- 2. "The attack machine isn't off-the-shelf; it's only for attackers building ASICs."
- 3. For signatures: "We switch keys every month, and the attack machine takes a year."

#### Users seem unconcerned:

- 1. "The attack machine costs more than this RSA key is worth."
- 2. "The attack machine isn't off-the-shelf; it's only for attackers building ASICs."
- 3. For signatures: "We switch keys every month, and the attack machine takes a year."

Real quote: "DNSSEC signing keys should be large enough to avoid all known cryptographic attacks during the effectivity period of the key."

Continuation of quote: "To date, despite huge efforts, no one has broken a regular 1024-bit key; in fact, the best completed attack is estimated to be the equivalent of a 700-bit key. An attacker breaking a 1024-bit signing key would need to expend phenomenal amounts of networked computing power in a way that would not be detected in order to break a single key. Because of this, it is estimated that most zones can safely use 1024-bit keys for at least the next ten years."

Goal of our "Batch NFS" paper: analyze the asymptotic cost, specifically price-performance ratio, of breaking many RSA keys.

"Many": e.g. millions.

"Price-performance ratio": area-time product for chips.

"RAM" metric (adding two 64-bit integers has same cost as accessing array of size  $2^{64}$ ) is not realistic; "AT" metric is realistic.

"Asymptotic": We systematically suppress polynomial factors. Our speedups are superpolynomial.

Best result known for *one* key: time  $L^{1.185632}$  using chip area  $L^{0.790420}$ ; AT is  $L^{1.976052}$ .

Best result known for *one* key: time  $L^{1.185632}$  using chip area  $L^{0.790420}$ ; AT is  $L^{1.976052}$ .

Our main result for a batch of  $L^{0.5}$  keys: time  $L^{1.022400}$  using chip area  $L^{1.181600}$ ; AT per key is  $L^{1.704000}$ .

Best result known for *one* key: time  $L^{1.185632}$  using chip area  $L^{0.790420}$ ; AT is  $L^{1.976052}$ .

Our main result for a batch of  $L^{0.5}$  keys: time  $L^{1.022400}$  using chip area  $L^{1.181600}$ ; AT per key is  $L^{1.704000}$ .

Our paper also looks more closely at  $L^{o(1)}$ , analyzing asymptotic speedup from early-abort ECM. Results are not what one would guess from 1982 Pomerance.

#### Asymptotic consequences:

- Attack cost per key
  is reduced, so attacker
  can target lower-value keys.
- 2. Primary bottleneck is low-memory factorization—well suited for off-the-shelf graphics cards.
- 3. Attack time is reduced (and can be reduced more), breaking key rotation.

#### Asymptotic consequences:

- 1. Attack cost per key is reduced, so attacker can target lower-value keys.
- 2. Primary bottleneck is low-memory factorization—well suited for off-the-shelf graphics cards.
- 3. Attack time is reduced (and can be reduced more), breaking key rotation.

"Do the asymptotics really kick in before 1024 bits?" — Maybe not, but no basis for confidence.

#### Eratosthenes for smoothness

Sieving small integers i > 0 using primes 2, 3, 5, 7:

| 1 2 3 4 5 6 7 8 9 0 11 12 3 14 15 16 17 18 19 | 2   | 2   |          |
|-----------------------------------------------|-----|-----|----------|
| 4                                             | 22  | 3   | E        |
| 6                                             | 2   | 3   | 5        |
| 8                                             | 222 | 2.2 | <i>(</i> |
| 10                                            | 2   | 33  | 5        |
| 12                                            | 22  | 3   |          |
| 14                                            | 2   | 2   | 7        |
| 15<br>16                                      | 222 | 3   | 5        |
| 18                                            | 2   | 33  |          |
| 19<br>20                                      | 22  |     | 5        |

etc.

# The **Q** sieve

Sieving i and 611 + i for small i using primes 2, 3, 5, 7:

| 1                                                                                                                                                           |               |     |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|----------|
| $\frac{1}{2}$                                                                                                                                               | 2             |     |          |
| 3                                                                                                                                                           | · <del></del> | 3   |          |
| 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 1 5 6 7 8 9 1 1 1 2 3 1 4 1 5 6 7 8 9 1 1 1 2 3 1 4 1 5 6 7 8 9 1 1 1 2 3 1 4 1 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22            |     |          |
| 5                                                                                                                                                           |               |     | 5        |
| 6                                                                                                                                                           | 2             | 3   |          |
| 7                                                                                                                                                           |               |     | 7        |
| 8                                                                                                                                                           | 222           |     |          |
| 9                                                                                                                                                           |               | 33  |          |
| 10                                                                                                                                                          | 2             |     | 5        |
| 11                                                                                                                                                          |               |     |          |
| 12                                                                                                                                                          | 22            | 3   |          |
| 13                                                                                                                                                          |               |     | _        |
| 14                                                                                                                                                          | 2             | 2   | _ 7      |
| 15                                                                                                                                                          |               | 3   | 5        |
| 10<br>17                                                                                                                                                    | 2222          | 2   |          |
| 10                                                                                                                                                          | 2             | 2.2 |          |
| Ιδ<br>10                                                                                                                                                    | 2             | 33  |          |
| 19<br>20                                                                                                                                                    | 22            |     | _        |
| ZU                                                                                                                                                          | 22            |     | <u> </u> |

| 612 | 2 | 2 |   |   | 3 | 3 |   |   |   |   |   |   |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| 613 |   |   |   |   |   |   |   |   |   |   |   |   |
| 614 | 2 |   |   |   |   |   |   |   |   |   |   |   |
| 615 |   |   |   |   | 3 |   |   | 5 |   |   |   |   |
| 616 | 2 | 2 | 2 |   |   |   |   |   |   |   |   | 7 |
| 617 |   |   |   |   |   |   |   |   |   |   |   |   |
| 618 | 2 |   |   |   | 3 |   |   |   |   |   |   |   |
| 619 |   |   |   |   |   |   |   |   |   |   |   |   |
| 620 | 2 | 2 |   |   |   |   |   | 5 |   |   |   |   |
| 621 |   |   |   |   | 3 | 3 | 3 |   |   |   |   |   |
| 622 | 2 |   |   |   |   |   |   |   |   |   |   |   |
| 623 |   |   |   |   |   |   |   |   |   |   |   | 7 |
| 624 | 2 | 2 | 2 | 2 | 3 |   |   |   |   |   |   |   |
| 625 |   |   |   |   |   |   |   | 5 | 5 | 5 | 5 |   |
| 626 | 2 |   |   |   |   |   |   |   |   |   |   |   |
| 627 |   |   |   |   | 3 |   |   |   |   |   |   |   |
| 628 | 2 | 2 |   |   |   |   |   |   |   |   |   |   |
| 629 |   |   |   |   |   |   |   |   |   |   |   |   |
| 630 | 2 |   |   |   | 3 | 3 |   | 5 |   |   |   | 7 |
| 631 |   |   |   |   |   |   |   |   |   |   |   |   |

etc.

Have complete factorization of the congruences  $i \equiv 611 + i$  for some i's.

$$14 \cdot 625 = 2^1 3^0 5^4 7^1$$

$$64 \cdot 675 = 2^6 3^3 5^2 7^0$$

$$75 \cdot 686 = 2^1 3^1 5^2 7^3$$
.

$$=2^83^45^87^4=(2^43^25^47^2)^2.$$

$$\gcd\{611, 14 \cdot 64 \cdot 75 - 2^4 3^2 5^4 7^2\}$$
  
= 47.

$$611 = 47 \cdot 13$$
.

#### The number-field sieve

Generalize  $i \equiv i + N \pmod{N}$   $\rightarrow a \equiv a + bN \pmod{N}$   $\rightarrow a - bm \equiv a - b\alpha \pmod{m - \alpha}$ for root  $\alpha \in \mathbf{C}$ of nonzero integer poly.

For any m can find  $\alpha$  so that factoring  $m-\alpha$  produces factorization of N.

Optimal choice of  $\log m$  is  $(\mu + o(1))(\log N)^{2/3}(\log \log N)^{1/3}$ .

1993 Buhler–Lenstra–Pomerance: Smoothness bound  $L^{0.961500}$ . Sieve  $L^{1.923000}$  pairs (a, b). Find  $L^{0.961500}$  pairs with a-bm and  $a-b\alpha$  smooth. Total RAM time  $L^{1.923000}$ .

1993 Coppersmith: Total RAM time  $L^{1.901884}$  using multiple number fields.

(Multiple number fields don't seem to combine well with AT, factory, et al.)

Sieving is a disaster in realistic cost metric.  $AT \cos L^{2.403750}$ .

Sieving is a disaster in realistic cost metric.  $AT \cos L^{2.403750}$ .

Fix: find smooth using ECM. AT cost  $L^{1.923000}$ .

Sieving is a disaster in realistic cost metric.  $AT \cos L^{2.403750}$ .

Fix: find smooth using ECM.  $AT \cos L^{1.923000}$ .

Linear algebra is also a disaster.  $AT \cos L^{2.403750}$ .

Sieving is a disaster in realistic cost metric.  $AT \cos L^{2.403750}$ .

Fix: find smooth using ECM.  $AT \cos L^{1.923000}$ .

Linear algebra is also a disaster.  $AT \cos L^{2.403750}$ .

Semi-fix: Reduce smoothness bounds to rebalance.

AT cost  $L^{1.976052}$ .

(2001 Bernstein)

#### The factorization factory

1993 Coppersmith:

There exists an algorithm that factors any integer with same # bits as N in RAM time  $L^{1.638587}$ .

Smoothness bound  $L^{0.819290}$ . Smaller than before, so need more (a, b).

Algorithm knows all (a, b) such that a - bm is smooth. Note: one m works for all N. Algorithm uses ECM to check whether  $a - b\alpha_N$  is smooth.

# Factorization factory

Finding this algorithm is slower than running it. Need to precompute all (a, b) such that a - bm is smooth. RAM time  $L^{2.006853}$ .

# The DL situation (See Nadia's talk)

Fixed prime p, DLs in  $\langle g \rangle \subseteq \mathbf{F}_p^*$   $L^{1.923000}$  precomputation to get  $\log_g p_i$ , small primes  $p_i$ . Barbulescu 2013:  $L^{1.232}$  individual  $\log_g p_i$ .

# The DL situation (See Nadia's talk)

Fixed prime p, DLs in  $\langle g \rangle \subseteq \mathbf{F}_p^*$   $L^{1.923000}$  precomputation to get  $\log_g p_i$ , small primes  $p_i$ . Barbulescu 2013:  $L^{1.232}$  individual  $\log_g p_i$ .

Barbulescu "DL factory" 2013:  $L^{2.006853}$  precomputation of smooth a-bm, m depends on  $\log_2 p$ , shared over many big primes p.  $L^{1.638587}$  computation per p (same cost as Coppersmith).  $L^{1.232}$  per individual log.

### Back to factorization factory

Finding this algorithm RAM time  $L^{2.006853}$ .

#### Back to factorization factory

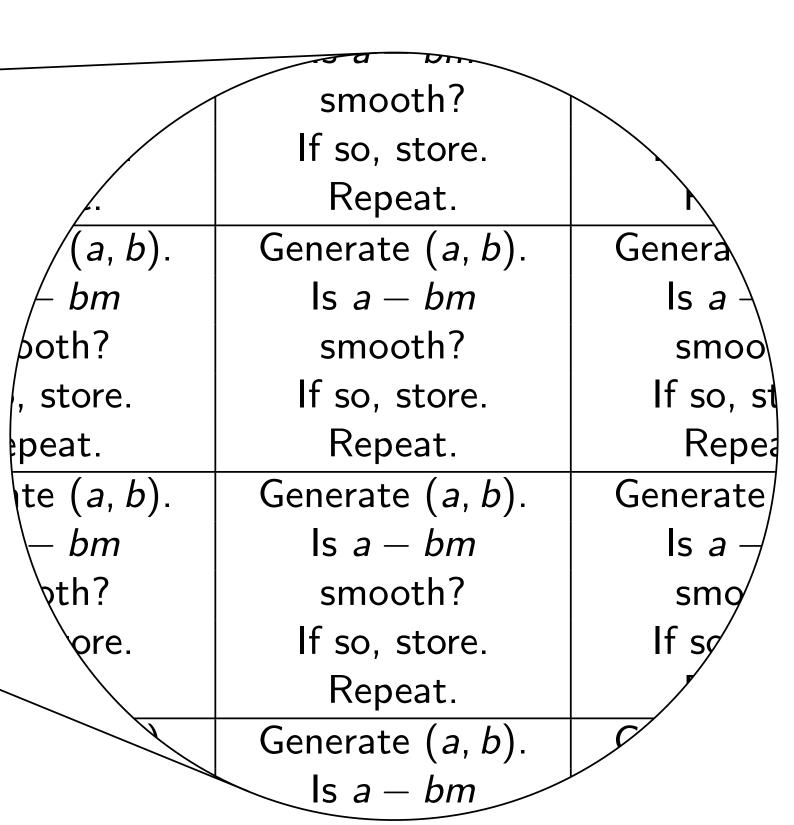
Finding this algorithm RAM time  $L^{2.006853}$ .

Standard conversion of precomputation into batching: if there are enough targets, more than  $L^{0.368266}$ , then precomputation cost becomes negligible.

#### Back to factorization factory

Finding this algorithm RAM time  $L^{2.006853}$ .

Standard conversion of precomputation into batching: if there are enough targets, more than  $L^{0.368266}$ , then precomputation cost becomes negligible.


The big problem: Coppersmith's algorithm has size  $L^{1.638587}$ . Huge AT cost; useless in reality.

#### Batch NFS

Goal: Optimize AT asymptotics.

- 1. Generate (a, b) in parallel. Test a - bm for smoothness.
- 2. Make many copies of each N, close to each (a, b) generator. When smooth a bm is found, test each  $a b\alpha_N$  for smoothness.
- 3. After all smooths are found, reorganize: for each N, bring relevant (a, b) close together.
- 4. Linear algebra.

| Generate (a, b).    | Generate (a, b).    | Generate (a, b).       | Generate (a, b).    |
|---------------------|---------------------|------------------------|---------------------|
| ls a — bm           | ls a bm             | ls a — bm              | ls a − bm           |
| smooth?             | smooth?             | smooth?                | smooth?             |
| If so, store        | If so, store.       | If so, store.          | If so, store.       |
| Repeat.             | Repeat.             | Repeat.                | Repeat.             |
| Generate $(a, b)$ . | Generate $(a, b)$ . | Generate (a, b).       | Generate $(a, b)$ . |
| ls a ← bm           | ls a − bm           | Is $a + bm$            | ls a − bm           |
| smpoth?             | smooth?             | smooth?                | smooth?             |
| If sq, store.       | If so, store.       | If so, store.          | If so, store.       |
| Repeat.             | Repeat.             | Repeat.                | Repeat.             |
| Generate (a, b).    | Generate (a, b).    | Generate $(a, b)$ .    | Generate (a, b).    |
| ls a∕— bm           | Is a − bm           | ls a <del>−</del> / bm | ls a − bm           |
| smooth?             | smooth?             | smooth?                | smooth?             |
| If so, store.       | If so, store.       | If sø, store.          | If so, store.       |
| Repeat.             | Repeat.             | Repeat.                | Repeat.             |
| Generate (a, b).    | Generate (a, b).    | Generate (a, b).       | Generate (a, b).    |
| ls a – bm           | Is a – bm           | Is a — bm              | ls a − bm           |
| smooth?             | smooth?             | smooth?                | smooth?             |
| If so, store.       | If so, store.       | If so, store.          | If so, store.       |
| Repeat.             | Repeat.             | Repeat.                | Repeat.             |



| Is $a - b\alpha_1$    | Is $a-b\alpha_2$      | Is $a-b\alpha_3$      | Is $a - b\alpha_4$    |
|-----------------------|-----------------------|-----------------------|-----------------------|
| smooth?               | smooth?               | smooth?               | smooth?               |
| If so, store.         | If so, store.         | If so, store.         | If so, store.         |
| Send $(a, b)$ right.  | Send (a, b) right.    | Send $(a, b)$ right.  | Send (a, b) down.     |
| Repeat.               | Repeat.               | Repeat.               | Repeat.               |
| Is $a - b\alpha_5$    | Is $a - b\alpha_6$    | Is $a - b\alpha_7$    | Is $a - b\alpha_8$    |
| smooth?               | smooth?               | smooth?               | smooth?               |
| If so store.          | If so, store.         | If so, store.         | If so, store.         |
| Send $(a, b)$ up.     | Send $(a, b)$ left.   | Send $(a, b)$ left.   | Send (a, b) left.     |
| Repeat.               | Repeat.               | Repeat.               | Repeat.               |
| Is $a - b\alpha_9$    | Is $a - b\alpha_{10}$ | Is $a - p\alpha_{11}$ | Is $a - b\alpha_{12}$ |
| smooth?               | smooth?               | smodth?               | smooth?               |
| If so, store.         | If so, store.         | If so,/store.         | If so, store.         |
| Send $(a, b)$ right.  | Send $(a, b)$ right.  | Send $(a, b)$ right.  | Send $(a, b)$ down.   |
| Repeat.               | Repeat.               | Repeat.               | Repeat.               |
| Is $a - b\alpha_{13}$ | Is $a - b\alpha_{14}$ | Is $a - b\alpha_{15}$ | Is $a - b\alpha_{16}$ |
| smooth?               | smooth?               | smooth?               | smooth?               |
| If so, store.         | If so, store.         | If so, store.         | If so, store.         |
| Send $(a, b)$ up.     | Send (a, b) left.     | Send $(a, b)$ left.   | Send (a, b) left.     |
| Repeat.               | Repeat.               | Repeat.               | Repeat.               |

|              | SHIOUTH.             |                        |
|--------------|----------------------|------------------------|
|              | If so, store.        |                        |
| snt.         | Send $(a, b)$ right. | Ser                    |
| /-           | Repeat.              |                        |
| $b\alpha_5$  | Is $a-blpha_6$       | Is a                   |
| oth?         | smooth?              | smo                    |
| , store.     | If so, store.        | If so, s               |
| (a, b) up.   | Send $(a, b)$ left.  | Send (a, l             |
| peat.        | Repeat.              | Repea                  |
| $-b\alpha_9$ | Is $a-blpha_{10}$    | Is <i>a</i> – <i>[</i> |
| oth?         | smooth?              | smod                   |
| store.       | If so, store.        | If so,/                |
| ∖ right.     | Send $(a, b)$ right. | Send (/                |
|              | Danast               | <b>y</b>               |
|              | Repeat.              |                        |
|              | Is $a-blpha_{14}$    |                        |

|                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                                                        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                                        |                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |

So, store. Send (a, b) left. Repeat.

If so, stor Send (a, b) left. Repeat.

|   | Is $a - b\alpha_1$        | Is $a - b\alpha_2$    | Is $a - b\alpha_3$    | Is $a - b\alpha_4$    |
|---|---------------------------|-----------------------|-----------------------|-----------------------|
|   | / smooth?                 | smooth?               | smooth?               | smooth?               |
| / | If so, store.             | If so, store.         | If so, store.         | If so, store.         |
| / | Send $(a, b)$ right.      | Send $(a, b)$ right.  | Send $(a, b)$ right.  | Send $(a, b)$ down.   |
|   | Repeat.                   | Repeat.               | Repeat.               | Repeat.               |
|   | Is $a-b\alpha_5$          | Is $a - b\alpha_6$    | Is $a-b\alpha_7$      | Is $a - b\alpha_8$    |
|   | smooth?                   | smooth?               | smooth?               | smooth?               |
|   | If so, store.             | If so, store.         | If so, store.         | If so, store.         |
|   | Send $(a, b)$ up.         | Send $(a, b)$ left.   | Send $(a, b)$ left.   | Send $(a, b)$ left.   |
|   | Repeat.                   | Repeat.               | Repeat.               | Repeat.               |
|   | Is $a-b\alpha_9$          | Is $a - b\alpha_{10}$ | Is $a - b\alpha_{11}$ | Is $a - b\alpha_{12}$ |
|   | smooth?                   | smooth?               | smooth?               | smooth?               |
|   | If so, store.             | If so, store.         | If so, store.         | If so, store.         |
|   | Send $(a, b)$ right.      | Send $(a, b)$ right.  | Send $(a, b)$ right.  | Send $(a, b)$ down.   |
| \ | Repeat.                   | Repeat.               | Repeat.               | Repeat.               |
| 1 | \ Is $a-blpha_{13}$       | Is $a-blpha_{14}$     | Is $a-blpha_{15}$     | Is $a-b\alpha_{16}$   |
|   | \ smooth?                 | smooth?               | smooth?               | smooth? /             |
|   | $\setminus$ If so, store. | If so, store.         | If so, store.         | If so, store          |
| \ |                           | Send $(a, b)$ left.   | Send $(a, b)$ left.   | Send $(a, b)$         |
|   | Repeat.                   | Repeat.               | Repeat.               | Repe                  |
|   | <u> </u>                  |                       |                       | /                     |

 $\frac{1}{16a-b\alpha_2}$ 

Is a — bo

| Linear algebra for $N_1$          | Linear algebra for $N_2$    | Linear algebra for $N_3$    | Linear algebra for N <sub>4</sub> |
|-----------------------------------|-----------------------------|-----------------------------|-----------------------------------|
|                                   |                             |                             |                                   |
| using congruences                 | using congruences           | using congruences           | using congruences                 |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a,b) (a,b) (a,b)                 |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| Linear algebra for $N_5$          | Linear algebra for $N_6$    | Linear algebra for $N_7$    | Linear algebra for $N_8$          |
| using congruences                 | using congruences           | using congruences           | using congruences                 |
| (a,b)(a,b)(a,b)                   | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a,b)(a,b)(a,b)                   | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| Linear algebra for N <sub>9</sub> | Linear algebra for $N_{10}$ | Linear algebra for $N_{11}$ | Linear algebra for $N_{12}$       |
| using congruences                 | using congruences           | using congruences           | using congruences                 |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| Linear algebra for $N_{13}$       | Linear algebra for $N_{14}$ | Linear algebra for $N_{15}$ | Linear algebra for $N_{16}$       |
| using congruences                 | using congruences           | using congruences           | using congruences                 |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |
| (a, b) (a, b) (a, b)              | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)        | (a, b) (a, b) (a, b)              |

|               | (a, b) (a, b) (a, b)        |        |
|---------------|-----------------------------|--------|
|               | (a, b) (a, b) (a, b)        |        |
|               | (a, b) (a, b) (a, b)        |        |
| $ ho$ r $N_5$ | Linear algebra for $N_6$    | Line   |
| nces          | using congruences           | using  |
| (a, b)        | (a, b) (a, b) (a, b)        | (a, b) |
| (a, b)        | (a, b) (a, b) (a, b)        | (a,b)  |
| (a, b)        | (a, b) (a, b) (a, b)        | (a, b) |
| $r N_9$       | Linear algebra for $N_{10}$ | Linear |
| es            | using congruences           | u,     |
|               | (a, b) (a, b) (a, b)        |        |
|               | (a, b) (a, b) (a, b)        |        |