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Pick some generator P ,

i.e. some group element
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What does P look like &

how to compute P +Q?



The clock
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//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”
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Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;−
p

3=4) = “5:00”.

(−1=2;−
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (−3=5; 4=5).

(3=5;−4=5). (−3=5;−4=5).

(4=5; 3=5). (−4=5; 3=5).

(4=5;−3=5). (−4=5;−3=5).

Many more.



Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸.



Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =



Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =

(sin¸1 cos¸2 + cos¸1 sin¸2;



Addition on the clock:
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neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =

(sin¸1 cos¸2 + cos¸1 sin¸2;

cos¸1 cos¸2 − sin¸1 sin¸2).



Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 − x1x2).

Note (x1; y1) + (−x1; y1) = (0; 1).

kP = P + P + · · ·+ P| {z }
k copies

for k ≥ 0.
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Clocks over finite fields
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Clock(F7) =˘
(x; y) ∈ F7 × F7 : x2 + y2 = 1

¯
.

Here F7 = {0; 1; 2; 3; 4; 5; 6}
= {0; 1; 2; 3;−3;−2;−1}
with +;−;× modulo 7.

E.g. 2 · 5 = 3 and 3=2 = 5 in F7.



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> F7.__eq__ = lambda a,b: \

... a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> F7.__add__ = lambda a,b: \

... F7(a.int + b.int)

>>> F7.__sub__ = lambda a,b: \

... F7(a.int - b.int)

>>> F7.__mul__ = lambda a,b: \

... F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



>>> def scalarmult(n,P):

... if n == 0: \

... return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



Clock cryptography

The “Clock Diffie–Hellman

protocol”:

Standardize large prime p &

base point (x; y) ∈ Clock(Fp).

Alice chooses big secret a,

computes her public key a(x; y).

Bob chooses big secret b,

computes his public key b (x; y).

Alice computes a(b (x; y)).

Bob computes b (a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.
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secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b (X; Y )

xxpppppp

{Alice;Bob}’s
shared secret
ab (X; Y )

=
{Bob;Alice}’s
shared secret
b a(X; Y )
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xxpppppp

{Alice;Bob}’s
shared secret
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=
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shared secret
b a(X; Y )

Warning #1:

Many p are unsafe!

Warning #2:

Clocks aren’t elliptic!

To match RSA-3072 security

need p ≈ 21536.



Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.



Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.

Fix: constant-time code,

performing same operations

no matter what scalar is.



Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:
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neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 − x1x2).



“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.
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“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.

If x2
1 + y2

1 = 1− 30x2
1y

2
1

and x2
2 + y2

2 = 1− 30x2
2y

2
2

then
√

30 |x1y1| < 1

and
√

30 |x2y2| < 1

so 30 |x1y1x2y2| < 1

so 1± 30x1x2y1y2 > 0.



The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1− 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (−x1; y1) = (0; 1).



Edwards curves mod p

Choose an odd prime p.

Choose a non-square d ∈ Fp.

{(x; y) ∈ Fp × Fp :

x2 + y2 = 1 + dx2y2}
is a “complete Edwards curve”.

Roughly p+ 1 pairs (x; y).

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/ \

(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/ \

(1-d*x1*x2*y1*y2)

return x3,y3



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.
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Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.



Elliptic-curve cryptography

Standardize prime p,

safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b (x; y).

Alice computes (and caches)

shared secret ab (x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead (high security):

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab (x; y).

Bob uses shared secret to

verify authenticator and decrypt

packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and

decrypt all subsequent packets.

All of this is so fast that

we can afford to

encrypt all packets.



A safe example

Choose p = 2255 − 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.
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A safe example

Choose p = 2255 − 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

−x2 + y2 = 1− dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
√
−1 · x, using

√
−1 ∈ Fp.



Eliminating divisions

Typical computation:

P 7→ nP .

Decompose into additions:

P;Q 7→ P +Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 − x1x2)=(1− dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as (X : Y : Z)

with x = X=Z and y = Y=Z

for Z 6= 0.



Addition now has to

handle fractions as input:„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=
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Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
− X1

Z1

X2
Z2

1− dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 −X1X2)

Z2
1Z

2
2 − dX1X2Y1Y2

!



i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«



i.e.

„
X1

Z1
;
Y1

Z1

«
+

„
X2

Z2
;
Y2

Z2

«
=

„
X3

Z3
;
Y3

Z3

«
where

F = Z2
1Z

2
2 − dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 −X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



Save multiplications by

eliminating common

subexpressions:

A = Z1 · Z2; B = A2;

C = X1 ·X2;

D = Y1 · Y2;

E = d · C ·D;

F = B − E; G = B + E;

X3 = A · F · (X1 · Y2 + Y1 ·X2);

Y3 = A · G · (D − C);

Z3 = F · G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1−x1x1)=(1−dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1−x2

1)=(1− dx2
1y

2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1−x2

1)=(2− x2
1 − y2

1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 − x2y2)=(x1y2 − x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

E.g. extended: x = X=Z,

y = Y=Z, xy = T=Z.

See “Explicit Formulas Database”

hyperelliptic.org/EFD

https://hyperelliptic.org/EFD


Edwards curves are cool



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1− d),

B = 4=(1− d);

u = (1 + y)=(1− y),

v = u=x = (1 + y)=(x(1− y)).

(Skip a few exceptional points.)

Bv2 = u3 + Au2 + u.

Maps Edwards to Montgomery.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (u− 1)=(u+ 1).



Montgomery curves with the

“Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist

(not always point of order 4).

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u+ a6.

Warning: “Weierstrass” has

different meaning in char 2.



Addition on Weierstrass curve

v2 = u3 + u2 + u+ 1

•
P1

•P2

•−(P1 + P2)
99999999999999999999 •P1 + P2

u
//

vOO

Slope – = (v2 − v1)=(u2 − u1).

Note that u1 6= u2.



Doubling on Weierstrass curve

v2 = u3 − u

•
P1

•
−2P1

lllllllllllllllllllll

• 2P1

u
//

vOO

Slope – = (3u2
1 − 1)=(2v1).



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(–2−u1−u2; –(u1−u3)−v1):

u1 6= u2, “addition” (alert!):

– = (v2 − v1)=(u2 − u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

– = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;−v2); ∞ as input.

Messy to implement and test.



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1− x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



y2 = x3 − 0:4x+ 0:7





x2 + y2 = 1− 300x2y2















Curve selection

How to defend yourself against

an attacker armed with a

mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.



Pick any of these standards.

What all of them achieve:

No known attack will compute

user’s secret key from public key.

(“Elliptic-curve discrete-log

problem for these curves.”)

Example of common criterion:

Standard base point (x; y)

has huge prime “order” ‘,

i.e., exactly ‘ different multiples.

Criteria are computer verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

http://safecurves.cr.yp.to


You do everything right.

You pick the Brainpool curve

brainpoolP256t1:

huge prime p,

y2 = x3 − 3x+ somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



Actually, it’s not.

The attacker sent you (x′; y′)

x′ = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

y′ = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed a(x′; y′) using

Weierstrass formulas.

You encrypted using AES-GCM

with a hash(a(x′; y′)) as a key.



Actually, it’s not.

The attacker sent you (x′; y′)

x′ = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

y′ = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed a(x′; y′) using

Weierstrass formulas.

You encrypted using AES-GCM

with a hash(a(x′; y′)) as a key.

What you never noticed:

(x′; y′) isn’t his key b (x; y);

it isn’t even a point on

brainpoolP256t1;

it’s a point on y2 = x3 − 3x+ 5

of order only 4999.



Your formulas worked for

y2 = x3 − 3x+ 5

because they work for any

y2 = x3 − 3x+ a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

No a6



Why this matters:

(x′; y′) has order 4999.

The attacker tries all 4999

possibilities, compares to the

AES-GCM output,

learns your secret a mod 4999.



Why this matters:

(x′; y′) has order 4999.

The attacker tries all 4999

possibilities, compares to the

AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x′ = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

y′ = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 − 3x+ 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder

theorem” to compute a.



Traditional response to this

security failure:

Blame the implementor!

“You should have checked that

the incoming (x′; y′) was on right

curve and had right order.”



Traditional response to this

security failure:

Blame the implementor!

“You should have checked that

the incoming (x′; y′) was on right

curve and had right order.”

But it’s much better to

design the system without traps.

Never send full (x; y).

Design protocols to compress

one coordinate to 1 or 0 bits!

Drastically limits possibilities

for attacker to choose points.



Always multiply by cofactor.

If curve has c · ‘ points

and base point P has order ‘

then c is called the cofactor

and c · ‘ is called the curve order.

Design protocols to multiply by c.

Always use twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two

different curves. Require both to

have almost-prime order.

These choices are robust

against every common DH

implementation error.



Sage scripts to verify criteria

for ECDLP security

and ECC security:

safecurves.cr.yp.to

Analysis of manipulability of

various curve-generation methods:

safecurves.cr.yp.to/bada55.html

Many computer-verified addition

formulas:

hyperelliptic.org/EFD/

Python scripts for this talk:

ecchacks.cr.yp.to

Crypto library

nacl.cr.yp.to

http://safecurves.cr.yp.to
http://safecurves.cr.yp.to/bada55.html
https://hyperelliptic.org/EFD/
http://ecchacks.cr.yp.to
http://nacl.cr.yp.to/

