
Pairings,

index calculus, and

hyperelliptic curves

Tanja Lange

Technische Universiteit Eindhoven

with some slides by

Daniel J. Bernstein

Pairings

Let (G1;+); (G 01;+) and (GT ; �)
be groups of prime order ` and let

e : G1 � G 01 ! GT
be a map satisfying

e(P + Q;R0) = e(P;R0)e(Q;R0);

e(P;R0 + S0) = e(P;R0)e(P; S0):

Request further that e is

non-degenerate in the first

argument, i.e., if for some P

e(P;R0) = 1 for all R0 2 G 01,

then P is the identity in G1

Such an e is called a

bilinear map or pairing.

Consequences of pairings

Assume that G1 = G 01,

in particular e(P; P) 6= 1:

Then for all triples

(aP; bP; cP) 2 hP i3
one can decide in time

polynomial in log ` whether

c= logP (cP)= logP (aP) logP (bP)=ab

by comparing

e(aP; bP) = e(P; P)ab and

e(P; cP) = e(P; P)c.

This means that the decisional

Diffie-Hellman problem is easy.

The DL system G1 is at most as

secure as the system GT .

Even if G1 6= G 01 one can

transfer the DLP in G1

to a DLP in GT ,

provided one can find an element

P 0 2 G 01 such that the map

P ! e(P; P 0) is injective.

This is easy

if G 01 can be sampled.

Pairings are interesting attack

tool if DLP in GT is easier

to solve; e.g. if GT has index

calculus attacks.

Pairing based protocols I

Joux, ANTS 2000,

one round tripartite key exchange

Let P; P 0 be generators of

G1 and G 01 respectively.

Users A;B and C compute

joint secret from their secret

contributions a; b; c as follows

(A’s perspective):

� Compute and send aP; aP 0.

� Upon receipt of bP and cP 0

put k = (e(bP; cP 0))a.

The resulting element k is the

same for each participant as

k= (e(bP; cP 0))a

= (e(P; P 0))abc

= (e(aP; cP 0))b

= (e(aP; bP 0))c:

� Obvious saving in first step

if G1 = G 01.

� Only one user needs to do

computations in G1 and G 01.

Pairing based protocols II

Boneh and Franklin, Crypto 2001,

ID-based cryptography

(earlier proposal by Sakai-Ohgishi-

Kasahara in 2000 using pairings)

Consequences

� Recipient need not have

a public key;

� Setup requires trusted authority,

TA can compute any secret key.

Let H : f0; 1g� ! G 01
be hash function.

Master secret key of TA is s,

public key is Ppub = sP .

Encryption:

� Compute H(ID) 2 G 01.

� Choose random nonce k,

compute R = kP .

� Compute

c = (e(Ppub; H(ID)))k �m

and send (R; c).

Decryption:

� Obtain secret key

S0 = sH(ID) 2 G 01 from TA.

� Compute c� e(R;S0) = m.

e(R;S0)= e(kP; sH(ID))

= (e(P;H(ID)))ks

= (e(sP;H(ID)))k

= (e(Ppub; H(ID)))k

Security assumptions

Clearly these systems require

hard DLPs in G1; G
0

1; GT .

New assumptions:

Computational Bilinear Diffie-

Hellman Problem (CBDHP):

Compute abcP

given aP; bP; cP and P

Decisional Bilinear Diffie-Hellman

Problem (DBDHP):

Given P; aP; bP; cP and rP

decide whether rP = abcP .

We want to define pairings

G1 � G 01 ! GT
preserving the group structure.

The pairings map from

an elliptic curve G1 � E=Fq
to the multiplicative group of a

finite extension field Fqk .

To embed the points of order `

into Fqk there need to be `-th

roots of unity are in F�
qk

.

The embedding degree k satisfies

k is minimal with ` j qk � 1.

E is supersingular if

E[ps](Fq) = f1g.
t � 0 mod p.

Endomorphism ring of E

is order in quaternion algebra.

Otherwise it is ordinary and one

has E[ps](Fq) = Z=psZ.

These statements hold for all s if

they hold for one.

Example:

y2 + y = x3 + a4x + a6 over F2r

is supersingular, as a point of

order 2 would satisfy yP = yP + 1

which is impossible.

Embedding degrees

Let E=Fp be supersingular and

p � 5, i.e p > 2
p
p.

Hasse’s Theorem states

jtj � 2
p
p.

E supersingular implies

t � 0 mod p, so t = 0 and

jE(Fp)j = p + 1:

Obviously

(p+ 1) j (p2 � 1) = (p+ 1)(p� 1)

so k � 2 for supersingular curves

over prime fields.

Distortion maps

For supersingular curves there

exist homomorphisms

� : E(Fq)! E(Fqk)

so that e(P; �(P)) = ẽ(P; P) 6= 1

for P 6=1.

Such a map is called a

distortion map.

These maps are convenient

for protocol design

because they give a pairing

ẽ : G1 � G1 ! GT
for ẽ(P; P) = e(P; �(P)):

Examples:

1. y2 = x3 + x,

for p � 3 (mod 4).

Distortion map

(x; y) 7! (�x;p�1y).

2. y2 = x3 + a6,

for p � 2 (mod 3).

Distortion map (x; y) 7! (�3x; y)

with �3
3 = 1; �3 6= 1.

In both cases,

#E(Fp) = p + 1.

p = 1000003 � 3 mod 4 and

y2 = x3 � x over Fp.

Has 1000004 = p + 1 points.

P = (101384; 614510) is a point

of order 500002.

nP = (670366; 740819).

Construct Fp2 as Fp(i).

�(P) = (898619; 614510i).

Invoke computer algebra and

compute

e(P; �(P)) = 387265 + 276048i;

e(Q; �(P)) = 609466 + 807033i.

Solve DLP in Fp(i)

to get n = 78654.

(This is the clock from Monday).

Summary of pairings

Menezes, Okamoto, and Vanstone

for E supersingular:

For p = 2 have k � 4.

For p = 3 we k � 6

Over Fp, p � 5 have k � 2.

These bounds are attained.

Not only supersingular curves:

MNT curves are non-supersingular

curves with small k.

Other examples constructed for

pairing-based cryptography –

but small k unlikely to occur for

random curve.

Index calculus in prime fields

Index calculus is a method to

compute discrete logarithms.

Works in many situations but

depends on group (not generic

attack)

p prime, elements of Fp
represented by numbers in

f0; 1; : : : ; p� 1g;
g generator of

multiplicative group.

If h 2 Fp factors as

h = h1 � h2 � � �hn then

h = ga1 � ga2 � � � gan
= ga1+a2+:::+an ,

with hi = gai .

Knowledge of the ai,

i.e., of the discrete logarithms of

hi to base g,

gives knowledge of the discrete

logarithm of h to base g.

If h factors appropriately : : :

If h factors appropriately?!

Ensure by finding h0 with known

DL s.t. h � h0 factors over the hi.

So far: instead of finding one DL

we have to find many DLs and

they have to fit to h and we have

to find a suitable h0 and factor

numbers.

Two different settings –

the integers modulo p and

the integers themselves.

Factorization takes place over Z,

while the left hand side is reduced

modulo p.

Select F = fg1; g2; : : : ; gmg
so that h̄ < p is likely to factor

into powers of gi.

F called factor base.

An equation of form

h̄ = g
n1
1 � gn2

2 � � � gnmm ,

with ni 2 Z is called a relation.

Choose F as small primes , e.g.

g1 = 2; g2 = 3; g3 = 5; : : :

Generate many relations with

known DL of h̃j = gkj

h̃j = gkj = g
nj1
1 � gnj2

2 � � � gnjmm .

(This means discarding

gkj if it does not factor .)

Matrix of relations

For each relation

h̃j = gkj = g
nj1
1 � gnj2

2 � � � gnjmm

enter the row

(nj1nj2 : : : njmjkj)

into a matrix M =
0
BB@

n11 : : : n1i : : : nm1 k1

n21 : : : n2i : : : nm2 k2
...

...
...

...
nl1 : : : nli : : : nlm kl

1
CCA

The i-th column

corresponds to the unknown ai
so that gi = gai .

Computing DLPs

Use linear algebra to solve for ais.

This step does not depend on the

target DLP h = ga.

A single relation h � gk factoring

over F gives the DLP.

Running time (with much more

clever way of finding relations)

O(exp(c log p1=3 log(log p)2=3))

for some c.

This is subexponential in log p!

Notation: write this complexity as

L(1=3; c).

Similar for F2n

Elements of F2n are represented

as F2n =

fPn�1
i=0 cix

ijci 2 F2; 0 � i < ng;
i.e. polynomials of degree less

than n modulo an irreducible

polynomial f(x) 2 F2[x].

Factoring into powers of small

primes is replaced by factoring

into irreducible polynomials of

small degree.

Same approach works for all finite

fields Fpn in

O(exp(c0 log p1=3 log(log p)2=3)).

Smaller p have smaller constant c.

Same approach works for all finite

fields Fpn in

O(exp(c0 log p1=3 log(log p)2=3)).

Smaller p have smaller constant c.

If DLP in F�
qk

is weak

can break pairing system in

target group GT � F�
qk

.

Big computation in 2011:

Hayashi, Shinohara, Shimoyama,

and Takagi solved DLP in F�
36�97

This field was considered

as target field for pairings

over supersingular curves E=F397

with embedding degree 6.

More recent development

Flurry of papers with breathtaking

improvements and new records

by Joux and by Göloglu, Granger,

McGuire, and Zumbrägel (GGMZ)

Joux 2012-12-24, 1175-bit and

1425-bit

Joux 2013-02-11 F�
21778

GGMZ 2013-02-19 F�
21971

Joux 2013-03-22 F�
24080

GGMZ 2013-04-11 F�
26120

Joux 2013-05-21 F�
26168

...

Theoretical results

Barbulescu, Gaudry, Joux, Thomé

2013-06-18

Quasi-polynomial time algorithm

to compute DLs in F�pn .

Strongly depends on p, so only

efficient for small p.

Best speeds for composite n.

Also interesting

Joux 2013-02-20 L(1=4 + o(1); c)

Hyperelliptic curves

Affine equation of hyperelliptic

curve of genus g (with Fq-rational

Weierstraß-point at infinity)

C : y2 + h(x)y = f(x).

h(x); f(x) 2 Fq[x], f monic,

deg f = 2g + 1; degh � g

C non singular:

No (a; b) 2 C(Fq) satisfies

2b + h(a) = 0 and

h0(a)b� f 0(a) = 0.

Examples

Concerning the arithmetic

properties one can consider elliptic

curves as hyperelliptic curves, i.e.

y2 + (a1x + a3)y

= x3 + a2x
2 + a4x + a6

is considered as curve of genus 1.

Curve of genus 2

over field of odd characteristic

y2 = x5 + f3x
3 + f2x

2 + f1x+ f0,

provided f(x) has no multiple

roots.

Curve of genus 2 over R; h = 0

Curve of genus 2 over R; h = 0

Curve of genus 2 over R; h = 0

Points do not form a group!

Group of Divisors

Construct group from points

on curve. Free abelian groups

are in particular groups, and

so associativity etc. follow

immediately.

Construction uses Divisors,

i.e. finite sums of points

(elements of free abelian group),
P

P2C(Fq) nPP; nP 2 Z

with nP = 0 for almost all P .

Addition works component-wise:

(P1 + 2P2 � P3) + (P1 + P2 + P4)

= 2P1 + 3P2 � P3 + P4.

Divisors

Effective divisors are divisors

D =
P

P2C(Fq) nPP; nP 2 Z

for which each nP � 0.

The degree of a divisor is

deg(D) =
P

P2C(Fq) nP .

deg(P1 + 2P2 � P3) = 1 + 2 �
1 = 2; deg(P1 + P2 + P4) = 3;

deg(2P1 + 3P2 � P3 + P4) = 5.

Divisors of degree zero form

a group Div0
C with

component-wise addition.

Principal divisors

Graph F (x; y) = 0 intersects

curve in some points of C(Fq).

Let vP be normalized valuation

P 2 C(Fq), thus vP (F) =

n � 0 iff F has intersection of

multiplicity n with curve at P

(simple intersection has n = 1;

tangent has n � 2).

Negative value = pole multiplicity.

Associate divisor to F 2 Fq(C):

div(F) =
P

P2C(Fq) vP (F)P .

Such divisors are called principal

divisors PrincC . One can show

that they have degree zero.

Curve of genus 2 over R; h = 0

P1

P2

Q1

Q2

Points on red line (�61) form

principal divisor

Points on green line (�21) form

principal divisor

Here only F (x; y) = y � k(x).

Divisor class group

Factor group of degree zero

divisors Div0
C modulo principal

divisors.

Constructs divisor class group of

degree zero: Pic0
C = Div0

C=PrincC .

So far working over Fq.

First definition:

Fq-rational elements Pic0
C(Fq)

remain fixed under Frobenius, i.e.

q-th powers of all coordinates.

Not each point needs

to remain fixed for that

(sum can be rearranged).

Representation – elliptic curves

Elliptic curve always has third

point on a non-vertical line.

By reduction modulo principal

divisors (lines) one can thus

reduce any divisor to just P �1
or the neutral element.

The isomorphism

Pic0
E(Fqk)! E(Fqk),

P �1 7! P; 0 7! 1
shows that above construction

gives a group on the points of E

together with the point at infinity.

Example: E(R); h = 0

y 2 = x3 − x

P
R

Example: E(R); h = 0

y 2 = x3 − x

P
R

Q

F

div(F (x; y)) = P + Q + R � 31

Example: E(R); h = 0

y 2 = x3 − x

P
R

Q

FF G
−Q = P + R

div(F (x; y)) = P + Q + R � 31
div(G(x; y)) = Q + (�Q)� 21

Reduced divisors

Divisor D is semi-reduced if

D =
mX
i=1

Pi2C(Fq)nf1g

Pi �m1

and Pi 6= �Pj for i 6= j

(no restriction on # points).

Divisor D is reduced if

it is semi-reduced and m � g.

Important for representation:

Each divisor class has a unique

reduced representative.

Curve of genus 2 over R; h = 0

P1

P2

Q1

Q2

Curve of genus 2 over R; h = 0

P1

P2

Q1

Q2
F

Points on red line (�61) form

principal divisor

Curve of genus 2 over R; h = 0

P1

P2

Q1

Q2
FF

−R1

−R2

P1 + P2 + (�R1) + (�R2) +Q1 +

Q2 � 61 = div(F)

Curve of genus 2 over R; h = 0

P1

P2

Q1

Q2
FF

−R1

−R2

−R1

−R2

R1

R2

(P1 + P2 � 21)

+ (Q1 + Q2 � 21)

= R1 + R2 � 21

Still need compact representation.

Idea: use polynomials to represent

divisors,

ignore 1 – multiplicity dictated

by affine part.

Let semi-reduced

D =
Pm

i=1 Pi �m1
with Pi = (xi; yi).

Put u(x) =
Qm

i=1(x � xi)

and define v by v(xi) = yi
with multiplicity (latter gives

conditions on derivative of v).

deg(v) < deg(u) = m.

Reduced divisor: deg(u) � g.

Mumford Representation

Easy characterization for field of

definition: Class D defined over

Fq has u; v 2 Fq[x].

Divisor classes can be represented

by reduced divisors

) each class can be represented

by two polynomials

[u(x); v(x)];u; v 2 Fq[x];

u monic, deg v< degu�g;
ujv2 + vh� f:

Alternative viewpoint:

Define group on [u(x); v(x)] with

conditions as above, according to

algorithm on next slide.

Composition (Cantor/Koblitz)

IN: [u1; v1]; [u2; v2];

C : y2 + h(x)y = f(x)

OUT: [u; v] reduced with

compute d1 = gcdfu1; u2g
= e1u1 + e2u2;

compute

d = gcdfd1; v1 + v2 + hg
= c1d1 + c2(v1 + v2 + h)

let s1 = c1e1; s2 = c1e2; s3 = c2

u = u1u2
d2

v =
s1u1v2+s2u2v1+s3(v1v2+f)

d mod u

This result [u; v] corresponds to a

semireduced divisor.

Reduction (Cantor/Koblitz)

IN: [u1; v1]; [u2; v2];

C : y2 + h(x)y = f(x)

OUT: [u; v] reduced with

compute d1 = gcdfu1; u2g,
d = c1d1 + c2(v1 + v2 + h)

let s1 = c1e1; s2 = c1e2; s3 = c2

u = u1u2
d2

v =
s1u1v2+s2u2v1+s3(v1v2+f)

d mod u

let u0 = f�vh�v2

u

v0 = (�h� v) mod u0

if degu0 > g put u = u0; v = v0

repeat u0 step

make u monic.

Arithmetic a la Pierrick Gaudry

ePrint Report 2005/314

Fast genus 2 arithmetic based on

Theta functions

Needs full 2-torsion group, i.e.

cofactor 16.

Shows that approach valid over

general fields.

ADD + DBL = 25M,

no inversion!!!

(cf. affine ADD: 22M + 3S + 1I,

DBL: 22M + 5S + 1I)

faster than Montgomery form

elliptic curves.

Tate-Lichtenbaum pairing I

Pic0
C(Fqk)[`] :

divisor classes on C of order `

defined over Fqk .

D̄1 2 Pic0
C(Fqk)[`]) 9FD1

such

that `D1 � div(FD1
), where D1

represents the class D̄1.

Let D̄2 2 Pic0
C(Fqk) be

represented by D2 with

support(D2) \ support(D1) = ;:
Tate-Lichtenbaum pairing

T`(D̄1; D̄2) = FD1
(D2)

=

Qn
i=1 FD1

(Pi)Qn
j=1 FD1

(Qj)

for D2 =
Pn

i=1 Pi �
Pn

j=1 Qj .

Tate-Lichtenbaum pairing II

This

T`(D̄1; D̄2) = FD1
(D2)

defines a bilinear and

non-degenerate map T` :

Pic0
C(Fqk)[`]�Pic0

C(Fqk)=`Pic0
C(Fqk)

! F�
qk
=F�`

qk

as `-folds are in the kernel of T`.

Namely, if D̄2 = [`]D̄3 then

FD1
(D2) = FD1

(D3)` = 1:

To achieve unique value in

Fqk rather than class do final

exponentiation

T̃` = T`(D̄1; D̄2)(qk�1)=`:

Tate-Lichtenbaum pairing III

For elliptic curves use

isomorphism

Pic0
E(Fqk) �= E(Fqk)

to define pairing on points

T`(P;Q), with D1 = P �1,

D2 = (Q + R)� R for some R.

Build F iteratively by Miller’s

algorithm (double-and-add).

Often

T` : E(Fq)[`]�E(Fqk)=`E(Fqk)! F�
qk
=F�`

qk
:

Miller’s algorithm

IN: ` =
Pn�1

i=0 `i2
i, P;Q + R;R

OUT: T`(P;Q)

T P , F 1

for i = n� 2 downto 0 do

Calculate l and v in doubling

T 2T

F F 2�l(Q+R)v(R)=(l(R)v(Q+R))

if `i = 1 then

Calculate l and v in addition

T + P

T T + P

F F �l(Q+R)v(R)=(l(R)v(Q+R))

return F

Weil pairing

For elliptic curve E define

W` : E(Fq)[`]� E(Fq)[`]! �`,

(P;Q)7!(FP�1(DQ))=(FQ�1(DP)),

where �` is the multiplicative

groups of the `-th roots of unity

in the algebraic closure Fq of Fq.

Obviously, W`(P; P) = 1.

Weil pairings � two-fold

application of Tate-Lichtenbaum

pairing, note Q 2 E(Fqk).

If k = 1 then the Weil pairing is

trivial & one needs to use larger

field.

Edwards are great for : : :

: : : fast implementations

of scalar multiplication nP .

: : : lazy implementations

of scalar multiplication nP .

: : : secure implementations

of scalar multiplication nP .

: : : teaching elliptic curves.

: : : everything

Edwards are great for : : :

: : : fast implementations

of scalar multiplication nP .

: : : lazy implementations

of scalar multiplication nP .

: : : secure implementations

of scalar multiplication nP .

: : : teaching elliptic curves.

: : : everything?

How about pairings? Loop

shortening etc. does not depend

on curve representation; but how

to compute the Miller function?

How to compute the analogue of

the line functions?

Geometric addition law

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

Would like to find

function gR;P depending

on input points P;R with

div(gR;P)= div(f1=f2)

= R + P � (0; 1)� (R + P):

Equation has degree 4

E : x2 + y2 = 1 + dx2y2.

Bezout:

4 deg(f) intersection points

of E and graph of f .

deg(fi) = 1: gives 4 points;

need to eliminate 2 out of each.

deg(fi) = 2: gives 8 points;

could offer enough freedom of

cancellation.

Problem: conic is determined by

5 points; not enough control over

intersection points.

Interlude

Projective Edwards curves

Z2(X2 + Y 2) = Z4 + dX2Y 2

have points (X : Y : Z).

Affine (x; y) maps to (X : Y : 1).

Other points must have Z = 0:

02(X2 + Y 2) = 04 + dX2Y 2,

thus 0 = dX2Y 2.

This gives 2 points:

Ω1 = (0 : 1 : 0), Ω2 = (1 : 0 : 0).

No trouble with arithmetic:

these are singular & blow up

to two points over k(
p
d).

Conic sections

Solution: Ω1 and Ω2 are singular

and have multiplicity 2.

Determine conic via 5 points:

P1; P2; (0;�1);Ω1, and Ω2.

This has shape

f1=cZ2(Z2+Y Z)+cXY XY +cXZXZ,

where (cZ2 : cXY : cXZ) 2 P2(K)

depend on P1 and P2.

These count for

7 intersection points,

only one more point R.

Divisor of f1 is

P1 + P2 + (0;�1) + Ω1 + Ω2 + R.

Use f2 to “replace”

(0;�1) by (0; 1) and

�R by P1 + P2 = (X3 : Y3 : Z3).

Put f2 = l1 � l2, with

l1 = Z3Y � Y3Z and l2 = X.

These also eliminate

Ω1 and Ω2, thus

div(f1=f2) = P1 +P2�P3� (0; 1)

Theorem

If P1 6= P2, P1 6= (0; 1)0 and

P2 6= (0; 1)0, then

cZ2 = X1X2(Y1Z2 � Y2Z1);

cXY = Z1Z2(X1Z2 �X2Z1+

X1Y2 �X2Y1);

cXZ= X2Y2Z
2
1 �X1Y1Z

2
2 +

Y1Y2(X2Z1 �X1Z2):

If P1 6= P2 = (0; 1)0, then

cZ2 = �X1; cXY = Z1; cXZ = Z1:

If P1 = P2, then

cZ2 = X1Z1(Z1 � Y1);

cXY = dX2
1Y1 � Z3

1 ;

cXZ= Z1(Z1Y1 � aX2
1):

Addition over R, d < 0

b

b

b

b

b b

P1

P2

P3 −P3L1,P3

C

E−30

O

O′

Doubling over R, d < 0

b

b

b

b b

P1

P3 −P3L1,P3

C

E−30

O

O′

Addition over R, d > 1

b

b

b

b

bb

P1

P2

C

E2O

O′

P3−P3 L1,P3

Doubling over R, d > 1

b

b

b

b b

P1

E2O

O′

C

P3 −P3

L1,P3

Addition over R, 0 < d < 1

b

b

b

b

b b

P1

P2

C

O′

P3

−P3L1,P3

Doubling over R, 0 < d < 1

b

b

b

b b

O

O′

P1

C

P3
−P3

L1,P3

Summary of other attacks

Definition of embedding degree

does not cover all attacks.

For Fpn watch out that pairing

can map to Fpkm with m < n.

Watch out for this when selecting

curves over Fpn !

Anomalous curves:

If E=Fp has #E(Fp) = p

then transfer E(Fp) to (Fp;+).

Very easy DLP.

Not a problem for Koblitz curves,

attack applies to

order-p subgroup.

Weil descent:

Maps DLP in E over Fpmn

to DLP on variety J over Fpn .

J has larger dimension; elements

represented as polynomials of low

degree.) index calculus.

This is efficient if dimension of J

is not too big.

Particularly nice to compute

with J if it is the Jacobian of a

hyperelliptic curve C.

For genus g get complexity

Õ(p
2� 2

g+1) with the factor

base described before, since

polynomials have degree � g.

