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Cryptography

Let’s understand what our

browsers do.



Schoolbook RSA

Pick primes p; q of same

bitlength,

at least 512 bits

(2048 to feel secure).

Compute N = p � q.

Compute �(N) = (p� 1)(q � 1).

Pick e with gcdfe; �(N)g = 1.

Compute e with

ed � 1 (mod �(N)):

Public key is (e;N),

secret key is d.

Some systems keep p and q,

to speed up decryption (CRT).



Encryption of message m < N:

Compute c = me (mod N).

Decryption of ciphertext c:



Encryption of message m < N:

Compute c = me (mod N).

Decryption of ciphertext c:

Compute

cd � (me)d �mk�(N)+1 �m

modulo N.



Encryption of message m < N:

Compute c = me (mod N).

Decryption of ciphertext c:

Compute

cd � (me)d �mk�(N)+1 �m

modulo N.

Signature on message m:

Uses cryptographic hash function

h : f0; 1g� ! Z=N

Compute

s = (h(m))d (mod N).

Verify signature by comparing

h(m) with se (mod N).



Problems with schoolbook RSA

Encryption is deterministic:

� attacker can test candidate

message;

� repeated messages are

recognized.

Small e is dangerous for small m

(no effect of modular reduction).

More number-theoretic fun, if A

sends same message to B,C, D,

who all use e = 3.

Encryption is homomorphic:

encryption of m1m2 is

c1c2 (mod N).



Modern cryptography:

allow attacker to use oracles

for decryption or signatures.

Can query anything

except for target.

Use this to decrypt c:



Modern cryptography:

allow attacker to use oracles

for decryption or signatures.

Can query anything

except for target.

Use this to decrypt c:

Pick random m0.

Ask oracle to decrypt

c0 = (m0)ec (mod N).

Get message by dividing my m0.



RSA-OAEP

Optimal asymmetric encryption

padding, included in PKCS #1v2.

Formats message (before RSA).

Formatting unlikely

to survive multiplication.

If format is incorrect

decryption will fail.

Let n = blog2 Nc.
Algorithm uses parameters k0; k1,

messages are in f0; 1gn�k0�k1 .

Uses two hash functions G;H:

G : f0; 1gk0 ! f0; 1gn�k0

H : f0; 1gn�k0 ! f0; 1gk0 .



1. Pad m with k1 zeros.

2. Pick random r 2 f0; 1gk0 .

3. Compute

X = m00 : : : 0� G(r).

4. Compute Y = r �H(X).

5. Output X; Y .

Credit: Ozga at en.wikipedia



What does your browser do?

1. Check X.509 certificate:

RSA signature verification.

2. OAEP format

random message m;

3. RSA encrypt

resulting message M = X; Y

(interpreted as number mod N).

4. Send ciphertext to server.

5. Derive encryption and

authentication keys from m.

6. Use these for the bulk

encryption.

Google uses RC4 for encryption;

other common choice: AES.



Authenticated encryption

Authentication key computes

tag on message so that

any change makes tag invalid.

Cannot prove authenticity

to third party.

Convinces owners of secret key

that they are communicating

with one another.

Typical examples:

� RC4-HMAC (keyed-hash

message authentication code)

� AES-GCM (Galois Counter

Mode)



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



Examples of points on this curve:
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Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.
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3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.
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x = sin�, y = cos�.



Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =



Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;



Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



Adding two points corresponds

to adding the angles �1 and �2.

Angles modulo 360� are a group,

so points on clock are a group.

Neutral element: angle � = 0;

point (0; 1); “12:00”.

The point with � = 180�

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with �

is point with ��
since � + (��) = 0.

There are many more points

where angle � is not “nice.”



Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 � x1x2).

Note (x1; y1) + (�x1; y1) = (0; 1).

kP = P + P + � � �+ P| {z }
k copies

for k � 0.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) =



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).



Clocks over finite fields
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Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with +;�;� modulo 7.



Larger example: Clock(F1000003).

Examples of clock addition:

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).

17(1000; 2) = (951405; 877356).

With 30 clock additions

we computed

n(1000; 2) = (947472; 736284)

for some 6-digit n.

Can you figure out n?



Clock cryptography

Standardize a large prime p

and some (X; Y ) 2 Clock(Fp).

Alice chooses big secret a.

Computes her public key a(X; Y ).

Bob chooses big secret b.

Computes his public key b(X; Y ).

Alice computes a(b(X; Y )).

Bob computes b(a(X; Y )).

I.e., both obtain (ab)(X; Y ).

They use this shared value

to encrypt with AES-GCM etc.



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b(X; Y )

xxpppppp

fAlice;Bobg’s
shared secret
ab(X; Y )

=
fBob;Aliceg’s
shared secret
ba(X; Y )



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b(X; Y )

xxpppppp

fAlice;Bobg’s
shared secret
ab(X; Y )

=
fBob;Aliceg’s
shared secret
ba(X; Y )

Warning: Clocks aren’t elliptic!

Can attack clock cryptography,

e.g., compute a from public

key, by combining congruences.

To match RSA-3072 security

need p � 21536.



Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.
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“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1� 30x2
1y

2
1

and x2
2 + y2

2 = 1� 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1

so 30 jx1y1x2y2j < 1

so 1� 30x1x2y1y2 > 0.



The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1� 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).



More Edwards curves

Fix an odd prime power q.

Fix a non-square d 2 Fq.

f(x; y) 2 Fq � Fq :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.



Denominators are never 0.
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“x2 + y2 > 0” doesn’t work.
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and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

= x2
1 + y2

1 � 2x1y1



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

= x2
1 + y2

1 � 2x1y1

= (x1 � y1)2.



Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.



Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.



Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.

Case 3: x2 + y2 = x2 � y2 = 0.

Then x2 = 0 and y2 = 0,

contradiction.



Using ECC sensibly

Typical starting point:

Client knows secret key a

and server’s public key b(X; Y ).

Client computes (and caches)

shared secret ab(X; Y ).

Client has packet for server.

Generates unique nonce.

Uses shared secret to encrypt

and authenticate packet.

Total packet overhead:

24 bytes for nonce,

16 bytes for authenticator,

32 bytes for client’s public key.



Server receives packet,

sees client’s public key a(X; Y ).

Server computes (and caches)

shared secret ab(X; Y ).

Server uses shared secret

to verify authenticator

and decrypt packet.

Client and server encrypt,

authenticate, verify, and decrypt

all subsequent packets

in the same way,

using the same shared secret.



Easy-to-use packet protection:

crypto_box from

nacl.cace-project.eu.

High-security curve (Curve25519).

High-security implementation

(e.g., no secret array indices).

Extensive code validation.

Server can compute shared secrets

for 1000000 new clients

in 40 seconds of computation

on a Core 2 Quad.

Not much hope for attacker

if ECC user is running this!



Eliminating divisions

Typical computation:

P 7! nP .

Decompose into additions:

P;Q 7! P + Q.

Addition (x1; y1) + (x2; y2) =

((x1y2 + y1x2)=(1 + dx1x2y1y2),

(y1y2 � x1x2)=(1� dx1x2y1y2))

uses expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x; y) as

(X : Y : Z) with x = X=Z and

y = Y=Z for Z 6= 0.



Addition now has to

handle fractions as input:�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�
=

 X1
Z1

Y2
Z2

+ Y1
Z1

X2
Z2

1 + dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
� X1

Z1

X2
Z2

1� dX1
Z1

X2
Z2

Y1
Z1

Y2
Z2

!
=

 
Z1Z2(X1Y2 + Y1X2)

Z2
1Z

2
2 + dX1X2Y1Y2

,

Z1Z2(Y1Y2 �X1X2)

Z2
1Z

2
2 � dX1X2Y1Y2

!



i.e.

�
X1

Z1
;
Y1

Z1

�
+

�
X2

Z2
;
Y2

Z2

�

=

�
X3

Z3
;
Y3

Z3

�
where

F = Z2
1Z

2
2 � dX1X2Y1Y2,

G = Z2
1Z

2
2 + dX1X2Y1Y2,

X3 = Z1Z2(X1Y2 + Y1X2)F ,

Y3 = Z1Z2(Y1Y2 �X1X2)G,

Z3 = FG.

Input to addition algorithm:

X1; Y1; Z1; X2; Y2; Z2.

Output from addition algorithm:

X3; Y3; Z3. No divisions needed!



Save multiplications by

eliminating common

subexpressions:

A = Z1 � Z2; B = A2;

C = X1 �X2;

D = Y1 � Y2;

E = d � C �D;

F = B � E; G = B + E;

X3 = A � F � (X1 � Y2 + Y1 �X2);

Y3 = A � G � (D � C);

Z3 = F � G.

Cost: 11M + 1S + 1D.

Can do better: 10M + 1S + 1D.



Faster doubling

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1+dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x2

1)=(1� dx2
1y

2
1)).

x2
1 + y2

1 = 1 + dx2
1y

2
1 so

(x1; y1) + (x1; y1) =

((2x1y1)=(x2
1 + y2

1),

(y2
1�x2

1)=(2� x2
1 � y2

1)).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.

Useful: many doublings in ECC.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.



More addition strategies

Dual addition formula:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Low degree, no need for d.

Warning: fails for doubling!

Is this really “addition”?

Most EC formulas have failures.

More coordinate systems:

Inverted: x = Z=X, y = Z=Y .

Extended: x = X=Z, y = Y=T .

Completed: x = X=Z, y = Y=Z,

xy = T=Z.



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist.

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.



Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�P1

�P2

��(P1 + P2)
99999999999999999999 �P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2.



Doubling on Weierstrass curve

v2 = u3 � u

�P1
� �2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2);

inputs at 1.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

v2 = u3 + (A=B)u2 + (1=B2)u.

Maps Edwards to Weierstrass.

Compatible with point addition!

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2 +y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



y2 = x3 � 0:4x + 0:7





x2 + y2 = 1� 300x2y2














