Pairings and DLP-III

Tanja Lange

Technische Universiteit Eindhoven

Pairings

Let $\left(G_{1},+\right),\left(G_{1}^{\prime},+\right)$ and $\left(G_{T}, \cdot\right)$
be groups of prime order ℓ and let
$e: G_{1} \times G_{1}^{\prime} \rightarrow G_{T}$
be a map satisfying
$e\left(P+Q, R^{\prime}\right)=e\left(P, R^{\prime}\right) e\left(Q, R^{\prime}\right)$,
$e\left(P, R^{\prime}+S^{\prime}\right)=e\left(P, R^{\prime}\right) e\left(P, S^{\prime}\right)$.
Request further that e is non-degenerate in the first argument, i.e., if for some P $e\left(P, R^{\prime}\right)=1$ for all $R^{\prime} \in G_{1}^{\prime}$, then P is the identity in G_{1}

Such an e is called a bilinear map or pairing.

Consequences of pairings

Assume that $G_{1}=G_{1}^{\prime}$, in particular $e(P, P) \neq 1$.

Then for all triples
$(a P, b P, c P) \in\langle P\rangle^{3}$
one can decide in time
polynomial in $\log \ell$ whether $c=\log _{P}(c P)=\log _{P}(a P) \log _{P}(b P)=a b$ by comparing
$e(a P, b P)=e(P,)^{a b}$ and $e(P, c P)=e(P,)^{c}$.

This means that the decisional Diffie-Hellman problem is easy.

The DL system G_{1} is at most as secure as the system G_{T}.

Even if $G_{1} \neq G_{1}^{\prime}$ one can transfer the DLP in G_{1} to a DLP in G_{T},
provided one can find an element $P^{\prime} \in G_{1}^{\prime}$ such that the map
$P \rightarrow e\left(P, P^{\prime}\right)$ is injective.
This is easy
if G_{1}^{\prime} can be sampled.
Pairings are interesting attack tool if DLP in G_{T} is easier to solve; e.g. if G_{T} has index calculus attacks.

We want to define pairings
$G_{1} \times G_{1}^{\prime} \rightarrow G_{T}$
preserving the group structure.
The pairings map from
an elliptic curve $G_{1} \subset E / F_{q}$ to the multiplicative group of a finite extension field $\mathbf{F}_{q^{k}}$.

To embed the points of order ℓ into $\mathbf{F}_{q^{k}}$ there need to be $\boldsymbol{\ell}$-th roots of unity are in $\mathbf{F}_{q^{k}}^{*}$.

The embedding degree k satisfies k is minimal with $\ell \mid q^{k}-1$.
E is supersingular if
$E\left[p^{s}\right]\left(\overline{\mathbf{F}}_{q}\right)=\left\{P_{\infty}\right\}$.
$t \equiv 0 \bmod p$.
Endomorphism ring of E
is order in quaternion algebra.
Otherwise it is ordinary and one has $E\left[p^{s}\right]\left(\overline{\mathbf{F}}_{q}\right)=\mathbf{Z} / p^{s} \mathbf{Z}$.
These statements hold for all s if they hold for one.

Example:
$y^{2}+y=x^{3}+a_{4} x+a_{6}$ over $\mathbf{F}_{2 r}$ is supersingular, as a point of order 2 would satisfy $y_{P}=y_{P}+1$ which is impossible.

Embedding degrees

Let E / \mathbf{F}_{p} be supersingular and $p \geq 5$, i.e $p>2 \sqrt{p}$.

Hasse's Theorem states
$|t| \leq 2 \sqrt{p}$.
E supersingular implies
$t \equiv 0 \bmod p$, so $t=0$ and
$\left|E\left(\mathbf{F}_{p}\right)\right|=p+1$.
Obviously
$(p+1) \mid p^{2}-1=(p+1)(p-1)$
so $k \leq 2$ for supersingular curves over prime fields.

Distortion maps

For supersingular curves there exist homomorphisms
$\phi: E\left(\mathbf{F}_{q}\right) \rightarrow E\left(\mathbf{F}_{q^{k}}\right)$
so that $e(P, \phi(P))=\tilde{e}(P, P) \neq 1$
for $P \neq \infty$.
Such a map is called a
distortion map.
These maps are convenient
for protocol design because they give a pairing
$\tilde{e}: G_{1} \times G_{1} \rightarrow G_{T}$
for $\tilde{e}(P, P)=e(P, \phi(P))$.

Examples:

1. $y^{2}=x^{3}+x$,
for $p \equiv 3 \quad(\bmod 4)$.
Distortion map
$(x, y) \mapsto(-x, \sqrt{-1} y)$.
2. $y^{2}=x^{3}+a_{6}$,
for $p \equiv 2 \quad(\bmod 3)$.
Distortion map $(x, y) \mapsto(j x, y)$
with $j^{3}=1, j \neq 1$.
In both cases,
$\# E\left(\mathbf{F}_{p}\right)=p+1$.
$p=1000003 \equiv 3 \bmod 4$ and $y^{2}=x^{3}-x$ over \mathbf{F}_{p}. Has $1000004=p+1$ points. $P=(101384,614510)$ is a point of order 500002.
$n P=(670366,740819)$.
Construct $\mathbf{F}_{p^{2}}$ as $\mathbf{F}_{p}(i)$.
$\phi(P)=(898619,614510 i)$.
Invoke computer algebra and compute
$e(P, \phi(P))=387265+276048 i$;
$e(Q, \phi(P))=609466+807033 i$.
Solve DLP in $\mathbf{F}_{p}(i)$
to get $n=78654$.
(Btw. this is the clock).

Summary of pairings

Menezes, Okamoto, and Vanstone for E supersingular:
For $p=2$ have $k \leq 4$.
For $p=3$ we $k \leq 6$
Over $\mathbf{F}_{p}, p \geq 5$ have $k \leq 2$.
These bounds are attained.
Not only supersingular curves:
MNT curves are non-supersingular curves with small k.
Other examples constructed for pairing-based cryptography but small k unlikely to occur for random curve.

Index calculus in prime fields

Index calculus is a method to

compute discrete logarithms.
Works in many situations but depends on group (not generic attack)
p prime, elements of \mathbf{F}_{p} represented by numbers in
$\{0,1, \ldots, p-1\}$;
g generator of
multiplicative group.

If $h \in \mathbf{F}_{p}$ factors as
$h=h_{1} \cdot h_{2} \cdots h_{n}$ then
$h=g^{a_{1}} \cdot g^{a_{2}} \cdots g^{a_{n}}$
$=g^{a_{1}+a_{2}+\ldots+a_{n}}$,
with $h_{i}=g^{a_{i}}$.
Knowledge of the a_{i},
i.e., of the discrete logarithms of
h_{i} to base g,
gives knowledge of the discrete logarithm of h to base g.

If h factors appropriately ...

If h factors appropriately?!
Ensure by finding h^{\prime} with known
DL s.t. $h \cdot h^{\prime}$ factors over the h_{i}.
So far: instead of finding one DL we have to find many DLs and they have to fit to h and we have to find a suitable h^{\prime} and factor numbers.

Two different settings the integers modulo p and the integers themselves.
Factorization takes place over \mathbf{Z}, while the left hand side is reduced modulo p.

Select $F=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$
so that $\bar{h}<p$ is likely to factor into powers of g_{i}.
F called factor base.
An equation of form
$\bar{h}=g_{1}^{n_{1}} \cdot g_{2}^{n_{2}} \cdots g_{m}^{n_{m}}$,
with $n_{i} \in \mathbf{Z}$ is called a relation.
Choose F as small primes, e.g.
$g_{1}=2, g_{2}=3, g_{3}=5, \ldots$
Generate many relations with known DL of $\tilde{h}_{j}=g^{k_{j}}$ $\tilde{h}_{j}=g^{k_{j}}=g_{1}^{n_{j 1}} \cdot g_{2}^{n_{j 2}} \cdots g_{m}^{n_{j m}}$.
(This means discarding
$g^{k_{j}}$ if it does not factor .)

Matrix of relations
For each relation
$\tilde{h}_{j}=g^{k_{j}}=g_{1}^{n_{j 1}} \cdot g_{2}^{n_{j 2}} \cdots g_{m}^{n_{j m}}$
enter the row

$$
\left(n_{j 1} n_{j 2} \ldots n_{j m} \mid k_{j}\right)
$$

into a matrix $M=$
$\left(\begin{array}{cccccc}n_{11} & \ldots & n_{1 i} & \ldots & n_{m 1} & k_{1} \\ n_{21} & \ldots & n_{2 i} & \ldots & n_{m 2} & k_{2} \\ \vdots & & \vdots & & \vdots & \vdots \\ n_{l 1} & \ldots & n_{l i} & \ldots & n_{l m} & k_{l}\end{array}\right)$

The i-th column
corresponds to the unknown a_{i} so that $g_{i}=g^{a_{i}}$.

Computing DLPs

Use linear algebra to solve for $a_{i} s$. This step does not depend on the target DLP $h=g^{a}$.
A single relation $h \cdot g^{k}$ factoring over F gives the DLP.

Running time (with much more clever way of finding relations)
$O\left(\exp \left(c \log p^{1 / 3} \log (\log p)^{2 / 3}\right)\right)$
for some c.
This is subexponential in $\log p$!
Notation: write this complexity as $L(1 / 3, c)$.

Similar for $\mathrm{F}_{2 n}$
Elements of $\boldsymbol{F}_{2 n}$ are represented as $\mathbf{F}_{2^{n}}=$
$\left\{\sum_{i=0}^{n-1} c_{i} x^{i} \mid c_{i} \in \mathbf{F}_{2}, 0 \leq i<n\right\}$, i.e. polynomials of degree less than n modulo an irreducible polynomial $f(x) \in \mathbf{F}_{2}[x]$.

Factoring into powers of small primes is replaced by factoring into irreducible polynomials of small degree.

Same approach works for all finite fields $\boldsymbol{F}_{p n}$ in
$O\left(\exp \left(c^{\prime} \log p^{1 / 3} \log (\log p)^{2 / 3}\right)\right)$.
Smaller p have smaller constant c.

Same approach works for all finite fields $\mathbf{F}_{p n}$ in
$O\left(\exp \left(c^{\prime} \log p^{1 / 3} \log (\log p)^{2 / 3}\right)\right)$.
Smaller p have smaller constant c.
If DLP in $\mathbf{F}_{q^{k}}^{*}$ is weak
can break pairing system in target group $G_{T} \subset \mathbf{F}_{q^{k}}^{*}$.
Big computation in 2011:
Hayashi, Shinohara, Shimoyama, and Takagi solved DLP in $\mathbf{F}_{36.97}^{*}$ This field was considered as target field for pairings over supersingular curves E / F_{397} with embedding degree 6 .

More recent development

Flurry of papers with breathtaking improvements and new records by Joux and by Göloglu, Granger, McGuire, and Zumbrägel (GGMZ)
Joux 2012-12-24, 1175-bit and 1425-bit
Joux 2013-02-11 $\mathbf{F}_{2}^{*}{ }^{1778}$
GGMZ 2013-02-19 \mathbf{F}^{*} 1971
Joux 2013-03-22 \mathbf{F}_{24080}^{*}
GGMZ 2013-04-11 F_{26120}^{*}
Joux 2013-05-21 F_{26168}^{*}
Do not use supersingular curves
for pairings!

Most recent
Barbulescu, Gaudry, Joux, Thomé 2013-06-18
Quasi-polynomial time algorithm to compute DLs in $\mathbf{F}_{p^{n}}^{*}$.
Strongly depends on p, so only efficient for small p.
Best speeds for composite n.
Also interesting Joux 2013-02-20 $L(1 / 4+o(1), c)$

Summary of other attacks

Definition of embedding degree does not cover all attacks.

For $\mathbf{F}_{p^{n}}$ watch out that pairing can map to $\mathbf{F}_{p^{k m}}$ with $m<n$. Watch out for this when selecting curves over $\mathbf{F}_{p^{n}}$!

Anomalous curves:
If E / \mathbf{F}_{p} has $\# E\left(\mathbf{F}_{p}\right)=p$
then transfer $E\left(\mathbf{F}_{p}\right)$ to $\left(\mathbf{F}_{p},+\right)$.
Very easy DLP.
Not a problem for Koblitz curves, attack applies to
order- p subgroup.

Weil descent:
Maps DLP in E over $\mathbf{F}_{p^{m n}}$
to DLP on variety J over $\mathbf{F}_{p n}$.
J has larger dimension; elements represented as polynomials of low degree. \Rightarrow index calculus.

This is efficient if dimension of J is not too big.

Particularly nice to compute with J if it is the Jacobian of a hyperelliptic curve C.
For genus g get complexity
$\tilde{O}\left(p^{2-\frac{2}{g+1}}\right)$ with the factor base described before, since polynomials have degree $\leq g$.

