
Signatures

and DLP-I

Tanja Lange

Technische Universiteit Eindhoven



How to compute aP

Use binary representation of a

to compute a(X; Y )

in blog2 ac doublings

and at most that many additions.

E.g. a = 23 = (10111)2:

23P = 2(2(2(2P ) + P ) + P ) + P .

For a = (1; an�1; : : : ; a1; a0)2;

compute scalar multiplication

aP = 2(� � � 2(2(2P + an�1P ) +

an�2P ) + � � � + a1P ) + a0P .

There are many more efficient

methods.



ECDSA

Users can sign messages

using Edwards curves.

Take a point P on an Edwards

curve modulo a prime q > 2.

ECDSA signer needs to know

the order of P .

There are only finitely many other

points; about q in total.

Adding P to itself will eventually

reach (0; 1); let ` be the smallest

integer > 0 with `P = (0; 1).

This ` is the order of P .



The signature scheme has as

system parameters a curve E; a

base point P ; and a hash function

h with output length at least

blog2 `c + 1.

Alice’s secret key is an integer a

and her public key is PA = aP .

To sign message m,

Alice computes h(m);

picks random k;

computes R = kP = (x1; y1);

puts r � y1 mod `; computes

s � k�1(h(m) + r � a) mod `.

The signature on m is (r; s).



Anybody can verify signature

given m and (r; s):

Compute w1 � s�1h(m) mod `

and w2 � s�1 � r mod `.

Check whether the y-coordinate

of w1P +w2PA equals r modulo `

and if so, accept signature.

Alice’s signatures are valid:

w1P + w2PA =

(s�1h(m))P + (s�1 � r)PA =

(s�1(h(m) + ra))P = kP

and so the y-coordinate of this

expression equals r,

the y-coordinate of kP .



Attacker’s view on signatures

Anybody can produce an R = kP .

Alice’s private key is only used in

s � k�1(h(m) + r � a) mod `.

Can fake signatures if one can

break the DLP, i.e., if one can

compute a from PA.

Most of my lectures deal with

methods for breaking DLPs.

Sometimes attacks are easier: : :



If k is known for some m; (r; s)

then a � (sk� h(m))=r mod `.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r: assume k1 = k2; observe

s1 � s2 = k�1
1 (h(m1) + ra �

(h(m2) + ra)); compute k =

(s1 � s2)=(h(m1) � h(m2)).

Continue as above.

If bits of many k’s are known

(biased PRNG) can attack

s � k�1(h(m) + r � a) mod `

as hidden number problem

using lattice basis reduction.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod ` and

�R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod ` and

�R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.

(Easy tweak: include bit of x1.)



EdDSA

“High-speed high-security

signatures” (Bernstein–Duif–L–

Schwabe–Yang, CHES 2011).

Uses k =hash(b;m);

b is second secret key.

Make h dependent on R and PA:

h =hash(R; PA;m).

No inversions mod `:

s � k + ha mod `.

Verification:

does sP equal R + hPA?

Use Edwards curves!

Very fast signing and verifying.



Edwards curves are cool



Elliptic-curve groups

W

R

−W −R

W +R

y2 = x3 + ax + b.



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W

y2 = x3 + ax + b.



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W

y2 = x3 + ax + b.

Also neutral element at 1.

�(x; y) = (x;�y).



(xW ; yW ) + (xR; yR) =

(xW+R; yW+R) =

(�2�xW�xR; �(xW�xW+R)�yW ):

xW 6= xR, “addition”:

� = (yR � yW )=(xR � xW ).

Total cost 1I + 2M + 1S.

W = R and yW 6= 0, “doubling”:

� = (3x2
W + a)=(2yW ).

Total cost 1I + 2M + 2S.

Following algorithms will need a

unique representative per point.

For that Weierstrass curves are

the speed leader



(xW ; yW ) + (xR; yR) =

(xW+R; yW+R) =

(�2�xW�xR; �(xW�xW+R)�yW ):

xW 6= xR, “addition”:

� = (yR � yW )=(xR � xW ).

Total cost 1I + 2M + 1S.

W = R and yW 6= 0, “doubling”:

� = (3x2
W + a)=(2yW ).

Total cost 1I + 2M + 2S.

Following algorithms will need a

unique representative per point.

For that Weierstrass curves

are the speed leader : : : and I

thought turtles were defensive.



The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 � x over Fp.

This curve has

1000004 = 22 � 532 � 89

points and P = (101384; 614510)

is a point of order 2 � 532 � 89.

In general, point counting over Fp
runs in time polynomial in log p.

Number of points in

[p + 1 � 2
p
p; p + 1 + 2

p
p].

The group is isomorphic to

Z=n � Z=m, where njm and

nj(p� 1).



Can we find an integer

n 2 f1; 2; 3; : : : ; 500001g
such that nP =

(670366; 740819)?

This point was generated as

a multiple of P ; could also be

outside cyclic group.

Could find n by brute force.

Is there a faster way?



Understanding brute force

Can compute successively

1P = (101384; 614510),

2P = (102361; 628914),

3P = (77571; 87643),

4P = (650289; 31313),

500001P = �P .

500002P = 1.

At some point we’ll find n

with nP = (670366; 740819).

Maximum cost of computation:

� 500001 additions of P ;

� 500001 nanoseconds on a CPU

that does 1 ADD/nanosecond.



This is negligible work

for p � 220.

But users can

standardize a larger p,

making the attack slower.

Attack cost scales linearly:

� 250 ADDs for p � 250,

� 2100 ADDs for p � 2100, etc.

(Not exactly linearly:

cost of ADDs grows with p.

But this is a minor effect.)



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply

“random self-reduction”:

choose random r, say 69961;

compute rP = (593450; 987590);

compute (r + n)P as

(593450; 987590)+(670366; 740819);

compute discrete log;

subtract r mod 500002; obtain n.



Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 26 e: one chip,

210 cores on the chip,

each 230 ADDs/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.

Example, 230 e: 224 chips,

so 234 cores,

so 264 ADDs/second,

so 289 ADDs/year.



Multiple targets and giant steps

Computation can be applied

to many targets at once.

Given 100 DL targets n1P ,

n2P , : : : , n100P :

Can find all of n1; n2; : : : ; n100

with � 500002 ADDs.

Simplest approach: First build

a sorted table containing

n1P , : : : , n100P .

Then check table for

1P , 2P , etc.



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?

Typically � 500002=100 mults.



Can use random self-reduction

to turn a single target

into multiple targets.

Given nP :

Choose random r1; r2; : : : ; r100.

Compute r1P + nP ,

r2P + nP , etc.

Solve these 100 DL problems.

Typically � `=100 mults

to find at least one

ri + n mod `,

immediately revealing n.



Also spent some ADDs

to compute each riP :

� lg p ADDs for each i.

Faster: Choose ri = ir1

with r1 � `=100.

Compute r1P ;

r1P + nP ;

2r1P + nP ;

3r1P + nP ; etc.

Just 1 ADD for each new i.

� 100 + lg ` + `=100 ADDs

to find n given nP .



Faster: Increase 100 to � p
`.

Only � 2
p
` ADDs

to solve one DL problem!

“Shanks baby-step-giant-step

discrete-logarithm algorithm.”

Example: p = 1000003; ` =

500002, P = (101384; 614510),

Q = nP = (670366; 740819).

Compute 708P=(393230; 421116).

Then compute 707 targets:

708P + Q = (342867; 153817),

2 �708P +nP = (430321; 994742),

3 �708P +nP = (423151; 635197),

: : : , 706 � 708P + nP =

(534170; 450849).



Build a sorted table of targets:

600�708P+Q = (799978; 929249),

219�708P+Q = (425475; 793466),

679�708P+Q = (996985; 191440),

242�708P+Q = (262804; 347755),

27 �708P +Q = (785344; 831127),

: : :

317�708P+Q = (599785; 189116).

Look up P , 2P , 3P , etc. in table.

620P = (950652; 688508); find

596 �708P +Q = (950652; 688508)

in the table of targets;

so 620 = 596�708+n mod 500002;

deduce n = 78654.



Factors of the group order

P has order 2 � 532 � 89.

Given Q = nP , find n = logP Q:

R = (532 � 89)P has order 2, and

S = (532 � 89)Q is multiple of R.

Compute n1 = logR S � n mod 2.

R = (2 � 53 � 89)P has order 53,

and

S = (2 � 53 � 89)Q is multiple of R.

Compute n2 = logR S � n mod

53.

This is a DLP in a group

of size 53.



T = (2 � 89)(Q � n2P ) is also a

multiple of R.

Compute n3 = logR T � n mod

53.

Now n2 + 53n3 � n mod 532.

R = (2 � 532)P has order 89, and

S = (2 � 532)Q is multiple of R.

Compute n4 = logR S � n mod

89.

Use Chinese Remainder Theorem

n � n1 mod 2,

n � n2 + 53n3 mod 532,

n � n4 mod 89,

to determine n modulo 2 � 532 � 89.



This “Pohlig-Hellman method”

converts an order-ab DL into

an order-a DL, an order-b DL,

and a few scalar multiplications.

Here (532 � 89)P = (1; 0) and

(532 � 89)Q = 1, thus n1 = 0.

(2 � 53 � 89)P = (539296; 488875),

(2 � 53 � 89)Q = (782288; 572333).

A search quickly finds n2 = 2.

(2 �89)(Q�2P ) = 1, thus n3 = 0

and n2 + 53n3 = 2.



(2 � 532)P = (877560; 947848) and

(2 � 532)Q = (822491; 118220).

Compute n4 = 67, e.g. using

BSGS.

Use Chinese Remainder Theorem

n � 0 mod 2,

n � 2 mod 532,

n � 67 mod 89,

to determine n = 78654.

Pohlig-Hellman method reduces

security of discrete logarithm

problem in group generated by P

to security of largest prime order

subgroup.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

in the group hP i,
where the next step depends

on current point: Wi+1 = f(Wi).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.





























































Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi � bj)Q = (aj � ai)P .

If bi 6= bj the DLP is solved:

n = (aj � ai)=(bi � bj).



Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi � bj)Q = (aj � ai)P .

If bi 6= bj the DLP is solved:

n = (aj � ai)=(bi � bj).

e.g. f(Wi) = a(Wi)P + b(Wi)Q,

starting from some initial

combination W0 = a0P + b0Q.

If any Wi and Wj collide then

Wi+1 = Wj+1, Wi+2 = Wj+2,

etc.



If functions a(W ) and b(W ) are

random modulo `, iterations

perform a random walk in hP i.
If a and b are chosen such that

f(Wi) = f(�Wi) then the walk

is defined on equivalence classes

under �.

There are only d`=2e different

classes. This reduces the average

number of iterations by a factor

of almost exactly
p

2.

In general, Pollard’s rho method

can be combined with any easily

computed group automorphism of

small order. More on that later.



Parallel collision search

Running Pollard’s rho method on

N computers gives speedup of

� p
N from increased likelihood

of finding collision.

Want better way to spread

computation across clients. Want

to find collisions between walks

on different machines, without

frequent synchronization!

Better method due to van

Oorschot and Wiener (1999).

Declare some subset of hP i to

be distinguished points.



Parallel rho: Perform many walks

with different starting points

but same update function f .

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits

a distinguished point and report

the point along with ai and bi to

server.

Server receives, stores, and sorts

all distinguished points.

Two walks reaching same

distinguished point give collision.

This collision solves the DLP.



Attacker chooses frequency and

definition of distinguished points.

Tradeoffs are possible:

If distinguished points are rare, a

small number of very long walks

will be performed. This reduces

the number of distinguished

points sent to the server but

increases the delay before a

collision is recognized.

If distinguished points are

frequent, many shorter walks will

be performed.

In any case do not wait for cycle.

Total # of iterations unchanged.




