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More elliptic curves

Can use any field k.

Can use any nonsingular curve

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k� k
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

Easy to check nonsingularity.

Almost all curves are nonsingular

when k is large.



An example over R

Consider all pairs

of real numbers x; y

such that y2 � 5xy = x3 � 7.

The “points on the elliptic curve

y2 � 5xy = x3 � 7 over R”

are those pairs and

one additional point, 1.

i.e. The set of points is

f(x; y) 2 R� R :

y2 � 5xy = x3 � 7g [ f1g.
(R is the set of real numbers.)



Graph of this set of points:
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Don’t forget 1.

Visualize 1 as top of y axis.



Here �P = Q, �Q = P , �R =

R:
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Distinct curve points P;Q;R

on a line

have P +Q = �R;

P +Q+ R = 1.

Distinct curve points P;R

on a line tangent at P

have P + P = �R;

P + P + R = 1.

A non-vertical line

with only one curve point P

(a flex of the curve)

has P + P = �P ;

P + P + P = 1.



Here P +Q = �R:
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Here P + P = �R:
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Curve addition formulas

Easily find formulas for +

by finding formulas for lines

and for curve-line intersections.

x 6= x0: (x; y)+ (x0; y0) = (x00; y00)

where � = (y0 � y)=(x0 � x),
x00 = �2 � 5�� x� x0,
y00 = 5x00 � (y + �(x00 � x)).
2y 6= 5x: (x; y)+(x; y) = (x00; y00)

where � = (5y + 3x2)=(2y � 5x),

x00 = �2 � 5�� 2x,

y00 = 5x00 � (y + �(x00 � x)).
(x; y) + (x; 5x� y) = 1.



An elliptic curve over Z=13

Consider the prime field

Z=13 = f0; 1; 2; : : : ; 12g
with �;+; � defined mod 13.

The “set of points on the elliptic

curve y2 � 5xy = x3 � 7

over Z=13” is

f(x; y) 2 Z=13� Z=13 :

y2 � 5xy = x3 � 7g [ f1g.



Graph of this set of points:
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As before, don’t forget 1.



The set of curve points

is a commutative group with

standard definition of 1;�;+.

Can visualize 1;�;+ as before.

Replace lines over R

by lines over Z=13.

Warning: tangent is defined by

derivatives; hard to visualize.

Can define 1;�;+
using same formulas as before.



Example of line over Z=13:
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Formula for this line: y = 7x+ 9.



P +Q = �R:
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An elliptic curve over F16

Consider the non-prime field

(Z=2)[t]=(t4 � t� 1) = f
0t3 + 0t2 + 0t1 + 0t0,

0t3 + 0t2 + 0t1 + 1t0,

0t3 + 0t2 + 1t1 + 0t0,

0t3 + 0t2 + 1t1 + 1t0,

0t3 + 1t2 + 0t1 + 0t0,
...

1t3 + 1t2 + 1t1 + 1t0g
of size 24 = 16.



Graph of the “set of points on the

elliptic curve y2 � 5xy = x3 � 7

over (Z=2)[t]=(t4 � t� 1)”:
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Line y = tx+ 1:
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P +Q = �R:

P

Q
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Why more coefficients?

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k� k
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

Easy to check nonsingularity.

Almost all curves are nonsingular

when k is large.



Why more coefficients?

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k� k
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

k = F2n , then partial derivatives

become: a1x+ a3 = 0 and

a1y = x2 + a4. Monday’s curve

shape had a1 = a3 = 0

) only condition x2 = a4 and

every element is a square in F2n .



Isomorphic transformations

Elliptic curves over F2n need to

have at least one of a1 and a3

non-zero.

Do isomorphic transformations

linear transformations

y 7! a3y + bx+ c, x 7! a2x+ d

to simplify curve equation.

If a1 6= 0 use a and d to map to

y2 + xy = x3 + a02x
2 + a04x+ a06

and c to achieve a04 = 0.

b appears as b2 + b + a02, can

restrict coefficient of x2 to two

choices.



If a1 = 0, put b = 0, d = a2 to

map to

y2 + a3y = x3 + a04x+ a06
c appears as c2 + a3c + a06, can

restrict constant term; can use a

to restrict choice of a3; if n odd

can get a3 = 1.

If char(k) 6= 2 put b = �a1=2 and

c = �a3=2 to map to

y2 = x3 + a02x
2 + a04x+ a06.

If char(k) 6= 3 can additionally

remove a02 using d. Can use a to

restrict a04 or a06.



Short Weierstrass forms

Over F2n can map to one of

y2 + xy = x3 + a2x
2 + a6

y2 + a3y = x3 + a4x+ a6

with a2; a4; a6 2 F2n ;

a3 = 1 for n odd.

Over Fq, q = pn, p > 3 can map

to y2 = x3 + a4x+ a6

with a4; a6 2 Fq.

Nice for proofs but arithmetic

might prefer other choices,

e.g. Montgomery curves

y2 = x3 + a2x
2 + x over Fq

are faster than above form.



Quadratic twists

Over Fq, q = pn, p > 3

still have freedom to map

E : y2 = x3 + a4x+ a6 to

E 0 : y2 = x3 + a4=c
4x+ a6=c

6

using y 7! c3y, x 7! c2x, c 2 Fq.

For d 2 Fq, curve

Ẽ : y2 = x3 + a4=d
2x+ a6=d

3

is defined over Fq but

isomorphism is defined over Fq
only if d is a square in Fq.

Ẽ is a quadratic twist of E. This

concept includes isomorphisms.

Only one non-isomorphic class.



General addition law

E : y2 + (a1x+ a3)| {z }
h(x)

y =

x3 + a2x
2 + a4x+ a6| {z }
f(x)

; h; f 2 Fq[x]:

�(xP ; yP ) = (xP ;�yP � h(xP )).

(xP ; yP ) + (xR; yR) = (x3; y3) =

= (�2 + a1�� a2 � xP � xR;
�(xP �x3)� yP �a1x3�a3);

where � =(
(yR � yP )=(xR � xP ) xP 6= xR;
3x2

P
+2a2xP+a4�a1yP
2yP+a1xP+a3

P = R 6= �R



Number of points

Number of points over finite field

is finite.

Hasse’s theorem:

#E(Fq) = q + 1� t;
with jtj � 2

p
q:

t is called the trace of E.

Each point has finite order

dividing #E(Fq).

Want to work in (sub-)group

of prime order `

(Pohlig-Hellman attack).



Why characteristic 2?

Large char is slower in hardware

than char 2, but

char 2 is slower in software

than large char.

Typical CPU includes circuits

for integer multiplication,

not for poly mult mod 2.

Situation somewhat improved

with latest generation of

processors having

PCLMULQDQ (Carry-Less

Multiplication) instructions.



System might focus on hardware

users (low power devices need

every speedup they can get; server

can handle slowdown).

Doubling somewhat easier:

On y2 + xy = x3 + ax2 + b have

� = (x2 + y)=x = x+ y=x,

so ADD and DBL each take

1I + 2M + 1S.

If computing square-roots is fast

(normal-basis representation) can

improve speed using halving.

1I=M smaller than in odd

characteristic fields.



Other curve shapes

The EFD features 3 curve shapes

in characteristic 2:

Binary Edwards curves:

d1(x+ y) + d2(x
2 + y2) =

(x+ x2)(y + y2)

Hessian curves:

x3 + y3 + 1 = dxy

Short Weierstrass curves:

y2 + xy = x3 + a2x
2 + a6

For reasons stated later skips

y2 + y = x3 + a4x+ a6.



Koblitz curves

Let q = pn for small p and big n.

y2 + h(x)y = f(x)

over Fq is called a Koblitz curve

if it is defined over Fp, i.e., if

h(x); f(x) 2 Fp[x].

p need not be prime; p = 4 is also

small.

Typical case: p = 2. This is the

case proposed by Koblitz; also

called anomalous binary curves.



Frobenius map

Take Ea : y2 +xy = x3 +ax2 +1,

with a 2 f0; 1g as curve over F2n

and let P = (xP ; yP ) 2 Ea(F2n).

Then �(P ) = (x2
P ; y

2
P ) is also a

point in Ea(F2n):

y2
P + yP = x3

P + ax2
P + 1 ,

(y2
P + yP )2 = (x3

P + ax2
P + 1)2 ,

(y2
P )2 + y2

P = (x3
P )2 + a2(x2

P )2 + 12

,
(y2

P )2 + y2
P = (x2

P )3 + a(x2
P )2 + 1

since a2 = a.

This means (x2
P ; y

2
P ) satisfies the

curve equation.



Take E : y2 + h(x)y = f(x),

with h(x); f(x) 2 Fp[x] as curve

over Fpn

and let P = (xP ; yP ) 2 E(Fpn).

Then �(P ) = (x
p
P ; y

p
P ) is also a

point in Ea(Fpn):

Proof uses that Frobenius

automorphism is linear

(a+ b)p = ap + bp

and that cp = c for c 2 Fp.

The map � is called the Frobenius

endomorphism of E.



Properties of Koblitz curves

Let #E(Fp) = p+ 1� t and let

T 2 � tT + p = (T � � )(t� �̄ )
then

#E(Fpn) = (1� �n)(1� �̄n).

Easy computation of number of

points – but shows restriction:

if mjn then

#E(Fpm)j#E(Fpn),

so require prime n to have large

prime order subgroup.

�(T ) = T 2 � tT + p

called characteristic polynomial of

the Frobenius endomorphism.



Each P 2 E(Fpn) satisfies

�2(P )� t�(P ) + pP = 1.



Each P 2 E(Fpn) satisfies

�2(P )� t�(P ) + pP = 1.

This means

pP = t�(P )� �2(P )

for t 2 [�2
p
p; 2

p
p].



Each P 2 E(Fpn) satisfies

�2(P )� t�(P ) + pP = 1.

This means

pP = t�(P )� �2(P )

for t 2 [�2
p
p; 2

p
p].

Expand integer k in base �

k =
P
ki�

i, with

ki 2 [�b(p� 1)=2c; d(p� 1)=2e]
and compute

kP =
P
ki�

i(P ).



Each P 2 E(Fpn) satisfies

�2(P )� t�(P ) + pP = 1.

This means

pP = t�(P )� �2(P )

for t 2 [�2
p
p; 2

p
p].

Expand integer k in base �

k =
P
ki�

i, with

ki 2 [�b(p� 1)=2c; d(p� 1)=2e]
and compute

kP =
P
ki�

i(P ).

Density of expansion similar to

base p expansion, same set of

coefficients – but computing �(P )

is much cheaper than pP .



Case p = 2: T 2 + (�1)aT + 2 = 0

DBL costs 1I + 2M + 1S.

� costs 2S.

Few tricks (Meier-Staffelbach,

Solinas)

kP =
Pn

i=0 ki�
i(P ),

ki 2 f0; 1g for P 2 E(F2n)

has average density 1=2.

kP =
Pn+1

i=0 ki�
i(P ),

ki 2 f�1; 0; 1g for P 2 E(F2n)

has average density 1=3.

Similar to binary and NAF

expansion; generalizations of

other methods exist.



General case:

Frobenius endomorphism makes

scalar multiplications faster.

Optimal extension fields –

medium size p and n –

get some benefit, too.

OEF assumes p fits word size.

Most extreme cases:

Prime order subgroup � pn�1.

n = 3 or 5: trace-zero varieties

n = 2: not worthwhile.

Some attacks – see tomorrow –

but not devastating, except for

some bad choices.



Other curves with endomorphisms

Gallant-Lambert-Vanstone:

When E has equation

y2 = x3 + ax over Fp
with p � 1 (mod 4).

�:E ! E; (x; y) 7! (�x;p�1y)

Note that �2 + 1 = 0.

When E has equation

y2 = x3 + b over Fp
with p � 1 (mod 3).

Let �3 = (1�p�3)=2.

�:E ! E; (x; y) 7! (�3x; y)

Note that �2 + �+ 1 = 0.



Bigger example of GLV method:

When E has equation

y2 = x3 � 3x2=4� 2x� 1 over Fp
with p � 1; 2 or 4 (mod 7).

Denote � = (1 +
p�7)=2 and

a = (� � 3)=4.

�:E ! E;

(x; y) 7!
�

x2
��

�2(x�a)
;
y(x2

�2ax+�)

�3(x�a)2

�
Note that �2 � �+ 2 = 0.



Computation of Q = kP

Gallant-Lambert-Vanstone

method, where endomorphism � is

different from the Frobenius �.

Write

kP = k(0)P + k(1)�(P ),

max
n
jk(0)j; jk(1)j

o
= O(

p
`)

Key points:

Each k(i) is half as long as

k 2 [1; `].

Computing �(P ) is easy.

Use Joint Sparse Form to

quickly evaluate double scalar

multiplication.



Combination

GLV curves are rare.

Galbraith-Lin-Scott (GLS)

use Frobenius � with n = 2

– and avoids having big subgroup!

Let E be an elliptic curve defined

over Fp2 .

Quadratic twist of

E : y2 = x3 + a4x+ a6 is

Ẽ : y2 = x3 + a4=c
2x+ a6=c

3,

c 2 Fp2 and c 6= over Fp2 .

Start with Ẽ over Fp.

(Aha, the subfield idea comes in!)

and pick nonsquare c 2 Fp2 .



Ẽ : y2 = x3+b4x+b6; b4; b6 2 Fp.

Gets E over Fp2 :

E : y2 = x3 + b4c
2x+ b6c

3,

b4c
2; b6c

3 2 Fp2 .

No reason that E cannot have

(almost) prime order.

Yet E closely related to curve

with Frobenius endomorphism.

Define  : E ! E

as map from E to Ẽ, followed by

p-th power Frobenius on Ẽ,

followed by map back to E.

 satisfies  2 + 1 = 0 on points

of order � 2p on E. Can use all

GLV tricks; many more curves.



Interlude:

Index calculus in prime fields

Index calculus is a method to

compute discrete logarithms.

Works in many situations but

depends on group (not generic

attack)

p prime, elements of Fp
represented by numbers in

f0; 1; : : : ; p� 1g;
g generator of

multiplicative group.



If h 2 Fp factors as

h = h1 � h2 � � �hn then

h = ga1 � ga2 � � � gan
= ga1+a2+:::+an ,

with hi = gai .

Knowledge of the ai,

i.e., of the discrete logarithms of

hi to base g,

gives knowledge of the discrete

logarithm of h to base g.

If h factors appropriately : : :



If h factors appropriately?!

Ensure by finding h0 s.t. h �h0 and

h0 factor over the hi.

So far: instead of finding one DL

we have to find many DLs and

they have to fit to h and we have

to find a suitable h0 and factor

numbers.

Two different settings –

the integers modulo p and

the integers themselves.

Factorization takes place over Z,

while the left hand side is reduced

modulo p.



Select F = fg1; g2; : : : ; gmg
so that h̄ < p is likely to factor

into powers of gi.

F called factor base.

An equation of form

h̄ = g
n1
1 � gn2

2 � � � gnmm ,

with ni 2 Z is called a relation.

Choose F as small primes , e.g.

g1 = 2; g2 = 3; g3 = 5; : : :

Generate many relations with

known DL of h̃j = gkj

h̃j = gkj = g
nj1
1 � gnj22 � � � gnjmm .

(This means discarding

gkj if it does not factor .)



Matrix of relations

For each relation

h̃j = gkj = g
nj1
1 � gnj22 � � � gnjmm

enter the row

(nj1nj2 : : : njmjkj)
into a matrix M =0
BB@
n11 : : : n1i : : : nm1 k1

n21 : : : n2i : : : nm2 k2
...

...
...

...
nl1 : : : nli : : : nlm kl

1
CCA

The i-th column

corresponds to the unknown ai
so that gi = gai .



Computing DLPs

Use linear algebra to solve for ais.

This step does not depend on the

target DLP h = ga.

A single relation h � gk factoring

over F gives the DLP.

Running time (with much more

clever way of finding relations)

O(exp(c log p1=3 log(log p)2=3))

for some c.

This is subexponential in log p!



Similar for F2n

Elements of F2n are represented

as F2n =

fPn�1
i=0 cix

ijci 2 F2; 0 � i < ng;
i.e. polynomials of degree less

than n modulo an irreducible

polynomial f(x) 2 F2[x].

Factoring into powers of small

primes is replaced by factoring

into irreducible polynomials of

small degree.



Same approach works; even

somewhat faster

O(exp(c0 log p1=3 log(log p)2=3))

for some smaller c0.



Same approach works; even

somewhat faster

O(exp(c0 log p1=3 log(log p)2=3))

for some smaller c0.

More recent result (2006):

For Fq = Fpn use mix of both

approaches

O(exp(c00 log p1=3 log(log p)2=3))

for some c00.



Very small factorbase

Restrict F to linear polynomials.

So jF j = p.

Number of f 2 Fp[x], deg(f) < n

splitting over F � 1
n!p

n.

#
�
f 2 Fp[x]j deg(f) < n

	
= pn.

Probability of splitting in reduced

factor base is �1
n! .

Need O(n!p) tries to find p

relations, O(p2) for sparse matrix.

For n fixed, p growing the

running time O(n!p + p2)

translates to O(p2)

Very fast – beware of constants!



Tiny factorbase

Take

F � �f 2 Fp[x]j deg(f) = 1
	

with #F = pr for some r 2
(0; 1).

Gives Õ(p2� 2
n+1 ):

Use large prime variation, i.e.

have a further set F 0 of elements

for which relations are accepted.

Then for each of them linear

algebra is used to cancel them out

(slightly more entries per row).

Use double large prime

variation,: : :



Relevance for ECC?

End up in finite fields after

pairings.

Weil descent maps to curve of

larger genus, where index calculus

attacks are applicable.



Pairings

Let (G1;+); (G 01;+) and (G; �) be

groups of prime order ` and let

e : G1 � G 01 ! G

be a map satisfying

e(P +Q;R0) = e(P;R0)e(Q;R0);

e(P;R0 + S0) = e(P;R0)e(P; S0):

Request further that e is

non-degenerate in the first

argument, i.e., if for some P

e(P;R0) = 1 for all R0 2 G 01,
then P is the identity in G1

Such an e is called a bilinear map

or pairing.



Consequences of pairings

Assume that G1 = G 01,

in particular e(P; P ) 6= 1:

Then for all triples

(P1; P2; P3) 2 hP i3
one can decide in time polynomial

in log ` whether

logP (P3) = logP (P1) logP (P2)

by comparing

e(P1; P2) and e(P; P3).

This means that the decisional

Diffie-Hellman problem is easy.



The DL system G1 is at most as

secure as the system G.

Even if G1 6= G 01 one can

transfer the DLP in G1

to a DLP in G,

provided one can find an element

P 0 2 G 01 such that the map

P ! e(P; P 0) is injective.

Pairings are interesting attack

tool if DLP in G is easier to

solve; e.g. if G has index calculus

attacks.



We want to define pairings

G1 � G 01 ! G

preserving the group structure.

The pairings we will use

map to the multiplicative group of

a finite extension field Fqk .

To embed the points of order `

into Fqk there need to be `-th

roots of unity are in F�
qk

.

The embedding degree k satisfies

k is minimal with ` j qk � 1.



E is supersingular if

E[ps](Fq) = fP1g.
t � 0 mod p.

EndE is order in quaternion

algebra.

Otherwise it is ordinary and one

has E[ps](Fq) = Z=psZ.

These statements hold for all s if

they hold for one.

Example:

y2 + y = x3 + a4x+ a6 over F2r

is supersingular, as a point of

order 2 would satisfy yP = yP + 1

which is impossible.



Embedding degrees

Let E be supersingular and

p � 5, i.e p > 2
p
p.

Hasse’s Theorem states

jtj � 2
p
q.

E supersingular implies

t � 0 mod p, so t = 0 and

jE(Fp)j = p+ 1:

Obviously

(p+ 1) j p2 � 1 = (p+ 1)(p� 1)

so k � 2 for supersingular curves

over prime fields.



Distortion maps

For supersingular curves there

exist maps

� : E(Fq) ! E(Fqk)

i.e. maps G1 ! G 01, giving

ẽ(P; P ) 6= 1 for ẽ(P; P ) =

e(P; �(P )):

Such a map is called a

distortion map.

These maps are important since

the only pairings we know how to

compute are variants of

Weil pairing and Tate pairing

which have e(P; P ) = 1.



Examples:

y2 = x3 + a4x,

for p � 3 (mod 4).

Distortion map

(x; y) 7! (�x;p�1y).

y2 = x3+a6, for p � 2 (mod 3).

Distortion map (x; y) 7! (jx; y)

with j3 = 1; j 6= 1.

In both cases, #E(Fp) = p + 1,

so k = 2.



Example from Tuesday:

p = 1000003 � 3 mod 4 and

y2 = x3 � x over Fp.

Has 1000004 = p+ 1 points.

P = (101384; 614510) is a point

of order 500002.

nP = (670366; 740819).

Construct Fp2 as Fp(i).

�(P ) = (898619; 614510i).

Invoke the magma and compute

e(P; �(P )) = 387265 + 276048i;

e(Q; �(P )) = 609466 + 807033i.

Solve with index calculus to get

n = 78654.

(Btw. this is the clock).



Summary of pairings

Menezes, Okamoto, and Vanstone

for E supersingular:

For p = 2 have k � 4.

For p = 3 we k � 6

Over Fp, p � 5 have k � 2.

These bounds are attained.

Not only supersingular curves:

MNT curves are non-supersingular

curves with small k.

Other examples constructed for

pairing-based cryptography –

but small k unlikely to occur for

random curve.



Summary of other attacks

Definition of embedding degree

does not cover all attacks.

For Fpn watch out that pairing

can map to Fpkm with m < n.

Watch out for this when selecting

curves over Fpn !

Anomalous curves:

If E=Fp has #E(Fp) = p

then transfer E(Fp) to (Fp;+).

Very easy DLP.

Not a problem for Koblitz curves,

attack applies to

order-p subgroup.



Weil descent:

Maps DLP in E over Fpmn

to DLP on variety J over Fpn .

J has larger dimension; elements

represented as polynomials of low

degree. ) index calculus.

This is efficient if dimension of J

is not too big.

Particularly nice to compute

with J if it is the Jacobian of a

hyperelliptic curve C.

For genus g get complexity

Õ(p
2� 2

g+1 ) with the factor

base described before, since

polynomials have degree <= g.


