
ECDLP course

Daniel J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

Main goal of this course:

We are the attackers.

We want to break ECC.

Enemy: ECC users.

Helpful for us as attackers:

Understand the enemy!

What are ECC users doing?

Why are they doing this?

What will they do tomorrow?

(This perspective also helps

if you want to use ECC.)

Can break ECC in many ways.

But most of these ways can be

easily stopped by ECC users.

Most important strategy

for attacking ECC:

Break ECDLP

by parallel Pollard rho

with all available refinements.

ECC users cannot stop rho,

although they can make it slower

by increasing ECC key size.

Why ECC?

January 2010 news:

An academic team announces

successful RSA-768 factorization.

Used � 2 years of computation

on � 1000 CPU cores.

“Factoring a 1024-bit RSA

modulus would be about a

thousand times harder.”

Why ECC?

January 2010 news:

An academic team announces

successful RSA-768 factorization.

Used � 2 years of computation

on � 1000 CPU cores.

“Factoring a 1024-bit RSA

modulus would be about a

thousand times harder.”

Many users of 1024-bit RSA:

EFF SSL observatory study

http://eff.org/observatory

shows that more than 50% of all

certificates are � 1024-bit RSA.

1000 cores in perspective:

Typical laptop has 2 cores.

1000 cores in perspective:

Typical laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

1000 cores in perspective:

Typical laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

1000 cores in perspective:

Typical laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

Dan has an account on the

TACC Ranger supercomputer,

which has 62976 cores.

1000 cores in perspective:

Typical laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

Dan has an account on the

TACC Ranger supercomputer,

which has 62976 cores.

The Conficker/Downadup

criminal-controlled botnet

has � 10 000 000 cores.

2003 Shamir et al.:

An attacker building ASICs

for 10 million USD can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2003 Shamir et al.:

An attacker building ASICs

for 10 million USD can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2007 NIST: Same.

2003 Shamir et al.:

An attacker building ASICs

for 10 million USD can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2007 NIST: Same.

These recommendations

don’t even take into account

batch algorithms

that save time in breaking

many keys together.

A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

2048-bit key: 1024-bit primes;

� 21014 possible primes.

Still below modern standards!

Attacks: � 2112 calculations.

A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

2048-bit key: 1024-bit primes;

� 21014 possible primes.

Still below modern standards!

Attacks: � 2112 calculations.

3072-bit key: 1536-bit primes;

� 21526 possible primes.

Attacks: � 2128 calculations.

Attacks use “index calculus”

= “combining congruences.”

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS).

Also many smaller improvements.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.

1977: RSA is introduced.

1985: Miller proposes ECC.

Explains several obstacles

to congruence-combination

attacks on elliptic curves.

Subsequent ECC history:

Improved algorithms, but

still take exponential time.

Subsequent RSA history:

Continued security losses

from improved algorithms

for combining congruences.

Major loss in 1990 (NFS);

many smaller losses since then.

256-bit ECC keys match

security of 3072-bit RSA keys.

When properly implemented,

256-bit ECC is much faster

than 3072-bit RSA for

almost all real-world applications.

ANSI, IEEE, NIST issued

ECC standards ten years ago.

US government “Suite B”

now prohibits RSA, requires ECC.

Electronic ID or travel documents

in many European countries based

on ECC. Some internet protocols

(DNSCurve, CurveCP) use ECC.

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

Examples of points on this curve:

(0; 1) = “12:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�p3=4) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�p3=4) = “5:00”.

(�1=2;�p3=4) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�p3=4) = “5:00”.

(�1=2;�p3=4) = “7:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�p3=4) = “5:00”.

(�1=2;�p3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�p3=4) = “5:00”.

(�1=2;�p3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1

P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1

P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1

P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1

P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Adding two points corresponds

to adding the angles �1 and �2.

Angles modulo 360� are a group,

so points on clock are a group.

Neutral element: angle � = 0;

point (0; 1); “12:00”.

The point with � = 180�

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with �

is point with ��
since �+ (��) = 0.

There are many more points

where angle � is not “nice.”

Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 � x1x2).

Note (x1; y1)+ (�x1; y1) = (0; 1).

kP = P + P + � � �+ P| {z }
k copies

for k � 0.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;
4

5

�
=

�
336

625
;
�527

625

�
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;
4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;
4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;
4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�p3=4)

= (�1=2;�p3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�p3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;
4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with +;�;� modulo 7.

Larger example: Clock(F1000003).

Examples of clock addition:

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).

17(1000; 2) = (951405; 877356).

With 30 clock additions

we computed

n(1000; 2) = (947472; 736284)

for some 6-digit n.

Can you figure out n?

Clock cryptography

Standardize a large prime p

and some (X; Y) 2 Clock(Fp).

Alice chooses big secret a.

Computes her public key a(X; Y).

Bob chooses big secret b.

Computes his public key b(X; Y).

Alice computes a(b(X; Y)).

Bob computes b(a(X; Y)).

I.e., both obtain (ab)(X; Y).

They use this shared value

to encrypt with AES-GCM etc.

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y)

&&NNNNNN

Bob’s
public key
b(X; Y)

xxpppppp

fAlice;Bobg’s
shared secret
ab(X; Y)

=
fBob;Aliceg’s
shared secret
ba(X; Y)

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y)

&&NNNNNN

Bob’s
public key
b(X; Y)

xxpppppp

fAlice;Bobg’s
shared secret
ab(X; Y)

=
fBob;Aliceg’s
shared secret
ba(X; Y)

Warning: Clocks aren’t elliptic!

Can attack clock cryptography,

e.g., compute a from public

key, by combining congruences.

To match RSA-3072 security

need p � 21536.

Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)����� P2 = (x2; y2)�fffff

P3 = (x3; y3)
�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1� 30x2
1y

2
1

and x2
2 + y2

2 = 1� 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1� 30x2
1y

2
1

and x2
2 + y2

2 = 1� 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1

so 30 jx1y1x2y2j < 1

so 1� 30x1x2y1y2 > 0.

The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1� 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).

More Edwards curves

Fix an odd prime power q.

Fix a non-square d 2 Fq.

f(x; y) 2 Fq � Fq :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

= x2
1 + y2

1 � 2x1y1

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

= x2
1 + y2

1 � 2x1y1

= (x1 � y1)
2.

Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.

Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.

Case 3: x2 + y2 = x2 � y2 = 0.

Then x2 = 0 and y2 = 0,

contradiction.

Using ECC sensibly

Typical starting point:

Client knows secret key a

and server’s public key b(X; Y).

Client computes (and caches)

shared secret ab(X; Y).

Client has packet for server.

Generates unique nonce.

Uses shared secret to encrypt

and authenticate packet.

Total packet overhead:

24 bytes for nonce,

16 bytes for authenticator,

32 bytes for client’s public key.

Server receives packet,

sees client’s public key a(X; Y).

Server computes (and caches)

shared secret ab(X; Y).

Server uses shared secret

to verify authenticator

and decrypt packet.

Client and server encrypt,

authenticate, verify, and decrypt

all subsequent packets

in the same way,

using the same shared secret.

Easy-to-use packet protection:

crypto_box from

nacl.cace-project.eu.

High-security curve (Curve25519).

High-security implementation

(e.g., no secret array indices).

Extensive code validation.

Server can compute shared secrets

for 1000000 new clients

in 40 seconds of computation

on a Core 2 Quad.

Not much hope for attacker

if ECC user is running this!

Edwards curves are cool

How to compute aP

Use binary representation of a

to compute a(X; Y)

in blog2 ac doublings

and at most that many additions.

E.g. a = 23 = (10111)2:

23P = 2(2(2(2P) + P) + P) + P .

For a = (1; an�1; : : : ; a1; a0)2;

compute scalar multiplication

aP = 2(� � � 2(2(2P + an�1P) +

an�2P) + � � �+ a1P) + a0P .

Later: More efficient methods.

Faster group operations

Can split computation aP into

additions and doublings.

Formulas (x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1 + dx1x2y1y2),

(y1y2�x1x2)=(1� dx1x2y1y2))

use expensive divisions.

Better: postpone divisions

and work with fractions.

Represent (x1; y1) as

(X1 : Y1 : Z1) with x1 = X1=Z1

and y1 = Y1=Z1 for Z1 6= 0.

Addition formulas in these

projective coordinates:

A = Z1 � Z2; B = A2;

C = X1 �X2; D = Y1 � Y2;

E = d � C �D; F = B � E;

G = B + E; X3 = A � F �
((X1 + Y1) � (X2 + Y2)� C �D);

Y3 = A � G � (D � C); Z3 = F � G.

Needs 1S+10M+1Md.

Uses

(X1 + Y1) � (X2 + Y2)� C �D =

X1X2 + X1Y2 + Y1X2 + Y1Y2 �
X1X2 � Y1Y2 =

X1Y2 + Y1X2.

Doubling means P2 = P1, i.e.,

(x1; y1) + (x1; y1) =

((x1y1+y1x1)=(1 + dx1x1y1y1),

(y1y1�x1x1)=(1�dx1x1y1y1)) =

((2x1y1)=(1 + dx2
1y

2
1),

(y2
1�x2

1)=(1� dx2
1y

2
1)).

Remember P1 = (x1; y1)

is a point on the Edwards curve,

thus x2
1 + y2

1 = 1 + dx2
1y

2
1 and

2P1 = ((2x1y1)=(x
2
1 + y2

1),

(y2
1�x2

1)=(2� (x2
1 + y2

1))).

This transformation reduced

the total degree of the equation

from 4 to 2.

Doubling formulas in projective

coordinates:

B = (X1 + Y1)
2; C = X2

1 ;

D = Y 2
1 ; E = C +D; H = Z2

1 ;

J = E � 2H;

X3 = (B � E) � J;

Y3 = E � (C �D); Z3 = E � J:
Needs 4S+3M.

Doubling formulas in projective

coordinates:

B = (X1 + Y1)
2; C = X2

1 ;

D = Y 2
1 ; E = C +D; H = Z2

1 ;

J = E � 2H;

X3 = (B � E) � J;

Y3 = E � (C �D); Z3 = E � J:
Needs 4S+3M.

1 doubling far less expensive than

1 addition.

Usual scalar multiplication

uses many more doublings

than additions.

More variations of addition:

e.g., in inverted coordinates (X1 :

Y1 : Z1) corresponds to x1 =

Z1=X1 and y1 = Z1=Y1.

Alternative addition formulas:

(x1; y1) + (x2; y2) =

((x1y1 + x2y2)=(x1x2 + y1y2);

(x1y1 � x2y2)=(x1y2 � x2y1)).

Attention: these formulas

fail for doubling.

Curious fact: formulas do not

involve curve parameter d.

Twisted Edwards curves

Generalization to cover more

curves over given finite field Fq:

Use a; d 2 F�

q with a 6= d

and consider twisted Edwards

curve ax2 + y2 = 1 + dx2y2.

Why do users want more curves?

One answer: Speed!

Particularly fast choice:

a = �1 gives additions in 8M.

Another answer, coming later:

Smaller q for same security.

Edwards and twisted Edwards

give slight bonus to attacker.

ECDSA

Users can sign messages

using Edwards curves.

Take a point P on an Edwards

curve modulo a prime q > 2.

ECDSA signer needs to know

the order of P .

There are only finitely many other

points; about q in total.

Adding P to itself will eventually

reach (0; 1); let ` be the smallest

integer > 0 with `P = (0; 1).

This ` is the order of P .

The signature scheme has as

system parameters a curve E; a

base point P ; and a hash function

h with output length at least

blog2 `c+ 1.

Alice’s secret key is an integer a

and her public key is PA = aP .

To sign message m,

Alice computes h(m);

picks random k;

computes R = kP = (x1; y1);

puts r � y1 mod `; computes

s � k�1(h(m) + r � a) mod `.

The signature on m is (r; s).

Anybody can verify signature

given m and (r; s):

Compute w1 � s�1h(m) mod `

and w2 � s�1 � r mod `.

Check whether the y-coordinate

of w1P +w2PA equals r modulo `

and if so, accept signature.

Alice’s signatures are valid:

w1P +w2PA =

(s�1h(m))P + (s�1 � r)PA =

(s�1(h(m) + ra))P = kP

and so the y-coordinate of this

expression equals r,

the y-coordinate of kP .

Attacker’s view on signatures

Anybody can produce an R = kP .

Alice’s private key is only used in

s � k�1(h(m) + r � a) mod `.

Can fake signatures if one can

break the DLP, i.e., if one can

compute a from PA.

Most of this course deals with

methods for breaking DLPs.

Sometimes attacks are easier: : :

If k is known for some m; (r; s)

then a � (sk� h(m))=r mod `.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r: assume k1 = k2; observe

s1 � s2 = k�1
1 (h(m1) + ra �

(h(m2) + ra)); compute k =

(s1 � s2)=(h(m1) � h(m2)).

Continue as above.

If bits of many k’s are known

(biased PRNG) can attack

s � k�1(h(m) + r � a) mod `

as hidden number problem

using lattice basis reduction.

Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod ` and

�R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.

Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod ` and

�R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.

(Easy tweak: include bit of x1.)

Elliptic curves

Why do we talk about

Edwards curves in this course?

Edwards curves are elliptic;

easiest way to understand

elliptic curves is Edwards.

But more elliptic curves exist!

Most common representation:

Weierstrass curve

v2 = u3 + a2u
2 + a4u+ a6.

(Weierstrass has different

meaning in characteristic 2

but for now we use odd char.)

Addition on Weierstrass curve

v2 = u3 + u2 + u+ 1

�P

�Q
�R = �(P +Q)

99
99

99
99

99
99

99
99

99
99

�P +Q

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1)

(note u1 6= u2).

Doubling on Weierstrass curve

v2 = u3 � u

�P
�
R = �(2P)

lllllllllllllllllllll

� 2P

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).

General addition:

(uP ; vP) + (uR; vR) =

(uP+R; vP+R) =

(�2�uP�uR; �(uP�uP+R)�vP):

uP 6= uR, “addition”:

� = (vR � vP)=(uR � uP).

Total cost 1I + 2M + 1S.

P = R and vP 6= 0, “doubling”:

� = (3u2
P + 2a2uP + a4)=(2vP).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(uP ; vP) = (uR;�vR);

inputs at 1.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

Then (u; v) is a point on

a Weierstrass curve:

v2 = u3 + (A=B)u2 + (1=B2)u.

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

Attacker can transform Edwards

curve to Weierstrass curve and

vice versa; n(x; y) 7! n(u; v).

) Same discrete-log security!

Can choose curve representation

so that implementation of attack

is faster/easier.

System designer can choose curve

representation so that protocol

runs fastest; no need to worry

about security degradation.

Optimization targets are different.

For now: understand designer’s

choices. After that: attacks!

Faster group operations

Designer has choice of

curve representation and

point representation.

Most protocols do

a full scalar multiplication,

many doublings and additions,

before they need a

unique representative.

Can double and add using

inversion-free systems such as

projective Edwards coordinates.

Faster, but more storage.

There are many perspectives on

elliptic-curve computations.

Early development:

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.

The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2+y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.

Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”

1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P +Q.

DBL is P 7! 2P .

“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.

Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax+ b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�
�

10 lgn+ 16
lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.

Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y 2
1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T)� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.

Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1)

= 3(X1 � Z2
1) � (X1 + Z2

1).

Replace 2S with 1M.

Now DBL costs 4M + 4S.

2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)
2 � Y 2

1 � Z2
1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.

ADD for y2 = x3 + ax+ b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.

1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).

Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).

y2 = x3 � 0:4x+ 0:7

x2 + y2 = 1� 300x2y2

Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x+ b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.

Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.

Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a+ 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x
2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.

Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)
2,

C = (X2 � Z2)
2,

D = B � C, X4 = B � C,

Z4 = D � (C +D(a+ 2)=4))
2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F)2,

Z5 = X1 � (E � F)2)
(X3:Z3) + (X2:Z2) = (X5:Z5).

This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q+ R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.

Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.

12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :

Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.

2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.

x3 � y3 + 1 = 0:3xy

Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”

2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.

2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!

x2 = y4 � 1:9y2 + 1

More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 581 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).

Notation

If
n =

l�1X
i=0

ni2
i

we write n in binary

representation

n = (nl�1 : : : n0)2:

E.g. n = 35 = 32+2+1 = 1 �25+

0 �24 +0 �23 +0 �22 +1 �21 +1 �20,

then 35 = (100011)2.

The following algorithms are

stated in some group (G;+)

with neutral element O. Scalar

multiplication is denoted by

nP = P + P + � � �+ P (n terms).

Right–to–Left Binary
IN: An element P 2 G

and a positive integer n =

(nl�1 : : : n0)2.

OUT: The element nP 2 G.

R O, Q P ,

for i = 0 to l� 2 do

if ni = 1 then R P +Q

Q 2Q

if nl�1 = 1 then R P + Q

return R

This algorithm computes 35P =

25P + 21P + P .

At the end of step 2, Q = 2i+1P

and R = (ni : : : n0)2P .

Left–to–Right Binary

IN: An element P 2 G

and a positive integer n =

(nl�1 : : : n0)2; nl�1 = 1.

OUT: The element nP 2 G.

R P

for i = l� 2 to 0 do

R 2R

if ni = 1 then R P + R

return R

This algorithm computes 35P =

2(2(2(2(2P))) + P) + P .

The intermediate variable R holds

(nl�1 : : : ni)2P .

Number of additions

For each 1 in the binary

representation of n we compute

an addition. On average there are

l=2 non-zero coefficients.

In some groups (e.g. elliptic

curves) P + Q has the same cost

as P �Q, so it makes sense to use

negative coefficients. This gives

signed binary expansions.

Note that 31 = 24 + 23 + 22 +

2 + 1 = 25 � 1 and so 31P =

2(2(2(2P + P) + P) + P) + P)

= 2(2(2(2(2P)))))� P

Can always replace two adjacent

1’s in the binary expansion by 101̄

since (11)2 = (101̄)s.

(1̄ denotes �1).

By systematically replacing runs

of 1’s we can guarantee that there

are no two adjacent bits that are

nonzero.

A representation fulfilling this

is called a “non-adjacent form”

(NAF).

NAF’s have the lowest density

among all signed binary

expansions (with coefficients in

f0; 1;�1g).
(10010100110111010110)2 =

(1001010011011101101̄0)2 =

(10010100110111101̄01̄0)2 =

(100101001110001̄01̄01̄0)2 =

(10010101001̄0001̄01̄01̄0)2

Results no worse, but not

necessarily better:

35 = (100011)2 = (100101̄)s.

Non-Adjacent Form
IN: Positive integer n =

(nlnl�1 : : : n0)2, nl = nl�1 = 0.

OUT: NAF of n, (n0l�1 : : : n
0

0)s.

c0 0

for i = 0 to l� 1 do

ci+1 b(ci + ni + ni+1)=2c
n0i ci + ni � 2ci+1

return (n0l�1 : : : n
0

0)s

Resulting signed binary expansion

has length at most l+ 1,

so longer by at most 1 bit.

On average there are

l=3 non-zero coefficients.

Can also do left-to-right.

NAF – example
c0 0

for i = 0 to l� 1 do

ci+1 b(ci + ni + ni+1)=2c
n0i ci + ni � 2ci+1

return (n0l�1 : : : n
0

0)s

35 = (00100011)2, c0 = 0

c1 = b(0 + 1 + 1)=2c = 1,

n0 = 0 + 1� 2 = �1

c2 = b(1 + 1 + 0)=2c = 1,

n1 = 1 + 1� 2 = 0

c3 = b(1 + 0 + 0)=2c = 0,

n2 = 1 + 0� 0 = 1

c4 = b(0 + 0 + 0)=2c = 0,

n3 = 0 + 0� 0 = 0

c5 = b(0 + 0 + 1)=2c = 0,

n4 = 0 + 0� 0 = 0

c6 = b(0 + 1 + 0)=2c = 0,

n5 = 0 + 1� 0 = 1

c7 = b(0 + 0 + 0)=2c = 0,

n6 = 0 + 0� 0 = 0

) 35 = (100101̄)s

Generalizations

So far all expansions in base 2

(signed or unsigned).

Generalize to larger base; often

2w (w > 1). Then the coefficients

are in [0; 2w � 1]. Also fractional

windows have been suggested.

w is called window width.

Assume that mP for

m 2 [0; 2w � 1] are precomputed.

Easiest way: just group w bits.

Sliding windows: Group w bits

and skip forward if LSB is 0

(requires only odd integers in

[0; 2w � 1]) as coefficients and

leads to l=(w + 1) additions).

If � is cheap,

use signed sliding windows;

this leads to l=(w + 2) additions.

(10 01 01 00 11 01 11 01 01 10)2 =

(02 01 01 00 03 01 03 01 01 02)2 =

(2110313112)4,

needs 8 additions and

precomputed 2P and 3P .

(100101001101 11010110)2 =

(1001010003 0103010030)2,

needs 7 additions and only

precomputed 3P .

(10010100110111010110)2 =

(1001010011100003̄0030)2 =

(10010101001̄00003̄0030)2 =

(10011003̄001̄00003̄0030)2 =

(10003003̄001̄00003̄0030)2
needs 5 additions and

precomputed 3P ,

assuming that � is available.

Montgomery Ladder

Consider the intermediate results

(i is decreasing).

Qi =
Pl

j=i nj2
j�iP , put Ri =

Qi+P , then Qi = 2Qi+1 +niP =

Qi+1 +Ri+1 +niP �P = 2Ri+1 +

niP � 2P:

This implies (Qi; Ri) =�
(2Qi+1; Qi+1 + Ri+1) if ni = 0
(Qi+1 + Ri+1; 2Ri+1) if ni = 1

13 = (1101)2:

(Q3; R3) = (P; 2P)

(Q2; R2) = (3P; 4P)

(Q1; R1) = (6P; 7P)

(Q0; R0) = (13P; 14P)

Idea of joint doublings

To compute

n1P1 + n2P2 + � � �+ nmPm
compute the doublings together,

i.e. write scalars ni in binary:

n1 =n1;l�12l�1 +n1;l�22l�2+ :::+n1;0

n2 =n2;l�12l�1 +n2;l�22l�2+ :::+n2;0

... =
...

...
...

nm=nm;l�12l�1+nm;l�22l�2+:::+nm;0

Idea of joint doublings

To compute

n1P1 + n2P2 + � � �+ nmPm
compute the doublings together,

i.e. write scalars ni in binary:

n1 =n1;l�12l�1 +n1;l�22l�2+ :::+n1;0

n2 =n2;l�12l�1 +n2;l�22l�2+ :::+n2;0

... =
...

...
...

nm=nm;l�12l�1+nm;l�22l�2+:::+nm;0

Compute as

2(2(n1;l�1P1+n2;l�1P2+���+nm;l�1Pm)+

(n1;l�2P1+n2;l�2P2+���+nm;l�2Pm)+���

etc. Even with precomputations,

many more adds than doublings.

Applications

ECDSA verification uses 2 scalar

multiplications ... just to add the

results.

If base point P is fixed,

precompute R = 2l=2P and

include in the curve parameters.

Split scalar n = n12
l=2 + n0 and

compute

n1R + n0P:

GLV curves split scalar in two

halves to get faster scalar

multiplication.

Verification in accelerated ECDSA

can be extended to use 4 or even

6 scalars. Splitting of the scalar is

done by LLL techniques.

Further applications in batch

verification of signatures — many

scalars —by taking random linear

combinations.

Examples

1338P + 1715Q =

(10100111010)2P +

(11010110011)2Q takes 20

doublings and 12 additions.

Given precomputed P +Q,

we can compute the same

in 10 doublings and 8 additions.

If � is efficient

(010101001̄010)2P +

(1001̄01̄01̄0101̄)2Q reduces

(compared to first line) the

number of additions to 10,

but needs 21 doublings.

Given precomputed

P +Q and P �Q:

(010101001̄010)2P+

(1001̄01̄01̄0101̄)2Q

needs 11 doublings

and 8 additions.

The joint Hamming weight

has not decreased,

and length has increased.

Joint-Sparse-Form

Solinas introduced generalization

of NAF to two scalars:

Of any three consecutive columns,

at least one is a zero column, that

is for all i and all positive j > 1

one has ni;j+k = n1�i;j+k = 0

for at least one k in f0;�1g.
Adjacent terms do not have

opposite signs, i.e. it is never the

case that ni;jni;j+1 = �1.

If ni;j+1ni;j 6= 0 then one has

n1�i;j+1 = �1 and n1�i;j = 0.

1338 =

(10100111010)2 =

(010101001̄010)2
1715 =

(11010110011)2 =

(1001̄01̄01̄0011)2

So 1338P + 1715Q needs 7

additions and 11 doublings given

precomputed P +Q and P �Q.

Average joint density is 1/2, i.e.

for two integers of length l (each)

we need on average l doublings

and l=2 additions.

Joint sparse form recoding

IN: Nonnegative l-bit integers n0

and n1 not both zero.

OUT: The joint sparse form of n0

and n1.

j 0, d0 0 and d1 0

while n0 +d0 > 0 OR n1 +d1 > 0

do

l0 d0 + n0

l1 d1 + n1

for i = 0 to 1 do

if li is even

then ni;j 0

else ni;j li mods 4

if li � �3 (mod 8)

AND l1�i � 2 (mod 4)

then ni;j �ni;j
for i = 0 to 1 do

if 2di = 1 + ni;j
then di 1� di
ni bni=2c

j j + 1

return (n0;l : : : n0;0)s
and (n1;l : : : n1;0)s

Asymptotic speeds

1939 Brauer algorithm:

� (1 + 1= lg lgH) lgH

additions to compute

P 7! nP if n � H.

1964 Straus algorithm:

� (1 + k= lg lgH) lgH

additions to compute

P1; : : : ; Pk 7! n1P1 + � � �+ nkPk
if n1; : : : ; nk � H.

1976 Yao algorithm:

� (1 + k= lg lgH) lgH

additions to compute

P 7! n1P; : : : ; nkP

if n1; : : : ; nk � H.

1976 Pippenger algorithm:

Similar asymptotics,

but replace lg lgH with lg(k lgH).

Faster than Straus and Yao

if k is large.

(Knuth summary is wrong.)

More generally, Pippenger’s

algorithm computes

` sums of multiples of k inputs.

�
�

minfk; `g+
k`

lg(k` lgH)

�
lgH

additions

if all coefficients are below H.

Within 1 + � of optimal.

More generally, Pippenger’s

algorithm computes

` sums of multiples of k inputs.

�
�

minfk; `g+
k`

lg(k` lgH)

�
lgH

additions

if all coefficients are below H.

Within 1 + � of optimal.

Various special cases of

Pippenger’s algorithm were

reinvented and patented by 1993

Brickell–Gordon–McCurley–

Wilson, 1995 Lim–Lee, etc.

Is that the end of the story?

No! 1989 Bos–Coster:

If n1 � n2 � � � � then

n1P1 + n2P2 + n3P3 + � � � =
(n1 � qn2)P1 + n2(qP1 + P2) +

n3P3 + � � � where q = bn1=n2c.
Remarkably simple;

competitive with Pippenger

for random choices of ni’s;

much better memory usage.

Example of Bos–Coster:

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32P , 16P ,

300P , 146P , 77P , 2P , 1P .

Reduce largest row:

000100000 = 32

000010000 = 16

010011010 = 154
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32P , 16P ,

154P , 146P , 77P , 2P , 1P .

Plus one extra addition:

add 146x into 154x,

obtaining 300x.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

plus 2 additions.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69
001001101 = 77

000000010 = 2

000000001 = 1

plus 3 additions.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69

000001000 = 8
000000010 = 2

000000001 = 1

plus 4 additions.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

000100101 = 37
000001000 = 8

000000010 = 2

000000001 = 1

plus 5 additions.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

000000101 = 5
000001000 = 8

000000010 = 2

000000001 = 1

plus 6 additions.

Reduce largest row:

000010000 = 16
000010000 = 16

000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 7 additions.

Reduce largest row:

000000000 = 0

000010000 = 16

000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 7 additions.

Reduce largest row:

000000000 = 0

000001000 = 8
000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.

Reduce largest row:

000000000 = 0

000000000 = 0
000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0
000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000101 = 5

000000011 = 3
000000010 = 2

000000001 = 1

plus 9 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000010 = 2
000000011 = 3

000000010 = 2

000000001 = 1

plus 10 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000010 = 2

000000001 = 1
000000010 = 2

000000001 = 1

plus 11 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
000000001 = 1

000000010 = 2

000000001 = 1

plus 11 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000001 = 1

000000001 = 1
000000001 = 1

plus 12 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
000000001 = 1

000000001 = 1

plus 12 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
000000001 = 1

plus 12 additions.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity.

