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An academic team announces

successful RSA-768 factorization.

Used � 2 years of computation

on � 1000 CPU cores.

“Factoring a 1024-bit RSA

modulus would be about a

thousand times harder.”

Many users of 1024-bit RSA:

https://www.fnb.co.za,

the root DNSSEC trial, etc.

2009 Kolkman et al.: “It is

estimated that most zones can

safely use 1024-bit keys for at

least the next ten years.”
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1000 cores in perspective:

Typical laptop has 2 cores.

A GTX 295 graphics card

has 60 cores (“MPs”).

EPFL’s 200-Playstation

cluster has 1200 cores.

Dan has an account on the

TACC Ranger supercomputer,

which has 62976 cores.

The Conficker/Downadup

criminal-controlled botnet

has � 10 000 000 cores.
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2003 Shamir et al.:

An attacker building ASICs

for 10 million USD can break

RSA-1024 in a year.

2003 RSA company:

Move to 2048 bits “over the

remainder of this decade.”

2007 NIST: Same.

Another big reason to worry:

Attackers with more money

can use batch algorithms

that save time in breaking

many keys together.
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A 1024-bit RSA key is built from

two secret 512-bit primes.

There are � 2503

possible 512-bit primes.

Can’t imagine trying them all.

But the attacks are much faster:

only � 280 calculations.

2048-bit key: 1024-bit primes;

� 21014 possible primes.

Still below modern standards!

Attacks: � 2112 calculations.

3072-bit key: 1536-bit primes;

� 21526 possible primes.

Attacks: � 2128 calculations.



Attacks use “index calculus”

= “combining congruences.”

Long history, including

many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS).

Also many smaller improvements.

Costs of these algorithms for

breaking RSA-1024, RSA-2048:

� 2120, 2170, CFRAC;

� 2110, 2160, LS;

� 2100, 2150, QS;

� 280, 2112, NFS.



1977: RSA is introduced.

1985: Miller proposes switching

from RSA to elliptic curves.

Explains several obstacles

to congruence-combination

attacks on elliptic curves.

Subsequent ECC history:

Negligible security losses.

Subsequent RSA history:

Continued security losses

from improved algorithms

for combining congruences.

Major loss in 1990 (NFS);

many smaller losses since then.



256-bit ECC keys match

security of 3072-bit RSA keys.

When properly implemented,

256-bit ECC is much faster

than 3072-bit RSA for

almost all real-world applications.

ANSI, IEEE, NIST issued

ECC standards ten years ago.

US government “Suite B”

now prohibits RSA, requires ECC.

For much more information see

the Handbook of Elliptic and

Hyperelliptic Curve Cryptography:

www.hyperelliptic.org/HEHCC



Diffie-Hellman key exchange

Uses public base, e.g. g = 2,

and prime, e.g. p = 11.

User A picks random

secret integer a, e.g. a = 4,

and computes hA = ga mod p,

e.g. hA = 24 = 16 � 5 mod 11.

User B picks random

secret integer b, e.g. b = 3,

and computes hB = gb mod p,

e.g. hB = 23 = 8 � 8 mod 11.



Then A sends hA to B

and B sends hB to A.

Finally A computes hB
a mod p,

e.g. for p = 11:

84 = (82)2 = 642 � (�2)2 � 4;

and B computes hA
b mod p,

e.g. for p = 11:

53 = (25) � 5 � 3 � 5 � 4.

Both results are the same.

No surprise since

haB = (gb)a = gab = (ga)b = hbA.

If a and b are secret then so

is gab; value can be used in

symmetric crypto.



Problems

The prime p = 11 is too small:

attacker can read off a or b and

then imitate A or B.

Solution: use much larger primes.

The exponent b is too small: 8 =

23 over the integers.

Solution: big a; b so ga; gb are

much larger than p.

This happens automatically for

random a and b and large p.

Biggest problem: Index calculus.



An adapted version

of the index calculus method

works for any prime p.

Also works for the generalization

to finite fields Fq with q = pr.

Solution: huge primes q � N,

where N is an RSA modulus.

No benefit compared to RSA?!

Better solution: Alice and Bob

did not actually use any property

other than g is a generator of

a cyclic group. There are many

cyclic groups.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”
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Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�p3=4) = “5:00”.

(�1=2;�p3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.
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Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1

P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



Adding two points corresponds

to adding the angles �1 and �2.

Angles modulo 360� are a group,

so points on clock are a group.

Neutral element: angle � = 0;

point (0; 1); “12:00”.

The point with � = 180�

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with �

is point with ��
since �+ (��) = 0.

There are many more points

where angle � is not “nice.”



Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).
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Problems

The coordinates

show a clear growth;

e.g. 625 = 54

clearly shows the scalar 4.

Solution: Use modular reduction

as in Diffie-Hellman example.



Clocks over finite fields
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Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with +;�;� modulo 7.



Larger example: Clock(F1000003).

Examples of clock addition:

2(1000; 2) = (4000; 7).

4(1000; 2) = (56000; 97).

8(1000; 2) = (863970; 18817).

16(1000; 2) = (549438; 156853).

17(1000; 2) = (951405; 877356).

With 30 clock additions

we computed

n(1000; 2) = (947472; 736284)

for some 6-digit n.

Can you figure out n?



Clock cryptography

Standardize a large prime p

and some (X; Y ) 2 Clock(Fp).

Follow standard security criteria.

Alice chooses big secret a.

Computes her public key a(X; Y ).

Bob chooses big secret b.

Computes his public key b(X; Y ).

Alice computes a(b(X; Y )).

Bob computes b(a(X; Y )).

They use this shared secret

to encrypt with AES-GCM etc.



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&LLLLLL

Bob’s
public key
b(X; Y )

xxrrrrrr

fAlice;Bobg’s
shared secret
ab(X; Y )

=
fBob;Aliceg’s
shared secret
ba(X; Y )



Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&LLLLLL

Bob’s
public key
b(X; Y )

xxrrrrrr

fAlice;Bobg’s
shared secret
ab(X; Y )

=
fBob;Aliceg’s
shared secret
ba(X; Y )

Warning: Clocks aren’t elliptic!

Can attack clock cryptography

by combining congruences.

To match RSA-3072 security

need p � 21536.



Exercise

How many multiplications

do you need to compute

(x1y2 + y1x2; y1y2 � x1x2)?

How many multiplications

do you need to double a point,

i.e. to compute

(x1y1 + y1x1; y1y1 � x1x1)?

How can you optimize the

computation if squarings are

cheaper than multiplications?

Assume S < M < 2S.



Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)����� P2 = (x2; y2)�fffff

P3 = (x3; y3)
�[[[[[[

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.
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“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1� 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1� 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1� 30x2
1y

2
1

and x2
2 + y2

2 = 1� 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1

so 30 jx1y1x2y2j < 1

so 1� 30x1x2y1y2 > 0.



The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1� 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).



More Edwards curves

Fix an odd prime power q.

Fix a non-square d 2 Fq.

f(x; y) 2 Fq � Fq :

x2 + y2 = 1 + dx2y2g
is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.
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Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

= x2
1 + y2

1 � 2x1y1



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

If x2
1 + y2

1 = 1 + dx2
1y

2
1

and x2
2 + y2

2 = 1 + dx2
2y

2
2

and dx1x2y1y2 = �1

then dx2
1y

2
1(x2 + y2)

2

= dx2
1y

2
1(x2

2 + y2
2 + 2x2y2)

= dx2
1y

2
1(dx2

2y
2
2 + 1 + 2x2y2)

= d2x2
1y

2
1x

2
2y

2
2+dx2

1y
2
1+2dx2

1y
2
1x2y2

= 1 + dx2
1y

2
1 � 2x1y1

= x2
1 + y2

1 � 2x1y1

= (x1 � y1)
2.



Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.



Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.



Case 1: x2 + y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 + y2)

�2

,

contradiction.

Case 2: x2 � y2 6= 0. Then

d =

�
x1 � y1

x1y1(x2 � y2)

�2

,

contradiction.

Case 3: x2 + y2 = x2 � y2 = 0.

Then x2 = 0 and y2 = 0,

contradiction.



Group operations

Can compute on Edwards curve,

do Diffie–Hellman key exchange.

Formulas use divisions.

Denominators are nonzero but

divisions are expensive.

Better: postpone divisions

and work with fractions.

A = Z1 � Z2; B =

A2; C = X1 �X2; D = Y1 � Y2; E =

d � C � D; F = B � E; G =

B + E; X3 = A � F �
((X1 + Y1) � (X2 + Y2)� C �D); Y3 =

A � G � (D � C); Z3 = F � G.

Needs 1S+10M+1Md.



Edwards curves are elliptic!

Can use Edwards group in crypto.

: : : if it’s a “strong” curve.

Need to compute group order.

If no large prime factor in order,

must switch to another d;

this very often happens.

Also check “twist security,”

“embedding degree,” et al.

IEEE Std 1363 is good source

for most security criteria

except twist security.

Safe example, “Curve25519”:

q = 2255 � 19; d = 1� 1=121666.



Using ECC sensibly

Typical starting point:

Client knows secret key a

and server’s public key b(X; Y ).

Client computes (and caches)

shared secret ab(X; Y ).

Client has packet for server.

Generates unique nonce.

Uses shared secret to encrypt

and authenticate packet.

Total packet overhead:

24 bytes for nonce,

16 bytes for authenticator,

32 bytes for client’s public key.



Server receives packet,

sees client’s public key a(X; Y ).

Server computes (and caches)

shared secret ab(X; Y ).

Server uses shared secret

to verify authenticator

and decrypt packet.

Client and server encrypt,

authenticate, verify, and decrypt

all subsequent packets

in the same way,

using the same shared secret.



Easy-to-use packet protection:

crypto_box from

nacl.cace-project.eu.

High-security curve (Curve25519).

High-security implementation

(e.g., no secret array indices).

Extensive code validation.

Server can compute shared secrets

for 1000000 new clients

in 40 seconds of computation

on a Core 2 Quad.

Now you are ready to run software

using elliptic curves. But there is

more to know.



More curves

Can we use Edwards curve

x2 + y2 = 1 + dx2y2

when d is a square?

d = 0: Clock. Not very secure.

d = 1: Even worse problems.

Other squares d:

The Edwards curve is elliptic

but it is not “complete.”

Need “points at 1.” These

are the points where x or y has

division by 0.



Example of how 1 appears:

Define d = 4=49 = (2=7)2.

(4; 7) is a point

on x2 + y2 = 1 + dx2y2.

(�7=8; 1=2) is a point

on x2 + y2 = 1 + dx2y2.

Try adding these points:

x3 =
4 � 1

2 � 7 � 7
8

1� 4
49 � 4 � 7

8 � 7 � 1
2

=
�33
8

0
,

y3 =
7 � 1

2 + 4 � 7
8

1 + 4
49 � 4 � 7

8 � 7 � 1
2

=
7

2
.



New definition of set of curve

points when d is a square:�
(x; y) : x2 + y2 = 1 + dx2y2

	
[
n

(�1=
p
d;1)

o

[
n

(1;�1=
p
d)
o

.



Even more trouble:

Again take d = 4=49 = (2=7)2.

(4; 7) is a point

on x2 + y2 = 1 + dx2y2.

(7=8; 1=2) is a point

on x2 + y2 = 1 + dx2y2.

Try adding these points:

x3 =
4 � 1

2 + 7 � 7
8

1 + 4
49 � 4 � 7

8 � 7 � 1
2

=
65

16
,

y3 =
7 � 1

2 � 4 � 7
8

1� 4
49 � 4 � 7

8 � 7 � 1
2

=
0

0
.



Generalize addition law:

Represent (xi; yi) by

(Xi=Zi; Yi=Ti) and use

(X1=Z1; Y1=T1) +

(X2=Z2; Y2=T2) =�
(X1Y2Z2T1 +X2Y1Z1T2)=

(Z1Z2T1T2 + dX1X2Y1Y2);

(Y1Y2Z1Z2 � aX1X2T1T2)=

(Z1Z2T1T2 � dX1X2Y1Y2)
�

if defined;

or



�
X1Y1Z2T2 +X2Y2Z1T1=

X1X2T1T2 + Y1Y2Z1Z2),

(X1Y1Z2T2 �X2Y2Z1T1)=

(X1Y2Z2T1 �X2Y1Z1T2)
�

if defined.

Have shown in ePrint 2009/580

that at least one of these two

expressions is defined for any pair

of input points.

Have 2 addition laws to cover all

inputs even in the incomplete case

where d is a square.

As a designer can choose

parameters and choose d not to

be a square.



The second law is interesting

also outside the context of

square values of d. Hisil et al.

at Asiacrypt 2008 obtained better

addition speed by using

(x1; y1) + (x2; y2) =�x1y1+x2y2
x1x2+y1y2

; x1y1�x2y2
x1y2�x2y1

�
.

Attention: these formulas fail for

doubling.

Curious fact: formulas do not

involve curve parameter d



Twisted Edwards curves

Generalization to cover more

curves over given finite field Fq:

Use a; d 2 F�q with a 6= d and

consider twisted Edwards curve

ax2 + y2 = 1 + dx2y2.

Particular fast choice: a = �1

gives additions in 8M.



There are many perspectives on

elliptic-curve computations.

Early development:

1984 (published 1987) Lenstra:

ECM, the elliptic-curve method

of factoring integers.

1984 (published 1985) Miller,

and independently

1984 (published 1987) Koblitz:

Elliptic-curve cryptography.

Bosma, Goldwasser–Kilian,

Chudnovsky–Chudnovsky, Atkin:

elliptic-curve primality proving.



The Edwards perspective is new!

1761 Euler, 1866 Gauss

introduced an addition law

for x2 + y2 = 1� x2y2,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to

many curves x2+y2 = 1+c4x2y2.

Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein–Lange:

Edwards addition law is complete

for x2 + y2 = 1 + dx2y2 if d 6= ;

and gives new ECC speed records.



Representing curve points

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Given n 2 Z, P 2 E(Fq),

division-polynomial recurrence

computes nP 2 E(Fq)

“in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form:

Each point is represented by the

triple (x; y; z) which corresponds

to the point (x=z2; y=z3).”



1986 Chudnovsky–Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”

Most important computations:

ADD is P;Q 7! P +Q.

DBL is P 7! 2P .



“It is preferable to use

models of elliptic curves

lying in low-dimensional spaces,

for otherwise the number of

coordinates and operations is

increasing. This limits us : : : to

4 basic models of elliptic curves.”

Short Weierstrass:

y2 = x3 + ax+ b.

Jacobi intersection:

s2 + c2 = 1, as2 + d2 = 1.

Jacobi quartic: y2 = x4+2ax2+1.

Hessian: x3 + y3 + 1 = 3dxy.



Some Newton polygons
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Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1� d),

B = 4=(1� d);

u = (1 + y)=(B(1� y)),

v = u=x = (1 + y)=(Bx(1� y)).

(Skip a few exceptional points.)

Then (u; v) is a point on

a long Weierstrass curve:

v2 = u3 + (A=B)u2 + (1=B2)u;

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).

) Same discrete-log security!



Optimizing Jacobian coordinates

For “traditional” (X=Z2; Y=Z3)

on y2 = x3 + ax+ b:

1986 Chudnovsky–Chudnovsky

state explicit formulas using

10M for DBL; 16M for ADD.

Consequence:

�
�

10 lgn+ 16
lgn

lg lgn

�
M

to compute n; P 7! nP

using sliding-windows method

of scalar multiplication.

Notation: lg = log2.



Squaring is faster than M.

Here are the DBL formulas:

S = 4X1 � Y 2
1 ;

M = 3X2
1 + aZ4

1 ;

T = M2 � 2S;

X3 = T ;

Y3 = M � (S � T )� 8Y 4
1 ;

Z3 = 2Y1 � Z1.

Total cost 3M + 6S + 1D where

S is the cost of squaring in Fq,

D is the cost of multiplying by a.

The squarings produce

X2
1 ; Y

2
1 ; Y

4
1 ; Z

2
1 ; Z

4
1 ;M

2.



Most ECC standards choose

curves that make formulas faster.

Curve-choice advice from

1986 Chudnovsky–Chudnovsky:

Can eliminate the 1D

by choosing curve with a = 1.

But “it is even smarter”

to choose curve with a = �3.

If a = �3 then M = 3(X2
1 � Z4

1 )

= 3(X1 � Z2
1 ) � (X1 + Z2

1 ).

Replace 2S with 1M.

Now DBL costs 4M + 4S.



2001 Bernstein:

3M + 5S for DBL.

11M + 5S for ADD.

How? Easy S�M tradeoff:

instead of computing 2Y1 � Z1,

compute (Y1 + Z1)
2 � Y 2

1 � Z2
1 .

DBL formulas were already

computing Y 2
1 and Z2

1 .

Same idea for the ADD formulas,

but have to scale X; Y; Z

to eliminate divisions by 2.



ADD for y2 = x3 + ax+ b:

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

many more computations.

1986 Chudnovsky–Chudnovsky:

“We suggest to write

addition formulas involving

(X; Y; Z; Z2; Z3).”

Disadvantages:

Allocate space for Z2; Z3.

Pay 1S+1M in ADD and in DBL.

Advantages:

Save 2S + 2M at start of ADD.

Save 1S at start of DBL.



1998 Cohen–Miyaji–Ono:

Store point as (X : Y : Z).

If point is input to ADD,

also cache Z2 and Z3.

No cost, aside from space.

If point is input to another ADD,

reuse Z2; Z3. Save 1S + 1M!

Best Jacobian speeds today,

including S�M tradeoffs:

3M + 5S for DBL if a = �3.

11M + 5S for ADD.

10M + 4S for reADD.

7M + 4S for mADD (i.e. Z2 = 1).



Compare to speeds for Edwards

curves x2 + y2 = 1 + dx2y2

in projective coordinates

(2007 Bernstein–Lange):

3M + 4S for DBL.

10M + 1S + 1D for ADD.

9M + 1S + 1D for mADD.

Inverted Edwards coordinates

(2007 Bernstein–Lange):

3M + 4S + 1D for DBL.

9M + 1S + 1D for ADD.

8M + 1S + 1D for mADD.

Even better speeds from

extended/completed coordinates

(2008 Hisil–Wong–Carter–Dawson).



y2 = x3 � 0:4x+ 0:7





x2 + y2 = 1� 300x2y2















Speed-oriented Jacobian standards

2000 IEEE “Std 1363”

uses Weierstrass curves

in Jacobian coordinates

to “provide the fastest

arithmetic on elliptic curves.”

Also specifies a method of

choosing curves y2 = x3 � 3x+ b.

2000 NIST “FIPS 186–2”

standardizes five such curves.

2005 NSA “Suite B” recommends

two of the NIST curves as

the only public-key cryptosystems

for U.S. government use.



Projective for Weierstrass

1986 Chudnovsky–Chudnovsky:

Speed up ADD by switching from

(X=Z2; Y=Z3) to (X=Z; Y=Z).

7M + 3S for DBL if a = �3.

12M + 2S for ADD.

12M + 2S for reADD.

Option has been mostly ignored:

DBL dominates in ECDH etc.

But ADD dominates in

some applications: e.g.,

batch signature verification.



Montgomery curves

1987 Montgomery:

Use by2 = x3 + ax2 + x.

Choose small (a+ 2)=4.

2(x2; y2) = (x4; y4)

) x4 =
(x2

2 � 1)2

4x2(x
2
2 + ax2 + 1)

.

(x3; y3)� (x2; y2) = (x1; y1),

(x3; y3) + (x2; y2) = (x5; y5)

) x5 =
(x2x3 � 1)2

x1(x2 � x3)2
.



Represent (x; y)

as (X:Z) satisfying x = X=Z.

B = (X2 + Z2)
2,

C = (X2 � Z2)
2,

D = B � C, X4 = B � C,

Z4 = D � (C +D(a+ 2)=4) )
2(X2:Z2) = (X4:Z4).

(X3:Z3)� (X2:Z2) = (X1:Z1),

E = (X3 � Z3) � (X2 + Z2),

F = (X3 + Z3) � (X2 � Z2),

X5 = Z1 � (E + F )2,

Z5 = X1 � (E � F )2 )
(X3:Z3) + (X2:Z2) = (X5:Z5).



This representation

does not allow ADD but it allows

DADD, “differential addition”:

Q;R;Q� R 7! Q+ R.

e.g. 2P; P; P 7! 3P .

e.g. 3P; 2P; P 7! 5P .

e.g. 6P; 5P; P 7! 11P .

2M + 2S + 1D for DBL.

4M + 2S for DADD.

Save 1M if Z1 = 1.

Easily compute n(X1 : Z1) using

� lgn DBL, � lgn DADD.

Almost as fast as Edwards nP .

Relatively slow for mP + nQ etc.



Doubling-oriented curves

2006 Doche–Icart–Kohel:

Use y2 = x3 + ax2 + 16ax.

Choose small a.

Use (X : Y : Z : Z2)

to represent (X=Z; Y=Z2).

3M + 4S + 2D for DBL.

How? Factor DBL as '̂(')

where ' is a 2-isogeny.

2007 Bernstein–Lange:

2M + 5S + 2D for DBL

on the same curves.



12M + 5S + 1D for ADD.

Slower ADD than other systems,

typically outweighing benefit

of the very fast DBL.

But isogenies are useful.

Example, 2005 Gaudry:

fast DBL+DADD on Jacobians of

genus-2 hyperelliptic curves,

using similar factorization.

Tricky but potentially helpful:

tripling-oriented curves

(see 2006 Doche–Icart–Kohel),

double-base chains, : : :



Hessian curves

Credited to Sylvester

by 1986 Chudnovsky–Chudnovsky:

(X : Y : Z) represent (X=Z; Y=Z)

on x3 + y3 + 1 = 3dxy.

12M for ADD:

X3 = Y1X2 � Y1Z2 � Z1Y2 �X1Y2,

Y3 = X1Z2 �X1Y2 � Y1X2 � Z1X2,

Z3 = Z1Y2 � Z1X2 �X1Z2 � Y1Z2.

6M + 3S for DBL.



2001 Joye–Quisquater:

2(X1 : Y1 : Z1) =

(Z1 : X1 : Y1) + (Y1 : Z1 : X1)

so can use ADD to double.

“Unified addition formulas,”

helpful against side channels.

But need to permute inputs.

2009 Bernstein–Kohel–Lange:

Easily avoid permutation!

2008 Hisil–Wong–Carter–Dawson:

(X : Y : Z : X2 : Y 2 : Z2

: 2XY : 2XZ : 2Y Z).

6M + 6S for ADD.

3M + 6S for DBL.



x3 � y3 + 1 = 0:3xy





Jacobi intersections

1986 Chudnovsky–Chudnovsky:

(S : C : D : Z) represent

(S=Z; C=Z;D=Z) on

s2 + c2 = 1, as2 + d2 = 1.

14M + 2S + 1D for ADD.

“Tremendous advantage”

of being strongly unified.

5M + 3S for DBL.

“Perhaps (?) : : : the most

efficient duplication formulas

which do not depend on the

coefficients of an elliptic curve.”



2001 Liardet–Smart:

13M + 2S + 1D for ADD.

4M + 3S for DBL.

2007 Bernstein–Lange:

3M + 4S for DBL.

2008 Hisil–Wong–Carter–Dawson:

13M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.

Also (S : C : D : Z : SC : DZ):

11M + 1S + 2D for ADD.

2M + 5S + 1D for DBL.



Jacobi quartics

(X:Y :Z) represent (X=Z; Y=Z2)

on y2 = x4 + 2ax2 + 1.

1986 Chudnovsky–Chudnovsky:

3M + 6S + 2D for DBL.

Slow ADD.

2002 Billet–Joye:

New choice of neutral element.

10M + 3S + 1D for ADD,

strongly unified.

2007 Bernstein–Lange:

1M + 9S + 1D for DBL.



2007 Hisil–Carter–Dawson:

2M + 6S + 2D for DBL.

2007 Feng–Wu:

2M + 6S + 1D for DBL.

1M + 7S + 3D for DBL

on curves chosen with a2+c2 = 1.

More speedups: 2007 Duquesne,

2007 Hisil–Carter–Dawson,

2008 Hisil–Wong–Carter–Dawson:

use (X : Y : Z : X2 : Z2)

or (X : Y : Z : X2 : Z2 : 2XZ).

Can combine with Feng–Wu.

Competitive with Edwards!



x2 = y4 � 1:9y2 + 1















More addition formulas

Explicit-Formulas Database:

hyperelliptic.org/EFD

EFD has 581 computer-verified

formulas and operation counts

for ADD, DBL, etc.

in 51 representations

on 13 shapes of elliptic curves.

Not yet handled by computer:

generality of curve shapes

(e.g., Hessian order 2 3Z);

complete addition algorithms

(e.g., checking for 1).


