Cryptology, homework sheet 2

Due 19 September 2023, 13:30
Team up in groups of two or three to hand in your homework. We do not have capacity to correct all homeworks individually.

1. Combination of hash functions. Are the following claims true or false? Either present a proof by giving a reduction as in the lecture or a counter example.
(a) Let $h:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be an efficient keyed permutation. Let $H=$ $h \circ h$ be the permutation resulting from applying h twice with the same key, i.e., $H(k, m)=h(k, h(k, m))$.
Claim: If h is preimage resistant (PRE), H is preimage resistant. 2 points
(b) Let $h_{1}:\{0,1\}^{n_{1}} \times\{0,1\}^{\ell\left(n_{1}\right)} \rightarrow\{0,1\}^{n_{1}}$ and $h_{2}:\{0,1\}^{n_{2}} \times\{0,1\}^{n_{1}} \rightarrow\{0,1\}^{n_{2}}$ be hash functions.
Claim: The combined hash function $H:\{0,1\}^{n_{1}+n_{2}} \times\{0,1\}^{\ell\left(n_{1}\right)} \mapsto$ $\{0,1\}^{n_{2}} ;\left(\left\langle k_{1}, k_{2}\right\rangle, m\right) \mapsto h_{2}\left(k_{2}, h_{1}\left(k_{1}, m\right)\right)$ is collision resistant if at least one of h_{1} and h_{2} is collision resistant and h_{2} is not constant.

$$
2 \text { points }
$$

2. A signature links the signer to a document in a way that anybody can check. Hence, signing uses the private key of the signer and verification uses the public key.
The ElGamal signature scheme works as follows. Let $G=\langle P\rangle$ be a group of points of prime order ℓ and H be a hash function. User A picks a private key a and computes the matching public key $P_{A}=a P$. To sign message m, A picks a random $r \in(\mathbb{Z} / \ell)^{*}$, computes $R=r P$ and $R^{\prime} \equiv x(R) \bmod \ell$, and computes $s \equiv r^{-1}\left(H(m)+R^{\prime} a\right) \bmod \ell$. The signature is (R, s). Here $x(R)$ denotes the x-coordinate of the point R.
The signature is verified by first computing $w_{1} \equiv s^{-1} H(m) \bmod \ell, w_{2} \equiv s^{-1} R^{\prime} \bmod \ell$ and then checking that $w_{1} P+w_{2} P_{A}=R$.

One thing to notice is that if r becomes known, then anybody can compute the private key a from the signature as $a \equiv(s r-H(m)) / R^{\prime} \bmod \ell$.
(a) You obtain $\left(R, s_{1}\right)$ on m_{1} and $\left(R, s_{2}\right)$ on m_{2} (note, the same R, different $\left.m_{i}\right)$. Show how to obtain a.

2 points
(b) You obtain $\left(R_{1}, s_{1}\right)$ on m_{1} and $\left(R_{2}, s_{2}\right)$ on m_{2} and know that these were generated such that $r_{2}=r_{1}+1$.
Show how to obtain a.
4 points
(c) Show how evil Alice can pick her secret key a dependent on two fixed, given messages m_{1} and m_{2}, so that she can later pretend that a signature (R, s) on m_{1} was a signature on m_{2}. Note, this means the same signature (R, s) satisfies the verification equation for m_{1} and m_{2}.
State a as an expression in m_{1}, m_{2}, and the group order ℓ.
Hint: You will also fix r for that signature now.
5 points

