Cryptography, exercise sheet 7 for 17 Oct 2023

1. Show that ElGamal encryption is re-randomizable, i.e., show that (r, c) and $\left(r g^{k^{\prime}}, m h_{A}^{k^{\prime}}\right)$ decrypt to the same message for any k^{\prime}. (We have covered this in class last Thu).
2. Show that ElGamal encryption is homomorphic, i.e., find some way to compbine ciphertexts (r_{1}, c_{1}) encrypting m_{1} and (r_{2}, c_{2}) encrypting m_{2} (both encrypted to public key h_{A}) so that the resulting ciphertext is an encryption of $m_{1} m_{2}$. Note: This only involves the public values, no decryption.
3. Alice and Bob use ElGamal encryption. Eve learns that Bob's random-number generator is broken (details below) and she learns the decryption m_{1} of $\left(r_{1}, c_{1}\right)$.
(a) Assume that Bob uses the same nonce k for all encryptions. Show how Eve can decrypt $\left(r_{2}, c_{2}\right)$.
(b) Assume that Bob increments his k for each encryption, i.e., that $k_{i+1}=k_{1}+i$. Show how Eve can decrypt (r_{i}, c_{i}).
4. This exercise uses the example version of the Wegman-Carter message authentication code with $p=1000003$.
To authenticate the i-th ciphertext c_{i} the sender expresses c_{i} in base 10^{6} as $c_{i}=c_{i, 0}+$ $c_{i, 1} 10^{6}+c_{i, 2} 10^{12}+\cdots+c_{i, k} 10^{6 k}$ and computes the authenticator as

$$
t_{i}=\left(c_{i, 0} r^{k+1}+c_{i, 1} r^{k}+c_{i, 2} r^{k-1}+\cdots+c_{i, k} r \bmod p\right)+s_{i} \bmod 1000000
$$

For simplicity we will do $i=1$ and omit the extra indices. Compute the authenticator for $c=454356542435979283475928437, r=483754, s=342534$.
5. The proper definition of Wegman-Carter MAC puts

$$
t_{i}=\left(\sum_{j=1}^{k} c_{i, j} r^{k+1-j} \bmod p\right)+s_{i} \bmod 2^{n}
$$

for c_{i} a ciphertext of $k n$ bits and $p>2^{n}$ a prime.
Show that it is important that the powers of r start at r^{1} rather than at r^{0}, i.e., show how an outside attacker who does not have access to r or any of the s_{i} but sees some $\left(c_{i}, t_{i}, i\right)$ can compute some valid $\left(c^{\prime}, t^{\prime}, i\right)$ on a new ciphertext $c^{\prime} \neq c_{i}$ if instead the definition is

$$
t^{\prime}=\left(\sum_{j=1}^{k} c_{j}, r^{k-j} \bmod p\right)+s_{i} \bmod 2^{n}
$$

6. Majordomo is a program that manages Internet mailing lists. If you send a message to majordomo@foodplus.com saying subscribe recipes, Majordomo will add you to the recipes mailing list, and you will receive several interesting recipes by e-mail every day.
It is easy to forge mail. You can subscribe a victim, let's say God@heaven.af.mil, to the recipes mailing list, and thousands more mailing lists, by sending fake subscription requests to Majordomo. God@heaven.af.mil will then be flooded with mail.
Majordomo 1.94, released in October 1996, attempts to protect subscribers as follows. After it receives your subscription request, it sends you a confirmation number. To
complete your subscription, you must send a second request containing the confirmation number.
Majordomo 1.94 generates confirmation numbers as follows. There is a function h that changes strings to numbers. The recipes mailing list has a secret string k. The confirmation number for an address a is $h(k a)$. For example, if the secret string is ossifrage, and the address is God@heaven.af.mil, the confirmation number is h (ossifrageGod@heaven.af.mil).
The function h produces a 32 -bit result. Each letter is naturally represented in a computer as a byte, i.e., an integer in $[0,255]$. The string is read from left to right. In the following "rotate left 4 bits" turns ($b_{31}, b_{30}, \ldots, b_{1}, b_{0}$) into $\left(b_{27}, b_{26}, \ldots, b_{1}, b_{0}, b_{31}, b_{30}, b_{29}, b_{28}\right)$.
The function h is computed as follows. Start with 0 . Add the first byte of the string. Rotate left 4 bits. Add the next byte of the string. Rotate left 4 bits. Continue adding and rotating until the end of the string.

Explain how to subscribe God@heaven.af.mil to the recipes mailing list despite this protection, and explain what Majordomo 1.94 should have done.
7. Show how to retrieve the message m in RSA-OAEP from $M=(s, t)$. (See RSA I for the definition of RSA-OAEP.) This is just considering the encoding and decoding of the message and skips the RSA part. The functions G and H are cryptographic hash functions, so you cannot invert them.
8. To do after Thursday's lecture: In 2016 a bug was found in Signal for Android which meant that in some cases the MAC was over a shorter part of the message, allowing an attacker to append data to a message. More specifically, this bug applied to attachments and came from an error in the code taking a 64 -bit value for a 32 -bit one. The part that makes this relevant for $2 \mathrm{MMC10}$ is that the implementation used AES in CBC mode. Please read https://pwnaccelerator.github.io/2016/signal-part2.html.

