Cryptography, exercise sheet 6 for 10 Oct 2023

You can use Sage or other computer-algebra systems for the computations in the specified algorithms but do not just call factor.

1. Use Pollard's rho method for factorization to find a factor of 27887 . Use starting point $\rho_{0}=17$, iteration function $\rho_{i+1}=\rho_{i}^{2}+1$ and Floyd's cycle finding method, i.e. compute $\operatorname{gcd}\left(\prod_{i=1}^{z}\left(\rho_{2 i}-\rho_{i}\right), 27887\right)$ until a non-trivial gcd is found. Deviating from RSA-IV do the gcd computations after each i, so skip the product over z. Document the intermediate steps in a table, with one row for ρ_{i}, one for $\rho_{2 i}$, and one for their gcd.
2. Use the $p-1$ method to factor 27887 with basis $a=2$ and exponent $s=$ $\operatorname{lcm}(1,2,3,4,5, \ldots, 11)$.
Explain why the method worked.
Note: to answer the latter question you need to look at the factors of $p-1$ and $q-1$ and argue about how likely it was that you would pick an a so that these two primes split when computing $\operatorname{gcd}\left(a^{s}-1,27887\right)$.
3. Use Dixon's factorization method to factor the number $n=403$ using $a_{1}=22$.

Note: This lists all the a_{i} you need.
4. You learn that I sent ciphertext
$c=146825627869398061752588778309232041959671041598158622$ to a user with RSA public key $(e, n)=(3,529774210762246675161318616746995617835565246251635147)$ and that this was the result of a form which sends a stereotyped message myfavoritenumberis___ in base 36, where the empty spaces indicate 6 unknown characters. Use LLL to recover those 6 characters.
Note that you are not guaranteed to succeed with the first output of LLL. Also note that you can (and should) check your solution.
Note: See RSA XI for Sage code regarding stereotyped messages.

