Cryptography, exercise sheet 5 for 3 Oct 2023

1. This is a continuation of exercise 4 from sheet 4 , also matching the slides I showed in the lecture on Sep 28.
Let $p=1000003$. The elliptic curve $E: y^{2}=x^{3}-x$ over \mathbb{F}_{p} has $1000004=2^{2}$. $53^{2} \cdot 89$ points. $P=(101384,614510)$ is a point of order $2 \cdot 53^{2} \cdot 89$ and $P_{A}=a P=$ $(670366,740819)$ is a multiple of P.

In this exercise you will compute $a_{1}, a_{2}, a_{3}, a_{4}$ (from the slides) and solve the DLP.
(a) Compute $a_{2} \equiv a \bmod 2$ by solving the DLP in the order- 2 subgroup.
(b) Use the BSGS algorithm to solve the 2 DLPs in the order- 53 subgroup to get a_{2} and a_{3}. Make sure to update P_{A} before solving the second one - and do not overwrite your original P_{A}.
(c) Solve the DLP in the size-89 subgroup. Feel free to use a for loop in Sage to solve this or the built in Sage funcction, but make sure to compute S and R, the new base and target.
(d) Use the Chinese remainder theorem to compute a. Test your solution.
2. Let point P have order 411672 and point P_{A} be a multiple of P. Explain how to compute the DLP of P_{A} base P using the Pohlig-Hellman attack and estimate the number of steps needed.
3. This exercise is to be solved by hand, do not use a computer algebra system for the exponentiations or the CRT calculation.
Compute $15^{24} \bmod 72$ using the Chinese Remainder Theorem with calculations modulo 8 and modulo 9. Remember to reduce the exponents and the base in the CRT calculation and take a moment to think what moduli to use and to check the conditions.
In case this is not obvious $72=2^{3} \cdot 3^{2}$, so this is not an RSA number and you need to use (and understand) the Euler-phi function and when you can reduce exponents. See RSA-II for how CRT is used for RSA moduli.
4. Perform one round of the Fermat test with base $a=2$ to test whether 31 is prime.
5. Perform the full RSA key generation for CRT-RSA for $p=10007, q=10427$, and $e=65537=2^{16}+1$.
6. Decrypt ciphertext $c=4845315$ sent to the public key in the previous exercise. Use the CRT method to recover the message.
7. Perform one round of the Miller-Rabin test with base $a=2$ to test whether 157 is prime.
What is the answer of the Miller-Rabin test?
8. Use the Pocklington test to prove that 157 is prime. You may use that 13 is prime.

