Cryptography, exercise sheet 4 for 26 Sep 2023

Some of these exercises are copied from sheet 3 because I didn't manage to cover all the material I wanted to cover on the 19th when we were locked out of our lecture room.

1. Write 20210914 in binary and compute the coefficients of the presentation with window width $w=3$.
2. Test your understanding of the Montgomery ladder by writing out the intermediate values for P_{0} and P_{1} encountered in comuting 19P. We did a small example in class for computing $5 P$.
3. Use the schoolbook version of Pollard rho and Floyd's cycle-finding algorithm to solve the DLP from exercise 5 last week using starting point $S_{0}=F_{0}=W_{0}=5 P_{A}=(36,30)$ and the step function

$$
W \leftarrow\left\{\begin{array}{r}
W+P \\
W+P_{A} \\
2 W
\end{array}, \quad b \leftarrow\left\{\begin{array}{r}
b+1 \\
b \\
2 b
\end{array}, \quad c \leftarrow\left\{\begin{array}{r}
c \\
c+1 \\
2 c
\end{array}, \quad \text { for } s(W)=\left\{\begin{array}{l}
0 \\
1 \\
2
\end{array} .\right.\right.\right.\right.
$$

As a reminder, the curve is $y^{2}=x^{3}+x+3$ over \mathbb{F}_{43} with 47 points. The base point $P=(19,42)$ has order 47, the target point is $P_{A}=(28,15)$.
4. Discuss how you can document the work you did in exercise 3 so that one can grade it.
5. Let $p=1000003$. The elliptic curve $E: y^{2}=x^{3}-x$ over \mathbb{F}_{p} has $1000004=2^{2}$. $53^{2} \cdot 89$ points. $P=(101384,614510)$ is a point of order $2 \cdot 53^{2} \cdot 89$ and $P_{A}=a P=$ $(670366,740819)$ is a multiple of P.
(a) Compute $a_{2} \equiv a \bmod 2$ by solving the DLP in the order- 2 subgroup.
(b) Use the BSGS algorithm to compute $a \bmod 53$ in the subgroup of order 53 .

