$\begin{array}{c} \mathsf{RSA} \ \mathsf{V} \\ \mathsf{p-1}, \mathsf{p+1} \text{ methods and ECM} \end{array}$

Tanja Lange (some slides joint work with Daniel J. Bernstein)

Eindhoven University of Technology

2MMC10 - Cryptology

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20). Then $2^{s} - 1$ is divisible by

- 70 of the 168 primes $\leq 10^3$;
- 156 of the 1229 primes $\leq 10^4$;
- 296 of the 9592 primes $\le 10^5$;
- ▶ 470 of the 78498 primes $\leq 10^{6}$; etc.

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20). Then $2^{s} - 1$ is divisible by

- 70 of the 168 primes $\leq 10^3$;
- 156 of the 1229 primes $\leq 10^4$;
- 296 of the 9592 primes $\le 10^5$;
- 470 of the 78498 primes $\le 10^6$; etc.

We know from Fermat's little theorem that

 $a^{p-1} \equiv 1 \mod p$

for p prime and gcd(a, p) = 1. If p is a factor of m then p divides

$$gcd(a^{p-1}-1,m).$$

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20). Then $2^{s} - 1$ is divisible by

- 70 of the 168 primes $\leq 10^3$;
- 156 of the 1229 primes $\leq 10^4$;
- 296 of the 9592 primes $\le 10^5$;
- 470 of the 78498 primes $\le 10^6$; etc.

We know from Fermat's little theorem that

 $a^{p-1} \equiv 1 \mod p$

for p prime and gcd(a, p) = 1. If p is a factor of m then p divides

$$gcd(a^{p-1}-1, m).$$

To find p, compute $gcd(a^s - 1, m)$ for s with many small prime factors.

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20). Then $2^{s} - 1$ is divisible by

- 70 of the 168 primes $\leq 10^3$;
- 156 of the 1229 primes $\leq 10^4$;
- 296 of the 9592 primes $\le 10^5$;
- 470 of the 78498 primes $\le 10^6$; etc.

We know from Fermat's little theorem that

 $a^{p-1} \equiv 1 \mod p$

for p prime and gcd(a, p) = 1. If p is a factor of m then p divides

$$gcd(a^{p-1}-1, m).$$

To find *p*, compute $gcd(a^s - 1, m)$ for *s* with many small prime factors. Also need prime q|m with $a^s - 1 \neq 0 \mod q$, else $gcd(a^s - 1, m) = m$.

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20). Then $2^{s} - 1$ is divisible by

- 70 of the 168 primes $\leq 10^3$;
- 156 of the 1229 primes $\leq 10^4$;
- 296 of the 9592 primes $\le 10^5$;
- 470 of the 78498 primes $\le 10^6$; etc.

We know from Fermat's little theorem that

 $a^{p-1} \equiv 1 \mod p$

for p prime and gcd(a, p) = 1. If p is a factor of m then p divides

$$gcd(a^{p-1}-1,m).$$

To find p, compute $gcd(a^s - 1, m)$ for s with many small prime factors. Also need prime q|m with $a^s - 1 \not\equiv 0 \mod q$, else $gcd(a^s - 1, m) = m$. Odd prime p divides $a^s - 1$ if and only if the order of a in \mathbf{F}_p^* divides s. The latter works for sure if p - 1 divides s, but this is not required.

Put $s = \text{lcm}(2, 3, ..., B_1)$ for some B_1 . Pick random a. Compute

 $b \equiv a^s \mod m$ and gcd(b-1,m)

using fast exponentiation with reduction modulo m. s used repeatedly, so worth it computing a good addition chain. At least use sliding windows.

Put $s = \text{lcm}(2, 3, ..., B_1)$ for some B_1 . Pick random a. Compute

 $b \equiv a^s \mod m$ and gcd(b-1,m)

using fast exponentiation with reduction modulo m. s used repeatedly, so worth it computing a good addition chain. At least use sliding windows.

We can reduce modulo m because computing $gcd(a^s - 1, m)$ reduces modulo m in the first step, so keep numbers < m in the exponentiation.

Put $s = \text{lcm}(2, 3, ..., B_1)$ for some B_1 . Pick random a. Compute

 $b \equiv a^s \mod m$ and gcd(b-1,m)

using fast exponentiation with reduction modulo m. s used repeatedly, so worth it computing a good addition chain. At least use sliding windows.

We can reduce modulo m because computing $gcd(a^s - 1, m)$ reduces modulo m in the first step, so keep numbers < m in the exponentiation.

"Real" p-1 computations have a second stage in which one computes $gcd((b^{q_1}-1)(b^{q_2}-1)(b^{q_3}-1)\cdots(b^{q_k}-1), m)$ for mall primes $B_1 < q_1, \ldots, q_k \le B_2$. Several tricks for speed, not exactly this formula. Succeeds if order of $a \mod p$ divides sq_i for some $1 \le i \le k$.

Put $s = \text{lcm}(2, 3, ..., B_1)$ for some B_1 . Pick random a. Compute

 $b \equiv a^s \mod m$ and gcd(b-1,m)

using fast exponentiation with reduction modulo m. s used repeatedly, so worth it computing a good addition chain. At least use sliding windows.

We can reduce modulo m because computing $gcd(a^s - 1, m)$ reduces modulo m in the first step, so keep numbers < m in the exponentiation.

"Real" p-1 computations have a second stage in which one computes $gcd((b^{q_1}-1)(b^{q_2}-1)(b^{q_3}-1)\cdots(b^{q_k}-1), m)$ for mall primes $B_1 < q_1, \ldots, q_k \le B_2$. Several tricks for speed, not exactly this formula. Succeeds if order of $a \mod p$ divides sq_i for some $1 \le i \le k$.

Numbers are easy to factor if a factor p has smooth p-1. "Safe primes", i.e., primes of the form 2p' + 1, for p' a prime, are harder to factor

Put $s = \text{lcm}(2, 3, ..., B_1)$ for some B_1 . Pick random a. Compute

 $b \equiv a^s \mod m$ and gcd(b-1,m)

using fast exponentiation with reduction modulo m. s used repeatedly, so worth it computing a good addition chain. At least use sliding windows.

We can reduce modulo m because computing $gcd(a^s - 1, m)$ reduces modulo m in the first step, so keep numbers < m in the exponentiation.

"Real" p-1 computations have a second stage in which one computes $gcd((b^{q_1}-1)(b^{q_2}-1)(b^{q_3}-1)\cdots(b^{q_k}-1), m)$ for mall primes $B_1 < q_1, \ldots, q_k \le B_2$. Several tricks for speed, not exactly this formula. Succeeds if order of $a \mod p$ divides sq_i for some $1 \le i \le k$.

Numbers are easy to factor if a factor p has smooth p - 1.

"Safe primes", i.e., primes of the form 2p' + 1, for p' a prime, are harder to factor with the p - 1 method.

This does not help against the NFS nor against p + 1 and ECM.

The p + 1 factorization method

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20) and P = (3/5, 4/5) in the group Clock(**Q**). Define $(X, Y) = sP \in \mathbf{Q} \times \mathbf{Q}$.

The integer $S_2 = 5^{232792560}X$ is divisible by 82 of the primes $\leq 10^3$; 223 of the primes $\leq 10^4$; 455 of the primes $\leq 10^5$; 720 of the primes $\leq 10^6$; etc. For those primes, $(X, Y) = (0, \pm 1)$ on $\text{Clock}(\mathbf{F}_p)$.

The p + 1 factorization method

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20) and P = (3/5, 4/5) in the group Clock(**Q**). Define $(X, Y) = sP \in \mathbf{Q} \times \mathbf{Q}$.

The integer $S_2 = 5^{232792560}X$ is divisible by 82 of the primes $\leq 10^3$; 223 of the primes $\leq 10^4$; 455 of the primes $\leq 10^5$; 720 of the primes $\leq 10^6$; etc. For those primes, $(X, Y) = (0, \pm 1)$ on $\text{Clock}(\mathbf{F}_p)$.

Given an integer *m*, compute $S_2 \equiv 5^s x(sP) \mod m$ and $gcd(S_2, m)$ hoping to factor *m*. Many *p*'s not found by \mathbf{F}_p^* are found by $Clock(\mathbf{F}_p)$.

The p + 1 method changes from computing in \mathbf{F}_{p}^{*} , thus succeeding when $\operatorname{ord}_{p}(a)$ divides s, to working in $\operatorname{Clock}(\mathbf{F}_{p})$, thus succeeding when $\operatorname{ord}_{p}(P)$ divides 2s. $\operatorname{ord}_{p}(a)$: order of $a \mod p$ in \mathbf{F}_{p}^{*} ; $\operatorname{ord}_{p}(P)$: order of P in $\operatorname{Clock}(\mathbf{F}_{p})$.

The p + 1 factorization method

Let s = 232792560 = lcm(1, 2, 3, 4, 5, ..., 20) and P = (3/5, 4/5) in the group $\text{Clock}(\mathbf{Q})$. Define $(X, Y) = sP \in \mathbf{Q} \times \mathbf{Q}$.

The integer $S_2 = 5^{232792560}X$ is divisible by 82 of the primes $\leq 10^3$; 223 of the primes $\leq 10^4$; 455 of the primes $\leq 10^5$; 720 of the primes $\leq 10^6$; etc. For those primes, $(X, Y) = (0, \pm 1)$ on $\text{Clock}(\mathbf{F}_p)$.

Given an integer *m*, compute $S_2 \equiv 5^s x(sP) \mod m$ and $gcd(S_2, m)$ hoping to factor *m*. Many *p*'s not found by \mathbf{F}_p^* are found by $Clock(\mathbf{F}_p)$.

The p + 1 method changes from computing in \mathbf{F}_{p}^{*} , thus succeeding when $\operatorname{ord}_{p}(a)$ divides s, to working in $\operatorname{Clock}(\mathbf{F}_{p})$, thus succeeding when $\operatorname{ord}_{p}(P)$ divides 2s.

 $\operatorname{ord}_{p}(a)$: order of $a \mod p$ in \mathbf{F}_{p}^{*} ; $\operatorname{ord}_{p}(P)$: order of P in $\operatorname{Clock}(\mathbf{F}_{p})$.

If $p \equiv 3 \mod 4$ and p + 1 divides 232792560 then $5^{232792560}X \equiv 0 \mod p$. Proof: There are p + 1 points in $\text{Clock}(\mathbf{F}_p)$ for $p \equiv 3 \mod 4$.

The p + 1 method succeeds if p + 1 divides s.

Pick curve *E*. Fix bounds B_1, B_2 . Put $s = \text{lcm}(2, 3, \dots, B_1)$.

Stage 1: Pick point *P* on *E* over \mathbf{Z}/m , compute R = sP.

Stage 2: For small primes $B_1 < q_1, \ldots, q_k \le B_2$ compute $R_i = q_i R$. Compute gcd $(\prod x(R_i), m)$.

Pick curve *E*. Fix bounds B_1, B_2 . Put $s = \text{lcm}(2, 3, \dots, B_1)$.

Stage 1: Pick point P on E over \mathbf{Z}/m , compute R = sP.

Stage 2:

For small primes $B_1 < q_1, \ldots, q_k \leq B_2$ compute $R_i = q_i R$.

Compute gcd $(\prod x(R_i), m)$.

If order of *P* in E/\mathbf{F}_p (same curve, reduce mod *p*) divides some sq_i , then modulo *p* we have $R_i = (0, 1)$ (using Edwards).

Pick curve *E*. Fix bounds B_1, B_2 . Put $s = \text{lcm}(2, 3, \dots, B_1)$.

Stage 1: Pick point P on E over \mathbf{Z}/m , compute R = sP.

Stage 2: For small primes $B_1 < q_1, \ldots, q_k \le B_2$ compute $R_i = q_i R$.

Compute gcd $(\prod x(R_i), m)$.

If order of *P* in E/\mathbf{F}_p (same curve, reduce mod *p*) divides some sq_i , then modulo *p* we have $R_i = (0, 1)$ (using Edwards).

ECM permits varying the curve. If a curve fails, try another. $|E(\mathbf{F}_p)| \in [p+1-2\sqrt{p}, p+1+2\sqrt{p}].$

All primes $\leq H$ found after reasonable number of curves.

Pick curve *E*. Fix bounds B_1, B_2 . Put $s = \text{lcm}(2, 3, \dots, B_1)$.

Stage 1: Pick point P on E over \mathbf{Z}/m , compute R = sP.

Stage 2: For small primes $B_1 < q_1, \ldots, q_k \leq B_2$ compute $R_i = q_i R$. Compute gcd $(\prod x(R_i), m)$.

If order of *P* in E/\mathbf{F}_p (same curve, reduce mod *p*) divides some sq_i , then modulo *p* we have $R_i = (0, 1)$ (using Edwards).

ECM permits varying the curve. If a curve fails, try another. $|E(\mathbf{F}_p)| \in [p+1-2\sqrt{p}, p+1+2\sqrt{p}].$ *All* primes $\leq H$ found after reasonable number of curves.

Plausible conjecture: if B_1 is $\exp \sqrt{\left(\frac{1}{2} + o(1)\right)\log H \log \log H}$ then, for each prime $p \leq H$, a uniform random curve mod p has chance $\geq 1/B_1^{1+o(1)}$ to find p. Find p using, $\leq B_1^{1+o(1)}$ curves; $\leq B_1^{2+o(1)}$ squarings. Time subexponential in H.

Pick curve *E*. Fix bounds B_1, B_2 . Put $s = lcm(2, 3, ..., B_1)$. Actually need to generate point along with curve; cannot compute square roots modulo *m*. Pick point *P* on *E* over \mathbb{Z}/m , compute R = sP. Stage 2: For small primes $B_1 < q_1, ..., q_k \leq B_2$ compute $R_i = q_i R$. Compute gcd $(\prod x(R_i), m)$.

If order of *P* in E/\mathbf{F}_p (same curve, reduce mod *p*) divides some sq_i , then modulo *p* we have $R_i = (0, 1)$ (using Edwards).

ECM permits varying the curve. If a curve fails, try another. $|E(\mathbf{F}_p)| \in [p + 1 - 2\sqrt{p}, p + 1 + 2\sqrt{p}].$ Fastest method we have seen so far. All primes $\leq H$ found after reasonable number of curves.

Plausible conjecture: if B_1 is $\exp \sqrt{(\frac{1}{2} + o(1))\log H \log \log H}$ then, for each prime $p \le H$, a uniform random curve mod p has chance $\ge 1/B_1^{1+o(1)}$ to find p. Find p using, $\le B_1^{1+o(1)}$ curves; $\le B_1^{2+o(1)}$ squarings. Time subexponential in H.