Tanja Lange

Eindhoven University of Technology

2WF80: Introduction to Cryptology

Public-key authenticated encryption ("DH" data flow)

- Prerequisite: Alice has a private key and public key
- Prerequisite: Bob has a private key ^{ww} and public key
- Alice and Bob use this shared key to authenticate and encrypt with symmetric cryptography.

Public-key authenticated encryption ("DH" data flow)

- Everybody knows a group G generator g.
- ▶ Prerequisite: Alice has a private key $a \in \mathbb{N}$ and public key $h_A = g^a$.
- ▶ Prerequisite: Bob has a private key $b \in \mathbb{N}$ and public key $h_B = g^b$.
- ► $h_B^a = (g^b)^a$
- Alice and Bob use this shared key to authenticate and encrypt with symmetric cryptography.

Tanja Lange

Public-key authenticated encryption ("DH" data flow)

- Everybody knows a group G generator g.
- ▶ Prerequisite: Alice has a private key $a \in \mathbb{N}$ and public key $h_A = g^a$.
- ▶ Prerequisite: Bob has a private key $b \in \mathbb{N}$ and public key $h_B = g^b$.
- ► $h_B^a = (g^b)^a = g^{ab} = (g^a)^b = h_A^b$. Use hash of g^{ab} has key.
- Alice and Bob use this shared key to authenticate and encrypt with symmetric cryptography.

- ▶ 1976 Diffie and Hellman introduce public-key cryptography.
- ► To use it, standardize group G and g ∈ G. Everybody knows G and g as well as how to compute in G.
- ▶ Warning #1: Many G are unsafe!

- ▶ 1976 Diffie and Hellman introduce public-key cryptography.
- ► To use it, standardize group G and g ∈ G. Everybody knows G and g as well as how to compute in G.
- ▶ Warning #1: Many *G* are unsafe!

•
$$G = (\mathbb{Q}, \cdot), g = 2, h_A = 65536$$

- ▶ 1976 Diffie and Hellman introduce public-key cryptography.
- ► To use it, standardize group G and g ∈ G. Everybody knows G and g as well as how to compute in G.
- ▶ Warning #1: Many *G* are unsafe!
 - ▶ $G = (\mathbb{Q}, \cdot), g = 2, h_A = 65536$ means a = 16. In general, just check bitlength.
 - G = (𝔽_p, +), i.e., A sends h_A ≡ ag mod p.
 See exercises for Thursday
- ▶ Diffie and Hellman suggested G = (𝔽^{*}_p, ·) with g a primitive element, i.e., a generator of the whole group.

- ▶ 1976 Diffie and Hellman introduce public-key cryptography.
- ► To use it, standardize group G and g ∈ G. Everybody knows G and g as well as how to compute in G.
- ▶ Warning #1: Many *G* are unsafe!
 - ▶ $G = (\mathbb{Q}, \cdot), g = 2, h_A = 65536$ means a = 16. In general, just check bitlength.
 - G = (𝔽_p, +), i.e., A sends h_A ≡ ag mod p.
 See exercises for Thursday
- ▶ Diffie and Hellman suggested G = (𝔽^{*}_p, ·) with g a primitive element, i.e., a generator of the whole group.
- Used in practice $G \subset (\mathbb{F}_p^*, \cdot)$ with g an element of large prime order.
- More commonly used in practice G is group of points on an elliptic curve over 𝔽_p. Stay on for 2MMC10 for details.

Hardness assumptions

- Computational Diffie-Hellman Problem (CDHP): Given g, g^a, g^b compute g^{ab}.
- Decisional Diffie-Hellman Problem (DDHP):
 Given g, g^a, g^b, and g^c decide whether g^c = g^{ab}.
- Discrete Logarithm Problem (DLP): Given g, g^a, compute a.
- ▶ If one can solve DLP, then CDHP and DDHP are easy.

Hardness assumptions

- Computational Diffie-Hellman Problem (CDHP): Given g, g^a, g^b compute g^{ab}.
- Decisional Diffie-Hellman Problem (DDHP):
 Given g, g^a, g^b, and g^c decide whether g^c = g^{ab}.
- Discrete Logarithm Problem (DLP): Given g, g^a, compute a.
- ▶ If one can solve DLP, then CDHP and DDHP are easy.
- ▶ If one can solve CDH, then DDHP is easy.

• Eve can set up a *man-in-the-middle* attack:

$$A \stackrel{g^{ae}}{\longleftrightarrow} E \stackrel{g^{bf}}{\longleftrightarrow} B$$

E decrypts everything from A and reencrypts it to B and vice versa.

► This attack cannot be detected unless A and B have some long-term keys that are known to each other or compare their keys out of band.

Semi-static DH

- A cryptosystem combining public-key and symmetric-key crypto is called a *hybrid system*
- ► Alice publishes long-term public key h_A = g^a, keeps long-term private key a.
- Any user can encrypt to Alice using this key:
 - Pick random k and compute $r = g^k$.
 - Encrypt message using symmetric keys derived from $H(h_A^k)$.
 - Send ciphertext *c* along with *r*.
 - Alice decrypts, by obtaining symmetric key from $H(r^a) = H(g^{ak})$.

Semi-static DH

- A cryptosystem combining public-key and symmetric-key crypto is called a *hybrid system*
- ► Alice publishes long-term public key h_A = g^a, keeps long-term private key a.
- Any user can encrypt to Alice using this key:
 - Pick random k and compute $r = g^k$.
 - Encrypt message using symmetric keys derived from $H(h_A^k)$.
 - Send ciphertext c along with r.
 - Alice decrypts, by obtaining symmetric key from $H(r^a) = H(g^{ak})$.
- Alice's key here is static, Bob's key is ephemeral.
- Note: ephemeral does not mean one-time; it means that is not long term.