Implementing Multivariate Public-Key Cryptosystems Some Lessons from the Last 7 Years

Bo-Yin Yang

Institute of Information Science Academia Sinica Taipei, Taiwan by@crypto.tw

SPEED-CC workshop, October 12, 2009

Outline

- Multivariate public key cryptosystems (MPKCs)
- History, trends, and factoids
- Vector instruction sets (*SSE*)
- MPKCs over odd prime fields
- Some counter-intuitive techniques
- Performance results
- Other platforms

3

Multivariate PKC (MPKC)

Public map of a typical multivariate PKC over base field $K = \mathbb{F}_q$:

$$\mathcal{P}: \mathbf{w} \in \mathcal{K}^n \xrightarrow{\mathcal{S}} \mathbf{x} = \mathbf{M}_{\mathcal{S}} \mathbf{w} + \mathbf{c}_{\mathcal{S}} \xrightarrow{\mathcal{Q}} \mathbf{y} \xrightarrow{\mathcal{T}} \mathbf{z} = \mathbf{M}_{\mathcal{T}} \mathbf{y} + \mathbf{c}_{\mathcal{T}} \in \mathcal{K}^m$$

- S and T affine and invertible
- Q quadratic, known as as the central map (and the components of Q are central polynomials)
- For encryption schemes, n < m
- For signature schemes, n > m
- Most often q = 2 or a lower power of 2.

Why are MPKCs Worth Studying?

- Diversification
- Efficiency

3

A B F A B F

< □ > < ---->

Why are MPKCs Worth Studying?

- Diversification: Future-proof against quantum computers.
- Efficiency: Faster than "traditional" PKCs.

3

∃ → (∃ →

Why are MPKCs Worth Studying?

- Diversification: Future-proof against quantum computers.
- Efficiency: Faster than "traditional" PKCs. ... Maybe.

3

A B K A B K

Image: Image:

Basic Trapdoor

Ways for the legitimate user to invert \mathcal{Q} :

3

伺下 イヨト イヨト

Basic Trapdoor

Ways for the legitimate user to invert \mathcal{Q} :

• Big-Field: C^* , HFE, ℓ IC,

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Basic Trapdoor

Ways for the legitimate user to invert Q:

- Big-Field: C^* , HFE, ℓ IC,
- Small-Field: UOV, Triangular

3

A B F A B F

Basic Trapdoor

Ways for the legitimate user to invert Q:

- Big-Field: C^* , HFE, ℓ IC,
- Small-Field: UOV, Triangular

Modifiers

Ways to guard against an attacker finding ${\cal Q}$

3

A B M A B M

Basic Trapdoor

Ways for the legitimate user to invert Q:

- Big-Field: C^{*}, HFE, ℓIC,
- Small-Field: UOV, Triangular

Modifiers

Ways to guard against an attacker finding Q: +, -, p, i, v, ...

A B M A B M

MPKC Modifiers

- All vanilla trapdoors have been broken
- Need modifiers to address attacks
 - Minus (-): throw away some polynomials
 - Plus (+): add central polynomials
 - Prefix or postfix (p): force some $w_i = 0$
 - Vinegar (v): perturbation in a small subspace
 - Internal perturbation (i): equal to p+v.
- A few others; not discussed here.

UOV (Unbalanced Oil and Vinegar) Patarin, 1997

We can write the quadratic part of a polynomial in \boldsymbol{w} as a symmetric matrix $\boldsymbol{M}.$

3

(日) (周) (三) (三)

UOV (Unbalanced Oil and Vinegar) Patarin, 1997

We can write the quadratic part of a polynomial in \mathbf{w} as a symmetric matrix \mathbf{M} . If dealing with \mathbb{F}_{2^k} , let $f(\mathbf{w}) = \mathbf{w}^T \overline{M} \mathbf{w} + (\text{lower parts})$, then $M = \overline{M} + \overline{M}^T$ is the matrix we want.

글 > - + 글 >

UOV (Unbalanced Oil and Vinegar) Patarin, 1997

We can write the quadratic part of a polynomial in \mathbf{w} as a symmetric matrix M. Matrices corresponding to central polynomials of UOV schemes have a distinctive form:

Hence given **y** and x_1, \ldots, x_v we can solve for x_{v+1}, \ldots, x_n .

Rainbow-Type Signatures or Stage-wise UOV, Ding 2005

• For
$$0 < v_1 < v_2 < \dots < v_{u+1} = n$$

• $S_l := \{1, 2, \dots, v_l\}$
• $O_l := \{v_l + 1, \dots, v_{l+1}\}$
• $o_l := v_{l+1} - v_l = |O_l|$
• $Q : \mathbf{x} = (x_1, \dots, x_n) \mapsto \mathbf{y} = (y_{v_1+1}, \dots, y_n)$
• $y_k := q_k(\mathbf{x})$, with following form if $v_l < k \le v_{l+1}$
 $q_k = \sum_{i \le j \le v_l} \alpha_{ij}^{(k)} x_i x_j + \sum_{i \le v_l < j < v_{l+1}} \alpha_{ij}^{(k)} x_i x_j + \sum_{i < v_{l+1}} \beta_i^{(k)} x_i$

• Given all y_i with $v_l < i \le v_{l+1}$ and all x_j with $j \le v_l$, we can compute $x_{v_l+1}, \ldots, x_{v_{l+1}}$ via elimination

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rainbow Variants

TTS: Chen+Yang 2004

- \bullet Uses a sparse ${\cal Q}$
- \mathcal{Q}^{-1} only need solving linear systems like Rainbow

Example from 2004: TTS(20,28)

$$y_i = x_i + \sum_{j=1}^{l} p_{ij} x_j x_{8+(i+j \mod 9)}, i = 8, \dots, 16$$

$$y_{17} = x_{17} + p_{17,1} x_1 x_6 + p_{17,2} x_2 x_5 + p_{17,3} x_3 x_4$$

$$+p_{17,4}x_9x_{16}+p_{17,5}x_{10}x_{15}+p_{17,6}x_{11}x_{14}+p_{17,7}x_{12}x_{13}$$

$$y_{18} = x_{18} + p_{18,1}x_2x_7 + p_{18,2}x_3x_6 + p_{18,3}x_4x_5 + p_{18,4}x_{10}x_{17} + p_{18,5}x_{11}x_{16} + p_{18,6}x_{12}x_{15} + p_{18,7}x_{13}x_{14}$$

$$y_{i} = x_{i} + p_{i,0}x_{i-11}x_{i-9} + \sum_{j=19}^{i} p_{i,j-18}x_{2(i-j)-(i \mod 2)}x_{j} + \sum_{j=i+1}^{27} p_{i,j-18}x_{i-j+19}x_{j}, i = 19, \dots, 27$$

B.-Y. Yang (IIS-Sinica)

SPEED-CC, Oct. 12, '09 9 / 40

イロト 不得下 イヨト イヨト 二日

Rainbow Variants

TTS: Chen+Yang 2004

- Uses a sparse ${\cal Q}$
- \mathcal{Q}^{-1} only need solving linear systems like Rainbow

TRMS: Wang-*-Yang, 2005

Each UOV stage is

```
piece of \mathbf{y} = \text{quadratic}(\mathbf{x}_{\text{vinegar}}) + \text{linear}(\mathbf{x}_{\text{vinegar}}) \times_{\mathbb{F}_{a^k}} \text{linear}(\mathbf{x}_{\text{oil}})
```

• To invert the central map do divisions in various \mathbb{F}_{a^k}

A B < A B <</p>

Rainbow Variants

TTS: Chen+Yang 2004

- Uses a sparse ${\cal Q}$
- \mathcal{Q}^{-1} only need solving linear systems like Rainbow

TRMS: Wang-*-Yang, 2005

Each UOV stage is

piece of $\mathbf{y} = \text{quadratic}(\mathbf{x}_{\text{vinegar}}) + \text{linear}(\mathbf{x}_{\text{vinegar}}) \times_{\mathbb{F}_{a^k}} \text{linear}(\mathbf{x}_{\text{oil}})$

• To invert the central map do divisions in various \mathbb{F}_{a^k}

Rainbow-type Parameters Today

Suggested examples are q = 16 or 31 and layers sizes (24, 20, 20).

イロト 不得 トイヨト イヨト 二日

UOV matrices look like this

Rainbow and variants also have some matrices like this

$$M_{i} := \begin{bmatrix} * & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \alpha_{11}^{(i)} & \cdots & \alpha_{1\nu}^{(i)} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{\nu 1}^{(i)} & \cdots & \alpha_{\nu\nu}^{(i)} & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$$

B.-Y. Yang (IIS-Sinica)

Implementing MPKCs

SPEED-CC, Oct. 12, '09 10 / 40

The C* Trapdoor Matsumoto and Imai, 1988

• The central map is a monomial over \mathbb{F}_{q^n}

$$\mathcal{Q}(x) = x^{1+q^{\theta}} = x \cdot x^{q^{\theta}}$$

- \mathbb{F}_{q^n} is an *n*-dimension vector space over \mathbb{F}_q
- Since $x \mapsto x^q$ is linear, \mathcal{Q} is quadratic
- Requires that $gcd(1 + q^{\theta}, q^n 1) = 1$
- ${\cal Q}$ is inverted by raising to the inverse power of $1+q^ heta$
- Basic scheme broken by Patarin in 1995
- $C^* p$ and $C^* + i$ not yet broken

HFE: Hidden Field Equations Patarin 1998

- Generalization of C*
- Central map is a *Dembowski-Ostrom polynomial* in \mathbb{F}_{q^n}

$$\mathcal{Q}(x) = \sum_{q^i+q^j \leq D} a_{i,j < r} x^{q^i+q^j} + \sum_{q^i \leq D} b_i x^{q^i} + c$$

- Inversion using Berlekamp Algorithm, much slower than C^*
- Basic scheme is breakable if r too small
- QUARTZ (a HFE-v) still standing

(B)

Variant Trapdoors with Smaller "Big Fields"

$\ell\text{-invertible Cycles}$

- Like C^* , $\ell \mathsf{IC}$ also uses an intermediate field $\mathbb{L}^* = \mathbb{K}^k$
- Extends C^* by using the following central map from $(\mathbb{L}^*)^\ell$ to itself

$$\mathcal{Q}: (X_1,\ldots,X_\ell)\mapsto (Y_1,\ldots,\,Y_\ell):=(X_1X_2,\,X_2X_3,\ldots,\,X_{\ell-1}X_\ell,X_\ell X_1^{q^lpha})$$

• "Standard 3IC,"
$$\ell = 3, \alpha = 0$$

$$\mathcal{Q}: (X_1, X_2, X_3) \in (\mathbb{L}^*)^3 \mapsto (X_1X_2, X_2X_3, X_3X_1)$$

HFE with intermediate fields for speed

- Q is a random quadratic maps in $\mathbb{L}^k \mapsto \mathbb{L}^k$, called 3HFE if k = 3, etc.
- To do Q^{-1} convert by elimination (Gröbner basis computation) to univariate equation of degree 2^k .

Note: 3HFEp, 3IC-p, and 2IC+i still standing.

- 3

→ ∃ > < ∃ >

Variant Trapdoors with Smaller "Big Fields"

$\ell\text{-invertible Cycles}$

- Like C^* , $\ell \mathsf{IC}$ also uses an intermediate field $\mathbb{L}^* = \mathbb{K}^k$
- Extends C^* by using the following central map from $(\mathbb{L}^*)^\ell$ to itself

$$\mathcal{Q}: (X_1,\ldots,X_\ell)\mapsto (Y_1,\ldots,Y_\ell):=(X_1X_2,X_2X_3,\ldots,X_{\ell-1}X_\ell,X_\ell X_1^{q^lpha})$$

• "Standard 3IC," $\ell=\mathbf{3}, \alpha=\mathbf{0}$, \mathcal{Q}^{-1} in $(\mathbb{L}^*)^3$ is easy:

$$\mathcal{Q}^{-1}: (Y_1, Y_2, Y_3) \in (\mathbb{L}^*)^3 \mapsto (\sqrt{Y_1Y_3/Y_2}, \sqrt{Y_1Y_2/Y_3}, \sqrt{Y_2Y_3/Y_1},)$$

HFE with intermediate fields for speed

- Q is a random quadratic maps in $\mathbb{L}^k \mapsto \mathbb{L}^k$, called 3HFE if k = 3, etc.
- To do Q^{-1} convert by elimination (Gröbner basis computation) to univariate equation of degree 2^k .

Note: 3HFEp, 3IC-p, and 2IC+i still standing.

Key Generation Evaluation of coefficients

Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K}=\mathbb{F}_q$

Private Maps

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Key Generation

Evaluation of coefficients:

- Often as differentials of public map.
- Sometimes, by brute force!

Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K}=\mathbb{F}_q$

Private Maps

3

Key Generation

Evaluation of coefficients

Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K} = \mathbb{F}_q$ usually as a matrix multiplying the vector of monomials

Private Maps

• • = • • = •

Key Generation

Evaluation of coefficients

Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K} = \mathbb{F}_q$

Private Maps

UOV Solving linear systems of equations in $\mathbb{K} = \mathbb{F}_q$ Rainbow Like UOV plus mini "Public Map"

TTS Like UOV except public map is sparse

 C^* High powers in $\mathbb{L} = \mathbb{F}_{q^n}$

HFE Equation solving in $\mathbb{L} = \mathbb{F}_{q^n}$ (general arithmetic)

TRMS Inverse and multiplication in various $\mathbb{L} = \mathbb{F}_{q^k}$

 $\ell \mathsf{IC}$ Inverses and roots in \mathbbm{L}

kHFE Like HFE plus an elimination in \mathbb{L}

B.-Y. Yang (IIS-Sinica)

Implementing MPKCs

Practical Side of Computing

Moore's law

Transistor budget doubles every 18–24 months									
Memory Latencies vs Clock Speeds									
Year	Hi-End CPU	MHz	DRAM						
1979	Z80	2	500ns	Ī					
1984	80286	10	400ns						
1989	80486	40	300ns						
1994	Pentium	100	250ns						
1999	Athlon	750	200ns						
2004	Pentium 4	3800	160ns						
2009	Core i7	3200	130ns						

3

Are MPKCs Still Fast?

- Progress in high-precision arithmetic
 - ▶ In 80's, CPUs computed one 32-bit integer product every 15–20 cycles
 - In 2000, x86 CPUs computed one 64-bit product every 3–10 cycles
 - K10's and Core i7's today produces one 128-bit product every 2 cycles
 - Marvelous for ECC (and RSA)
- In contrast, progress in \mathbb{F}_{2^q} arithmetic is *slow*
 - 6502 or 8051: a dozen cycles via three table look-ups
 - Modern x86: roughly same that many cycles
- Moore's law favors computation, not so much memories
 - Memory access speed increased at a snail's pace
- Wang et al. made life even harder for MPKCs
 - Forcing longer message digests
 - RSA untouched

(B)

Questions We Want to Answer

- Can all the extras on modern commodity CPUs help MPKCs as well?
- How have architectural changes affected implementation choices?
- If so, how do MPKCs compare to traditional PKCs today?

Multiplication Tables in Memory

Log/Exp Tables to a generator g

Bit-Slicing

B.-Y. Yang (IIS-Sinica)

Implementing MPKCs

SPEED-CC, Oct. 12, '09 18 / 40

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Multiplication Tables in Memory

- One lookup per multiply
- Can result in large tables and pressure on cache
- Some parallelism can be achieved for \mathbb{F}_4 and \mathbb{F}_{16} .

Log/Exp Tables to a generator g

Bit-Slicing

A B M A B M

Multiplication Tables in Memory

Log/Exp Tables to a generator g

- Compute xy as $g^{\log_g x + \log_g y}$ if neither is zero.
- Maximum of 3 lookups per mult, some logs can be pre-computed
- Require conditionals (bad!)

Bit-Slicing

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Multiplication Tables in Memory

Log/Exp Tables to a generator g

Bit-Slicing

- Highly parallel 32/64/128 multiplies at the same time
- Often requires rearranging of data
- Parameters can result in awkward dimensions like 1 + (word size)
- Require Conditionals or jump tables.

A B K A B K

Multiplication Tables in Memory

Becomes attractive again if parallel lookups available.

Log/Exp Tables to a generator g

Bit-Slicing

- Highly parallel 32/64/128 multiplies at the same time
- Often requires rearranging of data
- Parameters can result in awkward dimensions like 1 + (word size)
- Require Conditionals or jump tables.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

SSE, the X86 Vector Instruction Set Extensions

- SSE: Streaming SIMD Extensions
 - SIMD: Single Instruction Multiple Data
- Most useful: SSE2 integer instructions
 - Work on 16 xmm 128-bit registers
 - As packed 8-, 16-, 32- or 64-bit operands
 - ▶ Move xmm to/from xmm, memory (even unaligned), x86 registers
 - Shuffle data and pack/unpack on vector data
 - Bit-wise logical operations like AND, OR, NOT, XOR
 - Shift left, right logical/arithmetic by units, or entire xmm byte-wise
 - Add/subtract on 8-, 16-, 32- and 64-bits
 - Multiply 16-bit and 32-bits in various ways
- SSSE3's PSHUFB (16 nibble-to-byte lookup in 1 cycle) and PALIGNR (256-bit bytewise rotation) quite powerful

PSHUFB in SSSE3

- "Packed Shuffle Bytes"
 - Source: (x_0, \ldots, x_{15})
 - ▶ Destination: (*y*₀,...,*y*₁₅)
 - Result: $(y_{x_0 \mod 32}, \dots, y_{x_{15} \mod 32})$, treating x_{16}, \dots, x_{31} as 0

3

Speeding Up MPKCs over \mathbb{F}_{16}

- $TT: 16 \times 16$ table, with $TT_{i,j} = i * j, 0 \le i, j < 16$
- To compute $a\mathbf{v}$, $a\in\mathbb{F}_{16},\mathbf{v}\in(\mathbb{F}_{16})^{16}$
 - $xmm \leftarrow a$ -th row of TT
 - ► $a\mathbf{v} \leftarrow \mathsf{PSHUFB} \mathsf{xmm}, \mathbf{v}$
- \bullet Works similarly for $\textbf{a} \in (\mathbb{F}_{16})^2, \textbf{v} \in (\mathbb{F}_{16})^{32}$
 - Need to unpack, do PSHUFBs, then pack
- Delivers $2 \times$ performance over simple bit slicing in private map evaluation of rainbow and TTS
- Some other platforms also have similar instructions
 - AMD's SSE5: PPERM (superset of PSHUFB)
 - IBM POWER AltiVec/VMX: PERMU

Speeding Up MPKCs over \mathbb{F}_{256} Nibble Slicing

- $TL: 256 \times 16$ table, with $TL_{i,j} = i * j, 0 \le i < 256, 0 \le j < 16$
- $TH: 256 \times 16$ table, with $TH_{i,j} = i * (16j), 0 \le i < 256, 0 \le j < 16$
- To compute $a\mathbf{v}$, $a\in\mathbb{F}_{256},\mathbf{v}\in(\mathbb{F}_{256})^{16}$
 - $\bullet a\mathbf{v}_i = a(16\lfloor \mathbf{v}_i/16 \rfloor) + a(\mathbf{v}_i \bmod 16), 0 \le i < 16$

•
$$\mathbf{v}'_i \leftarrow a(16\lfloor \mathbf{v}_i/16 \rfloor)$$

•
$$\mathbf{v}'_i \leftarrow \lfloor \mathbf{v}_i / 16 \rfloor$$
 (SHIFT)

- $xmm \leftarrow a$ -th row of *TH*
- ▶ $\mathbf{v}' \leftarrow \mathsf{PSHUFB} \ \mathtt{xmm}, \mathbf{v}'$
- $\mathbf{v}_i \leftarrow a(\mathbf{v}_i \mod 16)$
 - $\mathbf{v}_i \leftarrow \mathbf{v}_i \mod 16 (AND)$
 - $xmm \leftarrow a$ -th row of *TL*
 - ▶ $\mathbf{v} \leftarrow \mathsf{PSHUFB} \mathsf{xmm}, \mathbf{v}$
- $a\mathbf{v} \leftarrow \mathbf{v} + \mathbf{v}'$ (OR)

Some Interesting Design Choices System and Architecture-Dependent Stuff

- Key Generation
- Matrix-to-Vector-Multiply and Evaluating Public Maps
- Tower Field Arithmetic
- System- and Equation-Solving
 - Pre-scripted Gröbner Basis Computation
 - Iterative Methods instead of Gaussian Eliminations
 - Cantor-Zassenhaus instead of Berlekamp

Key Generation

Matsumoto-Imai's notaton:
$$z_k := \sum_i w_i \left[P_{ik} + Q_{ik} w_i + \sum_{j < i} R_{ijk} w_j \right].$$

Usual Way: as differentials of public map $\mathcal{P} = (p_1, \ldots, p_m)$ for q > 2, we choose any $a \neq 0, 1$ and get

$$\begin{array}{lll} Q_{ik} & := & (a(a-1))^{-1} \left(p_k(a\mathbf{v}_i) - ap_k(\mathbf{v}_i) \right) \\ P_{ik} & := & p_k(\mathbf{v}_i) - Q_{ik} \\ R_{ijk} & := & p_k(\mathbf{v}_i + \mathbf{v}_j) - Q_{ik} - Q_{jk} - P_{ik} - P_{jk} \end{array}$$

For \mathbb{F}_2 , it becomes

$$P_{ik} := p_k(\mathbf{v}_i)$$

$$R_{ijk} := p_k(\mathbf{v}_i + \mathbf{v}_j) - P_{ik} - P_{jk}$$

(\mathbf{v}_i means the unit vector on the *i*-th direction)

B.-Y. Yang (IIS-Sinica)

Key Generation

Matsumoto-Imai's notaton:
$$z_k := \sum_i w_i \left[P_{ik} + Q_{ik} w_i + \sum_{j < i} R_{ijk} w_j \right].$$

Usual Way: as differentials of public map $\mathcal{P} = (p_1, \ldots, p_m)$

For TTS and other sparse central $\mathcal{Q}:$ by brute force

$$P_{ik} = \sum_{h=0}^{m-1} \left[(M_T)_{kh} \left((M_S)_{hi} + \sum_{p \times_{\alpha} \times_{\beta} \text{ in } q_h} p((M_S)_{\alpha i}(\mathbf{c}_S)_{\beta} + (\mathbf{c}_S)_{\alpha}(M_S)_{\beta i}) \right) \right]$$
$$Q_{ik} = \sum_{h=0}^{m-1} \left[(M_T)_{kh} \left(\sum_{p \times_{\alpha} \times_{\beta} \text{ in } q_h} p(M_S)_{\alpha i}(M_S)_{\beta i} \right) \right]$$
$$R_{ijk} = \sum_{h=0}^{m-1} \left[(M_T)_{kh} \left(\sum_{p \times_{\alpha} \times_{\beta} \text{ in } q_h} p((M_S)_{\alpha i}(M_S)_{\beta j} + (M_S)_{\alpha j}(M_S)_{\beta i}) \right) \right]$$

B.-Y. Yang (IIS-Sinica)

Evaluating Public Maps

Naive Way (and on μ P's still) $z_k = \sum_i w_i \left[P_{ik} + Q_{ik}w_i + \sum_{i < j} R_{ijk}w_j \right]$

For better memory access pattern

1
$$\mathbf{c} \leftarrow [\mathbf{w}^T, (w_i w_j)_{i \leq j}]^T$$

2 $\mathbf{z} \leftarrow \mathbf{Pc}$, where **P** is the $m \times n(n+3)/2$ public-key matrix

How to do Matrix-to-Vector mults

Microcontrollers Naively

Somewhat newer CPUs Bit-slicing for \mathbb{F}_{2^k}

With more cache Big look-up tables (with nibble-slicing)

Newest architectures More or less naively, with SSE*

MPKCs over Odd Prime Fields

B.-Y. Yang (IIS-Sinica)

Implementing MPKCs

SPEED-CC, Oct. 12, '09 26 / 40

- 2

<ロ> (日) (日) (日) (日) (日)

MPKCs over Odd Prime Fields

Are you out of your mind?

- XOR is easy, addition mod q is not.
- How can it possibly be faster?

A B < A B </p>

MPKCs over Odd Prime Fields

Are you out of your mind?

- XOR is easy, addition mod q is not.
- How can it possibly be faster?

It's more than about speed

- Good for defending against Gröbner basis attacks
 The field equation X^q X = 0 becomes much less useful
- SSE* gives you parallel arithmetic on small integers,
 and you only need to parallelize 4 or 8 at a time.
- Do you know how many 18-bit multipliers there are on an FPGA?

Basic Building Blocks for Speeding Up Odd MPKCs

- IMULHIb: the upper half in a signed product of two b-bit words
- Useful for computing $\lfloor xy/2^b \rfloor$
 - For $-2^{b-1} \le x \le 2^{b-1} (q-1)/2$
 - $t \leftarrow \mathsf{IMULHIb} \lfloor 2^b/q \rfloor, x + \lfloor (q-1)/2 \rfloor$
 - $y \leftarrow x qt$ computes $y = x \mod q, |y| \le q$
- For q = 31 and b = 16, we can do even better
 - For $-32768 \le x \le 32752$
 - ► $t \leftarrow \mathsf{IMULHI16} 2114, x + 15$
 - $y \leftarrow x 31t$ computes $y = x \mod 31, -16 \le y \le 15$

イロト 不得下 イヨト イヨト 三日

Speeding Up Matrix-to Vector Mults

• PMADDWD: Packed Multiply and Add, Word to Double-word

- Source: $(x_0, ..., x_7)$
- Destination: (y₀,..., y₇)
- Result: $(x_0y_0 + x_1y_1, x_2y_2 + x_3y_3, x_4y_4 + x_5y_5, x_6y_6 + x_7y_7)$
- Helpful in evaluating $\mathbf{z} = \mathbf{P}\mathbf{c}$, piece by piece
 - Let Q be a 4 × 2 submatrix of P
 - ▶ **d**^T be the corresponding 2 × 1 submatrix of **c**
 - ▶ r1 \leftarrow ($Q_{11}, Q_{12}, Q_{21}, Q_{22}, Q_{31}, Q_{32}, Q_{41}, Q_{42}$)
 - r2 \leftarrow $(d_1, d_2, d_1, d_2, d_1, d_2, d_1, d_2)$
 - PMADDWD r1, r2 computes Qd
 - Continue in 32-bits until reduction mod q

• Saves a few mod q operations and delivers 1.5 imes performance

Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute *a***v** for each column **v** in any constant matrix
- Read off the appropriately offset vector as needed
- \bullet Can nibble-slice $\mathbb{F}_{16}/\mathbb{F}_{256}$ into $\mathbb{F}_{16}/\mathbb{F}_4$
- Obviously minimizes the need for operations

Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute $a\mathbf{v}$ for each column \mathbf{v} in any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16}/\mathbb{F}_{256}$ into $\mathbb{F}_{16}/\mathbb{F}_4$
- Obviously minimizes the need for operations

Unbelievably ...

Slower than SSE on Core 2 45nm and Core i7 (or K10 45nm for mod31)!

A B < A B <</p>

Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute *a***v** for each column **v** in any constant matrix
- Read off the appropriately offset vector as needed
- \bullet Can nibble-slice $\mathbb{F}_{16}/\mathbb{F}_{256}$ into $\mathbb{F}_{16}/\mathbb{F}_4$
- Obviously minimizes the need for operations

Unbelievably ...

Slower than SSE on Core 2 45nm and Core i7 (or K10 45nm for mod31)!

When L2 isn't fast enough

- SSE instructions have a reverse throughput of 1 cycle today
- memory access is linear when using SSE
- L2 latency 20+ cycles; LUT reads not regular enough
- We are still trying to amend this with manual pre-fetching

Implementing MPKCs

- On C2 and Ci7: can use two SSE lookups with some extra work.
 On K8/K10: x → x²⁹
 - $y \leftarrow x * x * x \mod 31$ ($y = x^3$)
 - $y \leftarrow x * y * y \mod 31 (y = x^7)$
 - $y \leftarrow y * y \mod 31 \ (y = x^{14})$
 - $y \leftarrow x * y * y \mod 31 (y = x^{29})$
- Deliver 2× performance over serial table look-ups!

Remarks on Getting More Performance Laziness often leads to optimality

- Do not always need the tightest range
- The less reductions, the better!
- The less memory access, the better!
- The more regular memory access, the better!
- Packing F_q-blocks into binary can use more bits than necessary as long as the map is injective and convenient to compute

Wiedemann vs. Gauss Elimination mod q

- How to solve a medium-sized dense linear system?
 - Wiedemann iterative solver for Ax = b
 - ***** Compute $\mathbf{z}\mathbf{A}^{i}\mathbf{b}$ for some \mathbf{z}
 - ★ Compute minimal polynomial using Berlekamp-Massey
 - Requires $O(2n^3)$ field multiplications
 - Straightforward Gauss elimination requires $O(n^3/3)$
- However, Wiedemann involves much less reductions modulo q
- Result: Wiedemann beats Gauss by a factor of 2!

Big Tower Fields mod q

• \mathbb{F}_{q^k} isomorphic to $\mathbb{F}_q[t]/p(t)$, deg p = k and p irreducible

• For k|(q-1) and a few other cases, $p(t) = t^k - a$ for a small a.

- $> 2 \times$ reduction performance over cases where p has 3 terms
- $X \mapsto X^q$ becomes trivial to compute
- Multiplication is straightforward, S:M ratio is between 0.75 and 0.92.
- ► Inversion: (again) raising to the (q^k 2)-th power!
- For some tower of tower fields such as $\mathbb{F}_{31^{30}}$, can use Karatsuba.
- Square roots computed via Tonelli-Shanks Example: in \mathbb{F}_{31^9} we raise to the $\frac{1}{4}$ (31⁹ + 1)-th power

and note that this shares some steps with inversion.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Some Performance numbers

Microarchitecture	MULT	SQ	INV	SQRT	INV+SQRT
C2 (65nm)	234	194	2640	4693	6332
C2+ (45nm)	145	129	1980	3954	5244
K8 (Athlon 64)	397	312	5521	8120	11646
K10 (Phenom)	242	222	2984	5153	7170

As an illustration of how we are doing, 128-way bitsliced multiplication with multi-stage Karatsuba and Toom in $\mathbb{F}_{2^{88}}$ with djb-class code is about 4 times faster on the K10.

To Solve Equation(s) in a Big Tower Field mod q

Scripted Gröbner Basis Computation

From 3 quadratic equations in 3 variables, we in succession run Gaussian eliminations on matrices of dimensions 3×10 , 11×19 , 8×16 , 5×13 , with many coefficients that we know to be zero in advance, to reach a degree-8 equation. You can call this a tailored matrix-**F**₄.

Cantor-Zassenhaus (instead of Berlekamp)

• Replace
$$u(X)$$
 by $gcd(u(X), X^{q^k} - X)$ so that u splits in \mathbb{L} .

- Compute and tabulate $X^d \mod u(X), \ldots, X^{2d-2} \mod u(X)$.
- **2** Compute $X^q \mod u(X)$ via square-and-multiply.
- Sompute and tabulate $X^{qi} \mod u(X)$ for i = 2, 3, ..., d 1.
- Compute $X^{q^i} \mod u(X)$ for $i = 2, 3, \ldots, k$, then $X^{q^k} \mod u(X)$.

Anything else New For \mathbb{F}_{2^k} ?

B.-Y. Yang (IIS-Sinica)

Implementing MPKCs

SPEED-CC, Oct. 12, '09 36 / 40

Anything else New For \mathbb{F}_{2^k} ?

Not Really.

B.-Y. Yang (IIS-Sinica)

Implementing MPKCs

SPEED-CC, Oct. 12, '09 36 / 40

イロト 不得下 イヨト イヨト 二日

Anything else New For \mathbb{F}_{2^k} ?

Not Really.

Ok, So we implemented some

- Karatsuba-type implementations for tower fields
- Parallel bitslicing for \mathbb{F}_{2^k} useful for MPKCs
- More SSSE3 parallelization using PSHUB

But no sense talking such with so many sado-masochistic bitslicers here!

Performance Comparison on Intel Q9550

Scheme	Result	PubKey	PriKey	KeyGen	PubMap	PriMap
RSA (1024 bits)	128 B	128 B	1024 B	27.2 ms	26.9 µs	806.1 μ s
4HFE-p (31,10)	68 B	23 KB	8 KB	4.1 ms	6.8 μs	659.7 μs
3HFE-p (31,9)	67 B	7 KB	5 KB	0.8 ms	$2.3 \ \mu s$	60.5 μs
RSA (1024 bits)	128 B	128 B	1024 B	26.4 ms	22.4 μs	813.5 μs
ECDSA (160 bits)	40 B	40 B	60 B	0.3 ms	409.2 μs	357.8 μs
C*-p (pFLASH)	37 B	72 KB	5 KB	28.7 ms	97.9 μs	473.6 μs
3IC-p (31,18,1)	36 B	35 KB	12 KB	4.2 ms	$11.7~\mu s$	256.2 μs
Rainbow (31,24,20,20)	43 B	57 KB	150 KB	120.4 ms	17.7 μs	70.6 μs
TTS (31,24,20,20)	43 B	57 KB	16 KB	13.7 ms	18.4 μ s	14.2 μs

Measured using SUPERCOP: System for unified performance evaluation related to cryptographic operations and primitives. http://bench.cr.yp.to/supercop.html, April 2009.

Conclusions and Remarks

- Take-away point: Odd MPKCs worth studying!
 - Algebraic attacks become harder
 - Friendly to mainstream computing devices
 - * X86 CPUs have vector instructions
 - ★ High-end FPGAs have multiplier IPs
 - ★ Can be good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)
- It is very important to tune to your architecture.
- MPKCs still competitive speedwise, including on 8051s.
- When Intel's new vector instruction set comes out, it's likely to double the MPKC throughput per cycle too.

Future work

- Implement for new CPUs and instructions (PCLMULQDQ).
- Implement on Graphic cards and all that.
- Implement some side-channel-attack resistant versions?

Collaborators

- I had help from these Students/Assistants
 - Anna Inn-Tung Chen, U of Michigan
 - Chia-Hsin Owen Chen, MIT
 - Ming-Shing Chen, Nat'l Taiwan University, Taiwan
 - Tien-Ren Chen, Nat'l Immigration Agency, Taiwan
 - Yen-Hung Chen, ASUStek, Taiwan
- Colleagues I worked with
 - Chen-Mou Chen, Nat'l Taiwan University, Taiwan
 - Jiun-Ming Chen, Nat'l Cheng-Kung University, Taiwan

(B)

Collaborators

- I had help from these Students/Assistants
 - Anna Inn-Tung Chen, U of Michigan
 - Chia-Hsin Owen Chen, MIT
 - Ming-Shing Chen, Nat'l Taiwan University, Taiwan
 - Tien-Ren Chen, Nat'l Immigration Agency, Taiwan
 - Yen-Hung Chen, ASUStek, Taiwan
 - Eric Li-Hsiang Kuo, Academia Sinica, Taiwan
 - Frost Yu-Shuang Lee, U of Michigan
- Colleagues I worked with
 - Chen-Mou Cheng, Nat'l Taiwan University, Taiwan
 - Jiun-Ming Chen, Nat'l Cheng-Kung University, Taiwan
 - Jintai Ding, University of Cincinnati, USA
 - Lih-Chung Wang, Nat'l Dong-Hua University, Taiwan
 - Christopher Wolf, Ruhr University Bochum, Germany

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Thanks for Listening!

• Questions or comments?

3

A B A A B A

< A