# Implementing Multivariate Public-Key Cryptosystems Some Lessons from the Last 7 Years 

Bo-Yin Yang

Institute of Information Science
Academia Sinica
Taipei, Taiwan
by@crypto.tw


SPEED-CC workshop, October 12, 2009

## Outline

- Multivariate public key cryptosystems (MPKCs)
- History, trends, and factoids
- Vector instruction sets (*SSE*)
- MPKCs over odd prime fields
- Some counter-intuitive techniques
- Performance results
- Other platforms


## Multivariate PKC (MPKC)

Public map of a typical multivariate PKC over base field $K=\mathbb{F}_{q}$ :

$$
\mathcal{P}: \mathbf{w} \in K^{n} \stackrel{S}{\mapsto} \mathbf{x}=\mathbf{M}_{S} \mathbf{w}+\mathbf{c}_{S} \stackrel{\mathcal{Q}}{\mapsto} \mathbf{y} \stackrel{T}{\mapsto} \mathbf{z}=\mathbf{M}_{T} \mathbf{y}+\mathbf{c}_{T} \in K^{m}
$$

- $S$ and $T$ affine and invertible
- $\mathcal{Q}$ quadratic, known as as the central map
(and the components of $\mathcal{Q}$ are central polynomials)
- For encryption schemes, $n<m$
- For signature schemes, $n>m$
- Most often $q=2$ or a lower power of 2 .


## Why are MPKCs Worth Studying?

- Diversification
- Efficiency


## Why are MPKCs Worth Studying?

- Diversification: Future-proof against quantum computers.
- Efficiency: Faster than "traditional" PKCs.


## Why are MPKCs Worth Studying?

- Diversification: Future-proof against quantum computers.
- Efficiency: Faster than "traditional" PKCs.
... Maybe.


## Design of Current MPKCs

Basic Trapdoor
Ways for the legitimate user to invert $\mathcal{Q}$ :

## Design of Current MPKCs

Basic Trapdoor
Ways for the legitimate user to invert $\mathcal{Q}$ :

- Big-Field: C*, HFE, $\ell$ IC,


## Design of Current MPKCs

Basic Trapdoor
Ways for the legitimate user to invert $\mathcal{Q}$ :

- Big-Field: $C^{*}$, HFE, $\ell$ IC,
- Small-Field: UOV, Triangular


## Design of Current MPKCs

Basic Trapdoor
Ways for the legitimate user to invert $\mathcal{Q}$ :

- Big-Field: C*, HFE, थIC,
- Small-Field: UOV, Triangular


## Modifiers <br> Ways to guard against an attacker finding $\mathcal{Q}$

## Design of Current MPKCs

Basic Trapdoor
Ways for the legitimate user to invert $\mathcal{Q}$ :

- Big-Field: C*, HFE, थIC,
- Small-Field: UOV, Triangular


## Modifiers

Ways to guard against an attacker finding $\mathcal{Q}:+,-, p, i, v, \ldots$

## MPKC Modifiers

- All vanilla trapdoors have been broken
- Need modifiers to address attacks
- Minus (-): throw away some polynomials
- Plus (+): add central polynomials
- Prefix or postfix (p): force some $w_{i}=0$
- Vinegar (v): perturbation in a small subspace
- Internal perturbation (i): equal to $\mathrm{p}+\mathrm{v}$.
- A few others; not discussed here.


## UOV (Unbalanced Oil and Vinegar)

Patarin, 1997

We can write the quadratic part of a polynomial in $\mathbf{w}$ as a symmetric matrix M .

## UOV (Unbalanced Oil and Vinegar)

Patarin, 1997

We can write the quadratic part of a polynomial in $\mathbf{w}$ as a symmetric matrix M . If dealing with $\mathbb{F}_{2^{k}}$, let $f(\mathbf{w})=\mathbf{w}^{\top} \bar{M} \mathbf{w}+$ (lower parts), then $M=\bar{M}+\bar{M}^{T}$ is the matrix we want.

## UOV (Unbalanced Oil and Vinegar)

Patarin, 1997

We can write the quadratic part of a polynomial in $\mathbf{w}$ as a symmetric matrix M. Matrices corresponding to central polynomials of UOV schemes have a distinctive form:

$$
M_{i}:=\left[\begin{array}{ccc|ccc}
\alpha_{11}^{(i)} & \cdots & \alpha_{1, v}^{(i)} & \alpha_{1, v+1}^{(i)} & \cdots & \alpha_{1, n}^{(i)} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{v, 1}^{(i)} & \cdots & \alpha_{v, v}^{(i)} & \alpha_{v, v+1}^{(i)} & \cdots & \alpha_{v, n}^{(i)} \\
\hline \alpha_{v+1,1}^{(i)} & \cdots & \alpha_{v+1, v}^{(i)} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{n, 1}^{(i)} & \cdots & \alpha_{n, v}^{(i)} & 0 & \cdots & 0
\end{array}\right]
$$

Hence given $\mathbf{y}$ and $x_{1}, \ldots, x_{v}$ we can solve for $x_{v+1}, \ldots, x_{n}$.

## Rainbow-Type Signatures

or Stage-wise UOV, Ding 2005

- For $0<v_{1}<v_{2}<\cdots<v_{u+1}=n$
- $S_{l}:=\left\{1,2, \ldots, v_{l}\right\}$
- $O_{l}:=\left\{v_{l}+1, \ldots, v_{l+1}\right\}$
- $o_{l}:=v_{l+1}-v_{l}=\left|O_{l}\right|$
- $\mathcal{Q}: \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \mapsto \mathbf{y}=\left(y_{v_{1}+1}, \ldots, y_{n}\right)$
- $y_{k}:=q_{k}(\mathbf{x})$, with following form if $v_{l}<k \leq v_{l+1}$

$$
q_{k}=\sum_{i \leq j \leq v_{l}} \alpha_{i j}^{(k)} x_{i} x_{j}+\sum_{i \leq v_{l}<j<v_{l+1}} \alpha_{i j}^{(k)} x_{i} x_{j}+\sum_{i<v_{l+1}} \beta_{i}^{(k)} x_{i}
$$

- Given all $y_{i}$ with $v_{l}<i \leq v_{l+1}$ and all $x_{j}$ with $j \leq v_{l}$, we can compute $x_{v_{l}+1}, \ldots, x_{v_{l+1}}$ via elimination


## Rainbow Variants

## TTS: Chen+Yang 2004

- Uses a sparse $\mathcal{Q}$
- $\mathcal{Q}^{-1}$ only need solving linear systems like Rainbow

Example from 2004: TTS $(20,28)$

$$
\begin{aligned}
y_{i}= & x_{i}+\sum_{j=1}^{7} p_{i j} x_{j} x_{8+(i+j \bmod 9)}, i=8, \ldots, 16 \\
y_{17}= & x_{17}+p_{17,1} x_{1} x_{6}+p_{17,2} x_{2} x_{5}+p_{17,3} x_{3} x_{4} \\
& +p_{17,4 x_{9} x_{16}+p_{17,5} x_{10} x_{15}+p_{17,6} x_{11} x_{14}+p_{17,7} x_{12} x_{13}} \\
y_{18}= & x_{18}+p_{18,1} x_{2} x_{7}+p_{18,2} x_{3} x_{6}+p_{18,3} x_{4} x_{5} \\
& +p_{18,4 x_{10} x_{17}+p_{18,5} x_{11} x_{16}+p_{18,6} x_{12} x_{15}+p_{18,7} x_{13} x_{14}} \\
y_{i}= & x_{i}+p_{i, 0} x_{i-11} x_{i-9}+\sum_{j=19}^{i} p_{i, j-18} x_{2(i-j)-(i \bmod 2)} x_{j} \\
& +\sum_{j=i+1}^{27} p_{i, j-18}^{27} x_{i-j+19} x_{j}, i=19, \ldots, 27
\end{aligned}
$$

## Rainbow Variants

TTS: Chen+Yang 2004

- Uses a sparse $\mathcal{Q}$
- $\mathcal{Q}^{-1}$ only need solving linear systems like Rainbow

TRMS: Wang-*-Yang, 2005

- Each UOV stage is
piece of $\mathbf{y}=$ quadratic $\left(\mathbf{x}_{\text {vinegar }}\right)+\operatorname{linear}\left(\mathbf{x}_{\text {vinegar }}\right) \times_{\mathbb{F}_{q^{k}}} \operatorname{linear}\left(\mathbf{x}_{\text {oil }}\right)$
- To invert the central map do divisions in various $\mathbb{F}_{q^{k}}$


## Rainbow Variants

TTS: Chen+Yang 2004

- Uses a sparse $\mathcal{Q}$
- $\mathcal{Q}^{-1}$ only need solving linear systems like Rainbow

TRMS: Wang-*-Yang, 2005

- Each UOV stage is
piece of $\mathbf{y}=$ quadratic $\left(\mathbf{x}_{\text {vinegar }}\right)+\operatorname{linear}\left(\mathbf{x}_{\text {vinegar }}\right) \times_{\mathbb{F}_{q^{k}}} \operatorname{linear}\left(\mathbf{x}_{\text {oil }}\right)$
- To invert the central map do divisions in various $\mathbb{F}_{q^{k}}$

```
Rainbow-type Parameters Today
Suggested examples are \(q=16\) or 31 and layers sizes (24, 20, 20).
```

UOV matrices look like this

$$
M_{i}:=\left[\begin{array}{cc}
* & * \\
* & 0
\end{array}\right]=\left[\begin{array}{ccc|ccc}
\alpha_{11}^{(i)} & \cdots & \alpha_{1 v}^{(i)} & \alpha_{1, v+1,}^{(i)} & \cdots & \alpha_{1 n}^{(i)} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{v 1}^{(i)} & \cdots & \alpha_{v v}^{(i)} & \alpha_{v, v+1,}^{(i)} & \cdots & \alpha_{v n}^{(i)} \\
\hline \alpha_{v+1,1,}^{(i)} & \cdots & \alpha_{v+1, v,}^{(i)} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{n 1}^{(i)} & \cdots & \alpha_{n v}^{(i)} & 0 & \cdots & 0
\end{array}\right]
$$

Rainbow and variants also have some matrices like this

$$
M_{i}:=\left[\begin{array}{cc}
* & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ccc|ccc}
\alpha_{11}^{(i)} & \cdots & \alpha_{1 v}^{(i)} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{v 1}^{(i)} & \cdots & \alpha_{v v}^{(i)} & 0 & \cdots & 0 \\
\hline 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right]
$$

## The C* Trapdoor

Matsumoto and Imai, 1988

- The central map is a monomial over $\mathbb{F}_{q^{n}}$

$$
\mathcal{Q}(x)=x^{1+q^{\theta}}=x \cdot x^{q^{\theta}}
$$

- $\mathbb{F}_{q^{n}}$ is an $n$-dimension vector space over $\mathbb{F}_{q}$
- Since $x \mapsto x^{q}$ is linear, $\mathcal{Q}$ is quadratic
- Requires that $\operatorname{gcd}\left(1+q^{\theta}, q^{n}-1\right)=1$
- $\mathcal{Q}$ is inverted by raising to the inverse power of $1+q^{\theta}$
- Basic scheme broken by Patarin in 1995
- $C^{*}-p$ and $C^{*}+i$ not yet broken


## HFE: Hidden Field Equations

## Patarin 1998

- Generalization of $C^{*}$
- Central map is a Dembowski-Ostrom polynomial in $\mathbb{F}_{q^{n}}$

$$
\mathcal{Q}(x)=\sum_{q^{i}+q^{j} \leq D} a_{i, j<r} x^{q^{i}+q^{j}}+\sum_{q^{i} \leq D} b_{i} x^{q^{i}}+c
$$

- Inversion using Berlekamp Algorithm, much slower than C*
- Basic scheme is breakable if $r$ too small
- QUARTZ (a HFE-v) still standing


## Variant Trapdoors with Smaller "Big Fields"

## $\ell$-invertible Cycles

- Like $C^{*}, \ell I C$ also uses an intermediate field $\mathbb{L}^{*}=\mathbb{K}^{k}$
- Extends $C^{*}$ by using the following central map from $\left(\mathbb{L}^{*}\right)^{\ell}$ to itself
$\mathcal{Q}:\left(X_{1}, \ldots, X_{\ell}\right) \mapsto\left(Y_{1}, \ldots, Y_{\ell}\right):=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{\ell-1} X_{\ell}, X_{\ell} X_{1}^{q^{\alpha}}\right)$
- "Standard 3IC," $\ell=3, \alpha=0$

$$
\mathcal{Q}:\left(X_{1}, X_{2}, X_{3}\right) \in\left(\mathbb{L}^{*}\right)^{3} \mapsto\left(X_{1} X_{2}, X_{2} X_{3}, X_{3} X_{1}\right)
$$

## HFE with intermediate fields for speed

- $\mathcal{Q}$ is a random quadratic maps in $\mathbb{L}^{k} \mapsto \mathbb{L}^{k}$, called 3HFE if $k=3$, etc.
- To do $\mathcal{Q}^{-1}$ convert by elimination (Gröbner basis computation) to univariate equation of degree $2^{k}$.

Note: 3HFEp, 3IC-p, and 2IC+i still standing.

## Variant Trapdoors with Smaller "Big Fields"

## $\ell$-invertible Cycles

- Like $C^{*}, \ell$ IC also uses an intermediate field $\mathbb{L}^{*}=\mathbb{K}^{k}$
- Extends $C^{*}$ by using the following central map from $\left(\mathbb{L}^{*}\right)^{\ell}$ to itself

$$
\mathcal{Q}:\left(X_{1}, \ldots, X_{\ell}\right) \mapsto\left(Y_{1}, \ldots, Y_{\ell}\right):=\left(X_{1} X_{2}, X_{2} X_{3}, \ldots, X_{\ell-1} X_{\ell}, X_{\ell} X_{1}^{q^{\alpha}}\right)
$$

- "Standard 3IC," $\ell=3, \alpha=0, \mathcal{Q}^{-1}$ in $\left(\mathbb{L}^{*}\right)^{3}$ is easy:

$$
\mathcal{Q}^{-1}:\left(Y_{1}, Y_{2}, Y_{3}\right) \in\left(\mathbb{L}^{*}\right)^{3} \mapsto\left(\sqrt{Y_{1} Y_{3} / Y_{2}}, \sqrt{Y_{1} Y_{2} / Y_{3}}, \sqrt{Y_{2} Y_{3} / Y_{1}},\right)
$$

## HFE with intermediate fields for speed

- $\mathcal{Q}$ is a random quadratic maps in $\mathbb{L}^{k} \mapsto \mathbb{L}^{k}$, called 3HFE if $k=3$, etc.
- To do $\mathcal{Q}^{-1}$ convert by elimination (Gröbner basis computation) to univariate equation of degree $2^{k}$.

Note: 3HFEp, 3IC-p, and 2IC+i still standing.

## Rate-Determining Mechanisms for MPKCs

## Key Generation

Evaluation of coefficients
Public Maps
Evaluating a generic set of quadratic polynomials in $\mathbb{K}=\mathbb{F}_{q}$

## Private Maps

## Rate-Determining Mechanisms for MPKCs

## Key Generation

Evaluation of coefficients:

- Often as differentials of public map.
- Sometimes, by brute force!

Public Maps
Evaluating a generic set of quadratic polynomials in $\mathbb{K}=\mathbb{F}_{q}$

## Private Maps

## Rate-Determining Mechanisms for MPKCs

## Key Generation

Evaluation of coefficients

## Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K}=\mathbb{F}_{\boldsymbol{q}}$ usually as a matrix multiplying the vector of monomials

## Private Maps

## Rate-Determining Mechanisms for MPKCs

## Key Generation

Evaluation of coefficients

## Public Maps

Evaluating a generic set of quadratic polynomials in $\mathbb{K}=\mathbb{F}_{q}$
Private Maps
UOV Solving linear systems of equations in $\mathbb{K}=\mathbb{F}_{q}$
Rainbow Like UOV plus mini "Public Map"
TTS Like UOV except public map is sparse
C* High powers in $\mathbb{L}=\mathbb{F}_{q^{n}}$
HFE Equation solving in $\mathbb{L}=\mathbb{F}_{q^{n}}$ (general arithmetic)
TRMS Inverse and multiplication in various $\mathbb{L}=\mathbb{F}_{q^{k}}$
lIC Inverses and roots in $\mathbb{L}$
kHFE Like HFE plus an elimination in $\mathbb{L}$

## Practical Side of Computing

## Moore's law

Transistor budget doubles every 18-24 months

| Memory Latencies vs Clock Speeds |  |  |  |
| :--- | :--- | ---: | ---: |
| Year | Hi-End CPU | MHz | DRAM |
| 1979 | Z80 | 2 | 500 ns |
| 1984 | 80286 | 10 | 400 ns |
| 1989 | 80486 | 40 | 300 ns |
| 1994 | Pentium | 100 | 250 ns |
| 1999 | Athlon | 750 | 200 ns |
| 2004 | Pentium 4 | 3800 | 160 ns |
| 2009 | Core i7 | 3200 | 130 ns |

## Are MPKCs Still Fast?

- Progress in high-precision arithmetic
- In 80's, CPUs computed one 32-bit integer product every 15-20 cycles
- In 2000, x86 CPUs computed one 64-bit product every 3-10 cycles
- K10's and Core i7's today produces one 128-bit product every 2 cycles
- Marvelous for ECC (and RSA)
- In contrast, progress in $\mathbb{F}_{2^{q}}$ arithmetic is slow
- 6502 or 8051: a dozen cycles via three table look-ups
- Modern x86: roughly same that many cycles
- Moore's law favors computation, not so much memories
- Memory access speed increased at a snail's pace
- Wang et al. made life even harder for MPKCs
- Forcing longer message digests
- RSA untouched


## Questions We Want to Answer

- Can all the extras on modern commodity CPUs help MPKCs as well?
- How have architectural changes affected implementation choices?
- If so, how do MPKCs compare to traditional PKCs today?


## Arithmetic in $\mathbb{F}_{2^{k}}$

Multiplication Tables in Memory

Log/Exp Tables to a generator $g$

Bit-Slicing

## Arithmetic in $\mathbb{F}_{2^{k}}$

## Multiplication Tables in Memory

- One lookup per multiply
- Can result in large tables and pressure on cache
- Some parallelism can be achieved for $\mathbb{F}_{4}$ and $\mathbb{F}_{16}$.


## Log/Exp Tables to a generator $g$

## Bit-Slicing

## Arithmetic in $\mathbb{F}_{2^{k}}$

## Multiplication Tables in Memory

Log/Exp Tables to a generator $g$

- Compute $x y$ as $g^{\log _{g} x+\log _{g} y}$ if neither is zero.
- Maximum of 3 lookups per mult, some logs can be pre-computed
- Require conditionals (bad!)


## Bit-Slicing

## Arithmetic in $\mathbb{F}_{2^{k}}$

## Multiplication Tables in Memory

Log/Exp Tables to a generator $g$

## Bit-Slicing

- Highly parallel - 32/64/128 multiplies at the same time
- Often requires rearranging of data
- Parameters can result in awkward dimensions like $1+$ (word size)
- Require Conditionals or jump tables.


## Arithmetic in $\mathbb{F}_{2^{k}}$

## Multiplication Tables in Memory

Becomes attractive again if parallel lookups available.

Log/Exp Tables to a generator $g$

## Bit-Slicing

- Highly parallel - 32/64/128 multiplies at the same time
- Often requires rearranging of data
- Parameters can result in awkward dimensions like $1+$ (word size)
- Require Conditionals or jump tables.


## *SSE*, the X86 Vector Instruction Set Extensions

- SSE: Streaming SIMD Extensions
- SIMD: Single Instruction Multiple Data
- Most useful: SSE2 integer instructions
- Work on 16 xmm 128-bit registers
- As packed 8-, 16-, 32- or 64-bit operands
- Move xmm to/from xmm, memory (even unaligned), x86 registers
- Shuffle data and pack/unpack on vector data
- Bit-wise logical operations like AND, OR, NOT, XOR
- Shift left, right logical/arithmetic by units, or entire xmm byte-wise
- Add/subtract on 8-, 16-, 32- and 64-bits
- Multiply 16 -bit and 32 -bits in various ways
- SSSE3's PSHUFB (16 nibble-to-byte lookup in 1 cycle) and PALIGNR (256-bit bytewise rotation) quite powerful


## PSHUFB in SSSE3

- "Packed Shuffle Bytes"
- Source: $\left(x_{0}, \ldots, x_{15}\right)$
- Destination: $\left(y_{0}, \ldots, y_{15}\right)$
- Result: $\left(y_{x_{0} \bmod 32}, \ldots, y_{x_{15} \bmod 32}\right)$, treating $x_{16}, \ldots, x_{31}$ as 0


## Speeding Up MPKCs over $\mathbb{F}_{16}$

- $T T: 16 \times 16$ table, with $T T_{i, j}=i * j, 0 \leq i, j<16$
- To compute $a \mathbf{v}, a \in \mathbb{F}_{16}, \mathbf{v} \in\left(\mathbb{F}_{16}\right)^{16}$
- xmm $\leftarrow$ a-th row of $T T$
- $\mathbf{a v} \leftarrow$ PSHUFB xmm,v
- Works similarly for $\mathbf{a} \in\left(\mathbb{F}_{16}\right)^{2}, \mathbf{v} \in\left(\mathbb{F}_{16}\right)^{32}$
- Need to unpack, do PSHUFBs, then pack
- Delivers $2 \times$ performance over simple bit slicing in private map evaluation of rainbow and TTS
- Some other platforms also have similar instructions
- AMD's SSE5: PPERM (superset of PSHUFB)
- IBM POWER AltiVec/VMX: PERMU


## Speeding Up MPKCs over $\mathbb{F}_{256}$

 Nibble Slicing- $T L: 256 \times 16$ table, with $T L_{i, j}=i * j, 0 \leq i<256,0 \leq j<16$
- TH : $256 \times 16$ table, with $T H_{i, j}=i *(16 j), 0 \leq i<256,0 \leq j<16$
- To compute $a \mathbf{v}, a \in \mathbb{F}_{256}, \mathbf{v} \in\left(\mathbb{F}_{256}\right)^{16}$
- $a \mathbf{v}_{i}=a\left(16\left\lfloor\mathbf{v}_{i} / 16\right\rfloor\right)+a\left(\mathbf{v}_{i} \bmod 16\right), 0 \leq i<16$
- $\mathbf{v}_{i}^{\prime} \leftarrow a\left(16\left\lfloor\mathbf{v}_{i} / 16\right\rfloor\right)$
- $\mathbf{v}_{i}^{\prime} \leftarrow\left\lfloor\mathbf{v}_{i} / 16\right\rfloor$ (SHIFT)
- $\mathrm{xmm} \leftarrow a$-th row of $T H$
- $\mathbf{v}^{\prime} \leftarrow$ PSHUFB $\mathrm{xmm}, \mathbf{v}^{\prime}$
- $\mathbf{v}_{i} \leftarrow a\left(\mathbf{v}_{i} \bmod 16\right)$
- $\mathbf{v}_{i} \leftarrow \mathbf{v}_{i} \bmod 16$ (AND)
- $\mathrm{xmm} \leftarrow a$-th row of $T L$
- $\mathbf{v} \leftarrow$ PSHUFB $\mathrm{xmm}, \mathbf{v}$
- $a \mathbf{v} \leftarrow \mathbf{v}+\mathbf{v}^{\prime}(\mathrm{OR})$


## Some Interesting Design Choices

```
System and Architecture-Dependent Stuff
```

- Key Generation
- Matrix-to-Vector-Multiply and Evaluating Public Maps
- Tower Field Arithmetic
- System- and Equation-Solving
- Pre-scripted Gröbner Basis Computation
- Iterative Methods instead of Gaussian Eliminations
- Cantor-Zassenhaus instead of Berlekamp


## Key Generation

Matsumoto-Imai's notaton: $z_{k}:=\sum_{i} w_{i}\left[P_{i k}+Q_{i k} w_{i}+\sum_{j<i} R_{i j k} w_{j}\right]$.
Usual Way: as differentials of public map $\mathcal{P}=\left(p_{1}, \ldots, p_{m}\right)$ for $q>2$, we choose any $a \neq 0,1$ and get

$$
\begin{aligned}
Q_{i k} & :=(a(a-1))^{-1}\left(p_{k}\left(a \mathbf{v}_{i}\right)-a p_{k}\left(\mathbf{v}_{i}\right)\right) \\
P_{i k} & :=p_{k}\left(\mathbf{v}_{i}\right)-Q_{i k} \\
R_{i j k} & :=p_{k}\left(\mathbf{v}_{i}+\mathbf{v}_{j}\right)-Q_{i k}-Q_{j k}-P_{i k}-P_{j k}
\end{aligned}
$$

For $\mathbb{F}_{2}$, it becomes

$$
\begin{aligned}
P_{i k} & :=p_{k}\left(\mathbf{v}_{i}\right) \\
R_{i j k} & :=p_{k}\left(\mathbf{v}_{i}+\mathbf{v}_{j}\right)-P_{i k}-P_{j k}
\end{aligned}
$$

( $\mathbf{v}_{i}$ means the unit vector on the $i$-th direction)

## Key Generation

Matsumoto-Imai's notaton: $z_{k}:=\sum_{i} w_{i}\left[P_{i k}+Q_{i k} w_{i}+\sum_{j<i} R_{i j k} w_{j}\right]$.

## Usual Way: as differentials of public map $\mathcal{P}=\left(p_{1}, \ldots, p_{m}\right)$

For TTS and other sparse central $\mathcal{Q}$ : by brute force

$$
\begin{aligned}
P_{i k} & =\sum_{h=0}^{m-1}\left[\left(\mathrm{M}_{T}\right)_{k h}\left(\left(\mathrm{M}_{S}\right)_{h i}+\sum_{p x_{\alpha} x_{\beta} \text { in } q_{h}} p\left(\left(\mathrm{M}_{S}\right)_{\alpha i}\left(\mathbf{c}_{S}\right)_{\beta}+\left(\mathbf{c}_{S}\right)_{\alpha}\left(\mathrm{M}_{S}\right)_{\beta i}\right)\right)\right] \\
Q_{i k} & =\sum_{h=0}^{m-1}\left[\left(\mathrm{M}_{T}\right)_{k h}\left(\sum_{p x_{\alpha} x_{\beta} \text { in } q_{h}} p\left(\mathrm{M}_{S}\right)_{\alpha i}\left(\mathrm{M}_{S}\right)_{\beta i}\right)\right] \\
R_{i j k} & =\sum_{h=0}^{m-1}\left[\left(\mathrm{M}_{T}\right)_{k h}\left(\sum_{p x_{\alpha} x_{\beta} \text { in } q_{h}} p\left(\left(\mathrm{M}_{S}\right)_{\alpha i}\left(\mathrm{M}_{S}\right)_{\beta j}+\left(\mathrm{M}_{S}\right)_{\alpha j}\left(\mathrm{M}_{S}\right)_{\beta i}\right)\right)\right]
\end{aligned}
$$

## Evaluating Public Maps

Naive Way (and on $\mu$ P's still)
$z_{k}=\sum_{i} w_{i}\left[P_{i k}+Q_{i k} w_{i}+\sum_{i<j} R_{i j k} w_{j}\right]$
For better memory access pattern
(1) $\mathbf{c} \leftarrow\left[\mathbf{w}^{T},\left(w_{i} w_{j}\right)_{i \leq j}\right]^{T}$
(2) $\mathbf{z} \leftarrow \mathbf{P c}$, where $\mathbf{P}$ is the $m \times n(n+3) / 2$ public-key matrix

How to do Matrix-to-Vector mults
Microcontrollers Naively
Somewhat newer CPUs Bit-slicing for $\mathbb{F}_{2^{k}}$
With more cache Big look-up tables (with nibble-slicing)
Newest architectures More or less naively, with SSE*

## MPKCs over Odd Prime Fields

## MPKCs over Odd Prime Fields

Are you out of your mind?

- XOR is easy, addition $\bmod q$ is not.
- How can it possibly be faster?


## MPKCs over Odd Prime Fields

Are you out of your mind?

- XOR is easy, addition $\bmod q$ is not.
- How can it possibly be faster?

It's more than about speed

- Good for defending against Gröbner basis attacks

The field equation $X^{q}-X=0$ becomes much less useful

- SSE* gives you parallel arithmetic on small integers, and you only need to parallelize 4 or 8 at a time.
- Do you know how many 18-bit multipliers there are on an FPGA?


## Basic Building Blocks for Speeding Up Odd MPKCs

- IMULHIb: the upper half in a signed product of two $b$-bit words
- Useful for computing $\left\lfloor x y / 2^{b}\right\rfloor$
- For $-2^{b-1} \leq x \leq 2^{b-1}-(q-1) / 2$
- $t \leftarrow \operatorname{IMULHI} b\left\lfloor 2^{b} / q\right\rfloor, x+\lfloor(q-1) / 2\rfloor$
- $y \leftarrow x-q t$ computes $y=x \bmod q,|y| \leq q$
- For $q=31$ and $b=16$, we can do even better
- For $-32768 \leq x \leq 32752$
- $t \leftarrow$ IMULHI16 2114, $x+15$
- $y \leftarrow x-31 t$ computes $y=x \bmod 31,-16 \leq y \leq 15$


## Speeding Up Matrix-to Vector Mults

- PMADDWD: Packed Multiply and Add, Word to Double-word
- Source: $\left(x_{0}, \ldots, x_{7}\right)$
- Destination: $\left(y_{0}, \ldots, y_{7}\right)$
- Result: $\left(x_{0} y_{0}+x_{1} y_{1}, x_{2} y_{2}+x_{3} y_{3}, x_{4} y_{4}+x_{5} y_{5}, x_{6} y_{6}+x_{7} y_{7}\right)$
- Helpful in evaluating $\mathbf{z}=\mathbf{P c}$, piece by piece
- Let $\mathbf{Q}$ be a $4 \times 2$ submatrix of $\mathbf{P}$
- $\mathbf{d}^{T}$ be the corresponding $2 \times 1$ submatrix of $\mathbf{c}$
- $\mathrm{r} 1 \leftarrow\left(Q_{11}, Q_{12}, Q_{21}, Q_{22}, Q_{31}, Q_{32}, Q_{41}, Q_{42}\right)$
$-\mathrm{r} 2 \leftarrow\left(d_{1}, d_{2}, d_{1}, d_{2}, d_{1}, d_{2}, d_{1}, d_{2}\right)$
- PMADDWD r1, r2 computes Qd
- Continue in 32-bits until reduction $\bmod q$
- Saves a few modq operations and delivers $1.5 \times$ performance


## Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute av for each column $\mathbf{v}$ in any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16} / \mathbb{F}_{256}$ into $\mathbb{F}_{16} / \mathbb{F}_{4}$
- Obviously minimizes the need for operations


## Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute av for each column vin any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16} / \mathbb{F}_{256}$ into $\mathbb{F}_{16} / \mathbb{F}_{4}$
- Obviously minimizes the need for operations

```
Unbelievably ...
Slower than SSE on Core 245 nm and Core i7 (or K10 45nm for mod31)!
```


## Big look-up tables for matrix multiplication

As suggested by Berbain et al, SAC 2006

- Pre-compute av for each column $\mathbf{v}$ in any constant matrix
- Read off the appropriately offset vector as needed
- Can nibble-slice $\mathbb{F}_{16} / \mathbb{F}_{256}$ into $\mathbb{F}_{16} / \mathbb{F}_{4}$
- Obviously minimizes the need for operations


## Unbelievably ...

Slower than SSE on Core 245 nm and Core i7 (or K10 45nm for mod31)!

## When L2 isn't fast enough

- SSE instructions have a reverse throughput of 1 cycle today
- memory access is linear when using SSE
- L2 latency 20+ cycles; LUT reads not regular enough
- We are still trying to amend this with manual pre-fetching


## Inversion in $\mathbb{F}_{31}$

- On C2 and Ci7: can use two SSE lookups with some extra work.
- On K8/K10: $x \mapsto x^{29}$
- $y \leftarrow x * x * x \bmod 31\left(y=x^{3}\right)$
- $y \leftarrow x * y * y \bmod 31\left(y=x^{7}\right)$
- $y \leftarrow y * y \bmod 31\left(y=x^{14}\right)$
- $y \leftarrow x * y * y \bmod 31\left(y=x^{29}\right)$
- Deliver $2 \times$ performance over serial table look-ups!


## Remarks on Getting More Performance

## Laziness often leads to optimality

- Do not always need the tightest range
- The less reductions, the better!
- The less memory access, the better!
- The more regular memory access, the better!
- Packing $\mathbb{F}_{q}$-blocks into binary can use more bits than necessary as long as the map is injective and convenient to compute


## Wiedemann vs. Gauss Elimination modq

- How to solve a medium-sized dense linear system?
- Wiedemann iterative solver for $\mathbf{A x}=\mathbf{b}$
$\star$ Compute $\mathbf{z A}^{i} \mathbf{b}$ for some $\mathbf{z}$
^ Compute minimal polynomial using Berlekamp-Massey
- Requires $O\left(2 n^{3}\right)$ field multiplications
- Straightforward Gauss elimination requires $O\left(n^{3} / 3\right)$
- However, Wiedemann involves much less reductions modulo $q$
- Result: Wiedemann beats Gauss by a factor of 2 !


## Big Tower Fields modq

- $\mathbb{F}_{q^{k}}$ isomorphic to $\mathbb{F}_{q}[t] / p(t), \operatorname{deg} p=k$ and $p$ irreducible
- For $k \mid(q-1)$ and a few other cases, $p(t)=t^{k}-a$ for a small $a$.
- $>2 \times$ reduction performance over cases where $p$ has 3 terms
- $X \mapsto X^{q}$ becomes trivial to compute
- Multiplication is straightforward, $\mathrm{S}: \mathrm{M}$ ratio is between 0.75 and 0.92 .
- Inversion: (again) raising to the ( $q^{k}-2$ )-th power!
- For some tower of tower fields such as $\mathbb{F}_{31^{30}}$, can use Karatsuba.
- Square roots computed via Tonelli-Shanks Example: in $\mathbb{F}_{31^{9}}$ we raise to the $\frac{1}{4}\left(31^{9}+1\right)$-th power

$$
\begin{array}{lrlllll}
\text { i. } & \text { temp1 }:=\left(\left((\text { input })^{2}\right)^{2}\right)^{2}, & \text { ii. } \quad \text { t2 }:=(\mathrm{t} 1)^{2} *\left((\mathrm{t} 1)^{2}\right)^{2}, \\
\text { iii. } & \mathrm{t} 2 & :=\left[\mathrm{t} 2 *\left((\mathrm{t} 2)^{2}\right)^{2}\right]^{31}, & \text { iv. } \mathrm{t} 2 & := & \mathrm{t} 2 *(\mathrm{t} 2)^{31}, \\
\text { v. } & \text { result } & :=\mathrm{t} 1 * \mathrm{t} 2 *\left((\mathrm{t} 2)^{31}\right)^{31} ; & & & &
\end{array}
$$

and note that this shares some steps with inversion.

## Some Performance numbers

| Microarchitecture | MULT | SQ | INV | SQRT | INV+SQRT |
| :--- | ---: | ---: | ---: | ---: | ---: |
| C2 (65nm) | 234 | 194 | 2640 | 4693 | 6332 |
| C2+ (45nm) | 145 | 129 | 1980 | 3954 | 5244 |
| K8 (Athlon 64) | 397 | 312 | 5521 | 8120 | 11646 |
| K10 (Phenom) | 242 | 222 | 2984 | 5153 | 7170 |

As an illustration of how we are doing, 128-way bitsliced multiplication with multi-stage Karatsuba and Toom in $\mathbb{F}_{2^{88}}$ with djb-class code is about 4 times faster on the K10.

## To Solve Equation(s) in a Big Tower Field modq

## Scripted Gröbner Basis Computation

From 3 quadratic equations in 3 variables, we in succession run Gaussian eliminations on matrices of dimensions $3 \times 10,11 \times 19,8 \times 16,5 \times 13$, with many coefficients that we know to be zero in advance, to reach a degree-8 equation. You can call this a tailored matrix- $\mathbf{F}_{4}$.

## Cantor-Zassenhaus (instead of Berlekamp)

(1) Replace $u(X)$ by $\operatorname{gcd}\left(u(X), X^{q^{k}}-X\right)$ so that $u$ splits in $\mathbb{L}$.
(1) Compute and tabulate $X^{d} \bmod u(X), \ldots, X^{2 d-2} \bmod u(X)$.
(2) Compute $X^{q} \bmod u(X)$ via square-and-multiply.
(3) Compute and tabulate $X^{q i} \bmod u(X)$ for $i=2,3, \ldots, d-1$.
(1) Compute $X^{q^{i}} \bmod u(X)$ for $i=2,3, \ldots, k$, then $X^{q^{k}} \bmod u(X)$.
(2) Do $\operatorname{gcd}\left(v(X)^{\left(q^{k}-1\right) / 2}-1, u(X)\right)$ for random $v(X)$ with $\operatorname{deg} v<\operatorname{deg} u$, to find nontrivial factor $\geq \frac{1}{2}$ of the time; repeat as needed.

## Anything else New For $\mathbb{F}_{2^{k}}$ ?

## Anything else New For $\mathbb{F}_{2^{k}}$ ?

## Not Really.

## Anything else New For $\mathbb{F}_{2^{k}}$ ?

## Not Really.

Ok, So we implemented some

- Karatsuba-type implementations for tower fields
- Parallel bitslicing for $\mathbb{F}_{2^{k}}$ useful for MPKCs
- More SSSE3 parallelization using PSHUB

But no sense talking such with so many sado-masochistic bitslicers here!

## Performance Comparison on Intel Q9550

| Scheme | Result | PubKey | PriKey | KeyGen | PubMap | PriMap |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| RSA (1024 bits) | 128 B | 128 B | 1024 B | 27.2 ms | $26.9 \mu \mathrm{~s}$ | $806.1 \mu \mathrm{~s}$ |
| 4HFE-p (31,10) | 68 B | 23 KB | 8 KB | 4.1 ms | $6.8 \mu \mathrm{~s}$ | $659.7 \mu \mathrm{~s}$ |
| 3HFE-p (31,9) | 67 B | 7 KB | 5 KB | 0.8 ms | $2.3 \mu \mathrm{~s}$ | $60.5 \mu \mathrm{~s}$ |
| RSA (1024 bits) | 128 B | 128 B | 1024 B | 26.4 ms | $22.4 \mu \mathrm{~s}$ | $813.5 \mu \mathrm{~s}$ |
| ECDSA (160 bits) | 40 B | 40 B | 60 B | 0.3 ms | $409.2 \mu \mathrm{~s}$ | $357.8 \mu \mathrm{~s}$ |
| $C^{*}-\mathrm{p} \mathrm{(pFLASH)}$ | 37 B | 72 KB | 5 KB | 28.7 ms | $97.9 \mu \mathrm{~s}$ | $473.6 \mu \mathrm{~s}$ |
| 3IC-p (31,18,1) | 36 B | 35 KB | 12 KB | 4.2 ms | $11.7 \mu \mathrm{~s}$ | $256.2 \mu \mathrm{~s}$ |
| Rainbow $(31,24,20,20)$ | 43 B | 57 KB | 150 KB | 120.4 ms | $17.7 \mu \mathrm{~s}$ | $70.6 \mu \mathrm{~s}$ |
| TTS $(31,24,20,20)$ | 43 B | 57 KB | 16 KB | 13.7 ms | $18.4 \mu \mathrm{~s}$ | $14.2 \mu \mathrm{~s}$ |

Measured using SUPERCOP: System for unified performance evaluation related to cryptographic operations and primitives. http://bench.cr.yp.to/supercop.html, April 2009.

## Conclusions and Remarks

- Take-away point: Odd MPKCs worth studying!
- Algebraic attacks become harder
- Friendly to mainstream computing devices
* X86 CPUs have vector instructions
* High-end FPGAs have multiplier IPs
$\star$ Can be good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)
- It is very important to tune to your architecture.
- MPKCs still competitive speedwise, including on 8051s.
- When Intel's new vector instruction set comes out, it's likely to double the MPKC throughput per cycle too.


## Future work

- Implement for new CPUs and instructions (PCLMULQDQ).
- Implement on Graphic cards and all that.
- Implement some side-channel-attack resistant versions?


## Collaborators

- I had help from these Students/Assistants
- Anna Inn-Tung Chen, U of Michigan
- Chia-Hsin Owen Chen, MIT
- Ming-Shing Chen, Nat'l Taiwan University, Taiwan
- Tien-Ren Chen, Nat'l Immigration Agency, Taiwan
- Yen-Hung Chen, ASUStek, Taiwan
- Colleagues I worked with
- Chen-Mou Chen, Nat'I Taiwan University, Taiwan
- Jiun-Ming Chen, Nat'l Cheng-Kung University, Taiwan


## Collaborators

- I had help from these Students/Assistants
- Anna Inn-Tung Chen, U of Michigan
- Chia-Hsin Owen Chen, MIT
- Ming-Shing Chen, Nat'l Taiwan University, Taiwan
- Tien-Ren Chen, Nat'l Immigration Agency, Taiwan
- Yen-Hung Chen, ASUStek, Taiwan
- Eric Li-Hsiang Kuo, Academia Sinica, Taiwan
- Frost Yu-Shuang Lee, U of Michigan
- Colleagues I worked with
- Chen-Mou Cheng, Nat'I Taiwan University, Taiwan
- Jiun-Ming Chen, Nat'l Cheng-Kung University, Taiwan
- Jintai Ding, University of Cincinnati, USA
- Lih-Chung Wang, Nat'l Dong-Hua University, Taiwan
- Christopher Wolf, Ruhr University Bochum, Germany


## Thanks for Listening!

- Questions or comments?

