On the Design and Implementation of Efficient Zero-Knowledge Proofs of Knowledge

SPEED-CC, Berlin (Germany), October 13th, 2009

Endre Bangerter1, Stephan Krenn1,2, Ahmad-Reza Sadeghi3, Thomas Schneider3, and Joe-Kai Tsay4

1 Bern University of Applied Sciences (Switzerland)
2 University of Fribourg (Switzerland)
3 Ruhr-University Bochum (Germany)
4 Ecole Normale Supérieure de Cachan (France)
Why to Avoid ZK-PoK in Hidden Order Groups

SPEED-CC, Berlin (Germany), October 13th, 2009

Endre Bangerter1, Stephan Krenn1,2, Ahmad-Reza Sadeghi3, Thomas Schneider3, and Joe-Kai Tsay4

1 Bern University of Applied Sciences (Switzerland)
2 University of Fribourg (Switzerland)
3 Ruhr-University Bochum (Germany)
4 Ecole Normale Supérieure de Cachan (France)
Outline

Proofs of knowledge in hidden order groups

Exact efficiency and security analysis

Conclusion
Introduction

Proof of Knowledge: Prover cannot cheat

Zero-Knowledge: Verifier cannot learn secret
Applications

Remote Authentication
(e.g. DAA)

Credential Systems
(e.g. idemix)
The Schnorr Protocol

I know \(x = \log_q y \).

\[
\begin{align*}
 r &\in_R \mathbb{Z} \\
 t &:= g^r \\
 s &:= r + cx
\end{align*}
\]

\[
\begin{align*}
 c &\in_R \mathbb{C} \\
 g^s &\overset{?}{=} ty^c
\end{align*}
\]
The Schnorr Protocol

\[r \in_R \mathbb{Z} \]
\[t := g^r \]
\[s := r + cx \]

I know \(x = \log_g y \).

\[c \in_R \mathbb{C} \]
\[g^s = ty^c \]

BUT: We must use \(\mathbb{C} = \{0,1\} \)!
A Computationally Hard Problem

Given safe RSA modulus n, and $x, y \in \mathbb{Z}_n^*$, cannot compute a, b, c, w such that $w^c = x^a y^b$ and $(c \nmid a \text{ or } c \nmid b)$.

holds under: Strong RSA Assumption

Given safe RSA modulus n, and $y \in \mathbb{Z}_n^*$, cannot compute $a, e \neq 1$ such that $a^e = y$.
A Damgård/Fujisaki based Protocol

I know $x = \log_g y$.

\[r, \bar{r}, \bar{x} \in_R \mathbb{Z} \]
\[t := g^r \]
\[\bar{y} := h_1^x \bar{h}^\bar{x} \]
\[\bar{t} := h_1^r \bar{h}^\bar{r} \]
\[s := r + cx \]
\[\bar{s} := \bar{r} + c\bar{x} \]

With large challenge set.

\[c \in_R C \]
\[g^s \overset{?}{=} ty^c \]
\[h_1^s \bar{h}^\bar{s} \overset{?}{=} \bar{t}y^c \]
Why it works...

\[g^{s_i} = ty^{c_i} \quad i = 1,2 \]
\[g^{\Delta s} = y^{\Delta c} \]
\[x = \Delta s (\Delta c)^{-1} \]
Why it works...

\[\begin{align*}
g^{s_i} &= ty^{c_i} \\
g^{\Delta s} &= y^{\Delta c} \\
x &= \Delta s \left(\Delta c \right)^{-1}
\end{align*} \]

\[\begin{align*}
&\rightarrow \quad \bar{h}_1^{s_i} \bar{h}^{s_i} = \bar{t}y^{c_i} \quad i = 1,2 \\
&\rightarrow \quad \bar{h}_1^{\Delta s} \bar{h}^{\Delta s} = \bar{y}^{\Delta c} \quad \text{and} \quad \Delta c \mid \Delta s \\
&\rightarrow \quad x = \frac{\Delta s}{\Delta c}
\end{align*} \]
Outline

Proofs of knowledge in hidden order groups

Exact efficiency and security analysis

Conclusion
Intuitive Comparison

Schnorr protocol:
slow
looooong

DF-based protocol:
fast
elegant
A Closer Look

Common reference string

Only computationally sound

Bad complexity reductions
Bad Reductions

- Probability of breaking Strong RSA
- Probability of breaking the protocol
Is DAA broken?
Bad Reductions

Probability of breaking Strong RSA

Probability of breaking the protocol

loose reduction
Relative Costs

I know x, r, such that $y = g_1^{x^2} g_2^r$.

| n_0 | $|n| = 15528$ | $|n| = 2048$ | optimal | $|n|$ |
|-------|----------------|----------------|----------|-------|
| 1024 | 42.7 | 2.7 | 1.9 | |
| 1280 | 24.0 | 1.7 | 1.1 | |
| 1536 | 13.1 | 1.0 | 0.7 | |
| 2048 | 5.6 | 0.6 | 0.3 | |
So...
Sources of Inefficiency

- Complexity of proof goal
- Size of underlying group
- Flexibility of $|n|$
- Efficiency of math-library

Relative costs
Dependencies of Relative Costs

- Simplicity of proof goal
- Efficiency of math-library

- Decreasing size of underlying group
- Medium costs
- High costs
- Low costs
Outline

Proofs of knowledge in hidden order groups

Exact efficiency and security analysis

Conclusion
Conclusion

Crypto folklore

Design vs. implementation

RSA’s legacy

Schnorr

Damgård/Fujisaki

RSA 1
Conclusion

Crypto folklore

Design vs. implementation

RSA’s legacy

Schnorr

Damgård/Fujisaki

Java

RSA 1
Crypto folklore

Schnorr

Damgård/Fujisaki

Design vs. implementation

RSA’s legacy

1

Java
Conclusion

Crypto folklore
Schnorr
Damgård/Fujisaki

Design vs. implementation
Java

RSA's legacy
RSAPA
On the Design and Implementation of Efficient Zero-Knowledge Proofs of Knowledge

SPEED-C, Berlin (Germany), October 13th, 2009

Endre Bangerter¹, Stefan Krenn¹,², Ahmad-Reza Sadeghi³, Thomas Schneider³, and Joe-Kai Tsay⁴

¹ Bern University of Applied Sciences (Switzerland)
² University of Fribourg (Switzerland)
³ Ruhr-University Bochum (Germany)
⁴ Ecole Normale Supérieure de Cachan (France)