
The AES Performance Challenge
The AES Security Challenge

The Future

Implementing AES 2000-2010:
performance and security challenges

Emilia Käsper

Katholieke Universiteit Leuven

SPEED-CC
Berlin, October 2009

Emilia Käsper Implementing AES 2000-2010 1/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

1 The AES Performance Challenge
The need for fast encryption
Inside AES
Implementing AES 2000-...

2 The AES Security Challenge
Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

3 The Future
AES-NI instruction set
Lessons learnt
Implementing cryptography 2010-...

Emilia Käsper Implementing AES 2000-2010 2/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

The Advanced Encryption Standard

Rijndael proposed by Rijmen, Daemen in 1998

Selected as AES in October 2000

Key size 128/192/256 bits (resp. 10/12/14 rounds)

Software performance a key advantage

Runner-up Serpent arguably “more secure”, but over 2x slower

AES in OpenSSL — implementation by Rijmen, Bosselaers,
Barreto from 2000

AES-128 at around 18 cycles/byte = 110 MB/s @ 2GHz

Emilia Käsper Implementing AES 2000-2010 3/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

The AES performance challenge

Is 110 MB/s fast enough?

Popular example: Truecrypt transparent disk encryption

Truecrypt only supports AES-256, so make that 80 MB/s

At the same time, consumer (solid state) hard drives can read
at over 200 MB/s

Encryption becomes performance bottleneck

Since March 2008, Truecrypt includes an optimized assembly
implementation of AES

Emilia Käsper Implementing AES 2000-2010 4/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

Optimized implementations on Intel processors

2000: Aoki and Lipmaa report 14.8 cycles/byte on Pentium II

. . .

2007: Matsui and Nakajima report 9.2 cycles/byte for
AES-CTR on Core 2

Assuming data is processed in 2 KB blocks
Compatibility with existing implementations via an extra
input/output transform

2008: Bernstein-Schwabe report 10.57 cycles/byte for
AES-CTR on Core 2

2009: Käsper-Schwabe report 7.59 cycles/byte for AES-CTR
on Core 2

Emilia Käsper Implementing AES 2000-2010 5/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

Inside AES

Emilia Käsper Implementing AES 2000-2010 6/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

AES round structure

SubBytes is an S-Box acting on individual bytes

ShiftRows rotates each row by a different amount

Emilia Käsper Implementing AES 2000-2010 7/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

AES round structure (cont.)

MixColumns is a linear transformation on columns

AddRoundKey XORs the 128-bit round key to the state

Emilia Käsper Implementing AES 2000-2010 8/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

Implementing an AES round

Store AES state in 4 column vectors
Combine SubBytes, ShiftRows and MixColumns:
Each column vector depends on 4 bytes
Do 4 8-to-32-bit table lookups and combine using XOR

Emilia Käsper Implementing AES 2000-2010 9/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

AES performance on Core 2

The Core 2 execution units

The Core 2 can do one load per clock cycle

AES-128 needs 160 table lookups to encrypt 16 bytes

10 cycles/byte barrier using this technique

Emilia Käsper Implementing AES 2000-2010 10/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

The need for fast encryption
Inside AES
Implementing AES 2000-...

AES performance on Core 2

The Core 2 execution units

The Core 2 can do one load per clock cycle

AES-128 needs 160 table lookups to encrypt 16 bytes

10 cycles/byte barrier using this technique

Emilia Käsper Implementing AES 2000-2010 11/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

The AES security challenge

Emilia Käsper Implementing AES 2000-2010 12/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Cache attacks on AES implementations

Core idea (Kocher, 1996):
variable-time instructions
manipulating the secret key
leak information about key
bits

Table lookups take different
time depending on whether
the value was retrieved from
cache or memory

The case of AES: lookup table indices directly depend on the
secret key

First round of AES: T[plaintext⊕ roundkey]

Knowing which part of the table was accessed leaks key bits

Emilia Käsper Implementing AES 2000-2010 13/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Cache attacks (cont.)

A variety of attack models

Active cache manipulation via user processes — preload cache
with known values and observe via timing if the cache was hit
Passive (remote) timing of cache “hits” and “misses” —
shorter encryption time implies collisions in lookups
Power traces

Example: passive timing attack (Bonneau, Mironov 2006)

Attacker runs timing code on target machine
Obtain timing data from 214 random encryptions
Deduce when first-round collisions occur to recover 5 bits of
each key byte (assuming 32-byte cache line)
Can be improved to recover the whole key by considering
second/last round

Emilia Käsper Implementing AES 2000-2010 14/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Countermeasures against cache attacks

Protecting vulnerable cipher parts (e.g., first and last round)
in software — only thwarts current attacks

Add variable-time dummy instructions — attacks still work
with more data

Cache warming (preload some values) — for 32-byte cache
line, 4·256

8 = 128 instructions to preload all tables

Force all operations to take constant time — as good as
having no cache

Algorithm-specific constant-time implementations

Emilia Käsper Implementing AES 2000-2010 15/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Bitslicing AES

Bitslicing (Biham, 1997): instead of using lookup tables,
evaluate S-Boxes on the fly using their Boolean form

Efficient if multiple S-boxes can be computed in parallel

Serpent: bitsliced design, 32 4× 4-bit S-boxes in each round

AES 8× 8 S-box based on Galois field inversion, matrix
multiplication: ???

2007: Matsui shows an efficient implementation using 128
parallel blocks
2008: Könighofer’s implementation on 64-bit processors, 4
parallel blocks, < 20 cycles/byte

Emilia Käsper Implementing AES 2000-2010 16/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Bitslicing AES on Core 2 (2009)

Implementation of AES in counter mode

Applicable to any other parallel mode

Counter mode particularly handy, as no need to implement
decryption

Hand-coded in GNU assembly/qhasm

Constant-time, immune to all timing attacks

New speed record

7.59 cycles/byte for large blocks

Also fast for packet encryption

Emilia Käsper Implementing AES 2000-2010 17/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Making the most out of Core 2

16 128-bit XMM registers
SSE (Streaming SIMD Extension) instructions

followed by SSE2, SSE3, SSSE3 (Intel), SSE4 (Intel), SSE5
(AMD), AVX (Intel) etc.

“native” 128-bit wide execution units
older Core Duo’s “packed” 128-bit instructions

3 ALU units – up to 3 bit-logical instructions per cycle

Emilia Käsper Implementing AES 2000-2010 18/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

The Bitslicing approach

Process 8 AES blocks (=128 bytes) in parallel

Collect bits according to their position in the byte: i.e., the
first register contains least significant bits from each byte, etc.

AES state stored in 8 XMM registers

Compute 128 S-Boxes in parallel, using bit-logical instructions

For a simpler linear layer, collect the 8 bits from identical
positions in each block into the same byte

Never need to mix bits from different blocks - all instructions
byte-level

Emilia Käsper Implementing AES 2000-2010 19/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Implementing the AES S-Box

Start from the most compact hardware S-box, 117 gates
[Can05, BP09]
Use equivalent 128-bit bit-logical instructions
Problem 1: instructions are two-operand, output overwrites
one input
Hence, sometimes need extra register-register moves to
preserve input
Problem 2: not enough free registers for intermediate values
We recompute some values multiple times (alternative: use
stack)
Total 163 instructions — 15% shorter than previous results

xor and/or mov TOTAL

Hardware 82 35 – 117

Software 93 35 35 163
Emilia Käsper Implementing AES 2000-2010 20/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Hardware vs software

Example: multiplication in GF (22)

(x1, x0)⊗ (y1, y0)→ (z1, z0)

z1 = (y0 + y1)x0 + x1y0

z0 = (x0 + x1)y1 + x1y0

movdqa \x0, \z0
movdqa \x1, \z1
movdqa \y0, \t0
pxor \y1, \t0
pand \z0, \t0
pxor \z1, \z0
pand \y1, \z0
pand \y0, \z1
pxor \z1, \z0
pxor \t0, \z1

Emilia Käsper Implementing AES 2000-2010 21/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Implementing the AES linear layer

Each byte in the bitsliced vector corresponds to a different
byte position in the AES state

Thus, ShiftRows is a permutation of bytes

Use SSSE3 dedicated byte-shuffle instruction pshufb

Repeat for each bit position (register) = 8 instructions

MixColumns uses byte shuffle and XOR, total 43
instructions

AddRoundKey also requires only 8 XORs from memory

Some caveats:

Bitsliced key is larger - 8× 128 bits per round, key expansion
slower
SSSE3 available only on Intel, not on AMD processors

Emilia Käsper Implementing AES 2000-2010 22/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Putting it all together

xor/and/or pshufb/d xor (mem-reg) mov (reg-reg) TOTAL
SubBytes 128 – – 35 163
ShiftRows – 8 – – 8
MixColumns 27 16 – – 43
AddRoundKey – – 8 – 8
TOTAL 155 24 8 35 222

One AES round requires 214 bit-logical instructions

Last round omits MixColumns — 171 instructions

Input/output transform 84 instructions/each

Excluding data loading etc, we get a lower bound

214× 9 + 171 + 2× 84

3× 128
= 5.9 cycles/byte

Actual performance on Core 2 7.59 cycles/byte

Emilia Käsper Implementing AES 2000-2010 23/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

eStream benchmarks of AES-CTR-128

Emilia Käsper Implementing AES 2000-2010 24/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Even faster on the Core i7...

Emilia Käsper Implementing AES 2000-2010 25/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Interlude: A little lesson...

3 logically equivalent instructions: xorps, xorpd, pxor
On Core 2, we saw no performance difference
On Core i7, using xorps/xorpd gave a 50% performance hit

The reason: only one unit in Core i7 handles fp Boolean

Lesson

Always use the instruction appropriate for your data type!

Emilia Käsper Implementing AES 2000-2010 26/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

Cache-timing attacks
Countermeasures
Bitsliced implementations of AES 2007-...
A new bitsliced implementation

Interlude: A little lesson...

3 logically equivalent instructions: xorps, xorpd, pxor
On Core 2, we saw no performance difference
On Core i7, using xorps/xorpd gave a 50% performance hit
The reason: only one unit in Core i7 handles fp Boolean

Lesson

Always use the instruction appropriate for your data type!
Emilia Käsper Implementing AES 2000-2010 27/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

AES-NI instruction set
Lessons learnt
Implementing cryptography 2010-...

Implementing AES 2010-...

Intel has announced hardware support for AES in its next
generation processors (AES-NI instruction set extension)
Implementation simplicity:
b0 = T0[a0 >> 24] ^ T1[(a1 >> 16) & 0xff]

^ T2[(a2 >> 8) & 0xff] ^ T3[a3 & 0xff] ^ rk[4];

b1 = T0[a1 >> 24] ^ T1[(a2 >> 16) & 0xff]

^ T2[(a3 >> 8) & 0xff] ^ T3[a0 & 0xff] ^ rk[5];

b2 = T0[a2 >> 24] ^ T1[(a3 >> 16) & 0xff]

^ T2[(a0 >> 8) & 0xff] ^ T3[a1 & 0xff] ^ rk[6];

b3 = T0[a3 >> 24] ^ T1[(a0 >> 16) & 0xff]

^ T2[(a1 >> 8) & 0xff] ^ T3[a2 & 0xff] ^ rk[7];

becomes

aesenc xmm1, xmm3 % xmm1 - data, xmm3 - key
Mitigates side-channel attacks
Performance

Straightforward 4.4 cycles/byte
Parallel/optimized 1.35 cycles/byte

Emilia Käsper Implementing AES 2000-2010 28/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

AES-NI instruction set
Lessons learnt
Implementing cryptography 2010-...

Concluding remarks I

Breaking the 10 cycles/byte barrier: 7.59 cycles/byte for AES
(from 110 MB/s in OpenSSL to 260 MB/s @ 2GHz)

A posteriori improvement — AES was designed to be
implemented with lookup tables

In comparison: Whirlpool hash function uses an 8× 8 S-Box
composed of 5 4× 4 S-Boxes

Small by design: 101 gates in hardware

Slightly inferior security: maximum differential probability 2−5

vs 2−6 for AES

AES requires only 16 gates more!

But this is a result of 10 years of optimization...

Emilia Käsper Implementing AES 2000-2010 29/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

AES-NI instruction set
Lessons learnt
Implementing cryptography 2010-...

Concluding remarks II

Dedicated instructions (Intel AES-NI) available soon, but...

...almost 10 years after standardization, 5+? years to become
widespread

A general lesson: trends in processor architecture/graphics
processing in favour of fast crypto

Next generation processors: 256-bit registers, three operand
instructions

The case of Serpent: processing 4 blocks in parallel (8 for
256-bit) could yield up to factor 4 (8) performance
improvement

In Practice: reports of factor 2.7 improvement over a previous
implementation

Emilia Käsper Implementing AES 2000-2010 30/ 31

The AES Performance Challenge
The AES Security Challenge

The Future

AES-NI instruction set
Lessons learnt
Implementing cryptography 2010-...

Links

QHASM implementations of bitsliced AES:

http://cryptojedi.org/crypto/#aesbs

GNU asm implementations:

http://homes.esat.kuleuven.be/~ekasper/#software

A Stick Figure Guide to the Advanced Encryption Standard:

http://www.moserware.com
Emilia Käsper Implementing AES 2000-2010 31/ 31

http://cryptojedi.org/crypto/#aesbs
http://homes.esat.kuleuven.be/~ekasper/#software
http://www.moserware.com

	The AES Performance Challenge
	The need for fast encryption
	Inside AES
	Implementing AES 2000-...

	The AES Security Challenge
	Cache-timing attacks
	Countermeasures
	Bitsliced implementations of AES 2007-...
	A new bitsliced implementation

	The Future
	AES-NI instruction set
	Lessons learnt
	Implementing cryptography 2010-...

