
Implementing Multiparty Computation
A VIFF Case Study
http://viff.dk/

Martin Geisler
〈mg@cs.au.dk〉

University of Aarhus
Denmark

October 12, 2009
SPEED-CC

1 / 27

Outline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

Design
Network
Environment
Asynchronicity
Program Counters

Conclusion

2 / 27

Outline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

Design
Network
Environment
Asynchronicity
Program Counters

Conclusion

3 / 27

Quick Recap of Multiparty Computation

P1 P2

P3

I n players
I wish to jointly compute f
I player Pi has input xi
I players learn

y = f (x1, x2, . . . , xn)

I up to t players are corrupt
I must keep inputs private
I must ensure correct output
I players only learn y

4 / 27

Quick Recap of Multiparty Computation

P1 P2

P3

I n players
I wish to jointly compute f
I player Pi has input xi
I players learn

y = f (x1, x2, . . . , xn)

I up to t players are corrupt
I must keep inputs private
I must ensure correct output
I players only learn y

4 / 27

Requirements
We need fast local operations:
I fast cryptosystems
I fast hash functions
I and so on. . .

But we also need:
I fast cryptographic protocols
I flexible protocol description language
I efficient usage of network resources

5 / 27

Requirements
We need fast local operations:
I fast cryptosystems
I fast hash functions
I and so on. . .

But we also need:
I fast cryptographic protocols
I flexible protocol description language
I efficient usage of network resources

5 / 27

VIFF Overview
I VIFF: Virtual Ideal Functionality Framework
I Python library for MPC

I we wanted to write:
i = int(sys . argv[1]) # read commandline argument
(a, b, c) = shamir_share(i) # Shamir secret share input
x = a ∗ b + c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)
I we also wanted this code to execute in one round:

x = a ∗ b
y = b ∗ c
z = c ∗ a

I we wanted to do MPC over real networks, i.e., the Internet

6 / 27

VIFF Overview
I VIFF: Virtual Ideal Functionality Framework
I Python library for MPC
I we wanted to write:

i = int(sys . argv[1]) # read commandline argument
(a, b, c) = shamir_share(i) # Shamir secret share input
x = a ∗ b + c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)

I we also wanted this code to execute in one round:
x = a ∗ b
y = b ∗ c
z = c ∗ a

I we wanted to do MPC over real networks, i.e., the Internet

6 / 27

VIFF Overview
I VIFF: Virtual Ideal Functionality Framework
I Python library for MPC
I we wanted to write:

i = int(sys . argv[1]) # read commandline argument
(a, b, c) = shamir_share(i) # Shamir secret share input
x = a ∗ b + c # secure multiparty computation
print open(x) # broadcast and recombine

(we almost got there)
I we also wanted this code to execute in one round:

x = a ∗ b
y = b ∗ c
z = c ∗ a

I we wanted to do MPC over real networks, i.e., the Internet

6 / 27

Applications
We have implemented a number of applications in VIFF:
I Distributed AES
I Distributed RSA
I Double Auction
I Voting
I Poker

7 / 27

Related Projects
SIMAP — http://simap.dk/
I general multiparty computations
I Java implementation
I some work done on a domain specific language

FairPlay — http://fairplayproject.net/
I Yao-garbled circuits for 2 or more parties
I Java implementation
I own language for MPC programs

Sharemind — http://sharemind.cs.ut.ee/
I computation over the ring Z232

I C++ implementation
I scalable to very large data sets
I own MPC assembler language and compiler

8 / 27

http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/

Related Projects
SIMAP — http://simap.dk/
I general multiparty computations
I Java implementation
I some work done on a domain specific language

FairPlay — http://fairplayproject.net/
I Yao-garbled circuits for 2 or more parties
I Java implementation
I own language for MPC programs

Sharemind — http://sharemind.cs.ut.ee/
I computation over the ring Z232

I C++ implementation
I scalable to very large data sets
I own MPC assembler language and compiler

8 / 27

http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/

Related Projects
SIMAP — http://simap.dk/
I general multiparty computations
I Java implementation
I some work done on a domain specific language

FairPlay — http://fairplayproject.net/
I Yao-garbled circuits for 2 or more parties
I Java implementation
I own language for MPC programs

Sharemind — http://sharemind.cs.ut.ee/
I computation over the ring Z232

I C++ implementation
I scalable to very large data sets
I own MPC assembler language and compiler

8 / 27

http://simap.dk/
http://fairplayproject.net/
http://sharemind.cs.ut.ee/

Outline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

Design
Network
Environment
Asynchronicity
Program Counters

Conclusion

9 / 27

Asynchronous vs. Synchronous Network
VIFF assumes an asynchronous network:
I real-world networks are asynchronous
I it is the most flexible choice

Ti
m
e

share share share share

multiply multiply I all rounds equally fast
I optimal execution

Ti
m
e

share share share share

multiply multiply I processing stalls
I wasted time!

10 / 27

Asynchronous vs. Synchronous Network
VIFF assumes an asynchronous network:
I real-world networks are asynchronous
I it is the most flexible choice

Ti
m
e

share share share share

multiply multiply I all rounds equally fast
I optimal execution

Ti
m
e

share share share share

multiply multiply I processing stalls
I wasted time!

10 / 27

Asynchronous vs. Synchronous Network
VIFF assumes an asynchronous network:
I real-world networks are asynchronous
I it is the most flexible choice

Ti
m
e

share share share share

multiply multiply I all rounds equally fast
I optimal execution

Ti
m
e

share share share share

multiply multiply I processing stalls
I wasted time!

10 / 27

Transport Protocol
We currently use SSL over TCP:
I gives reliable, authenticated point-to-point channels
I litterature generally wants exactly this

UDP would be an interesting alternative:
I discrete packets — send one share per packet
I we do not care about reordering
I most protocols can handle some dropped packets!

11 / 27

Transport Protocol
We currently use SSL over TCP:
I gives reliable, authenticated point-to-point channels
I litterature generally wants exactly this

UDP would be an interesting alternative:
I discrete packets — send one share per packet
I we do not care about reordering
I most protocols can handle some dropped packets!

11 / 27

Network Architecture
We use a peer-to-peer architecture:
I parties are symmetric
I very general architecture

SIMAP used a central coordinator:
I forwards packets only
I makes NAT-traversal simple
I a potential bottle-neck

12 / 27

Network Architecture
We use a peer-to-peer architecture:
I parties are symmetric
I very general architecture

SIMAP used a central coordinator:
I forwards packets only
I makes NAT-traversal simple
I a potential bottle-neck

12 / 27

Programming Language
VIFF is written in Python:
I flexible language, well suited for rapid prototyping
I Twisted library for asynchronous network communication

I anonymous functions:
share_x.addCallback(lambda x: x ∗ x)

I operator overloading:
a.add(b).sub(a.mul(b).mul(2)) a + b − 2 ∗ a ∗ b

I absolutely everything is interpreted
I lack of static types enables stupid mistakes

13 / 27

Programming Language
VIFF is written in Python:
I flexible language, well suited for rapid prototyping
I Twisted library for asynchronous network communication
I anonymous functions:

share_x.addCallback(lambda x: x ∗ x)

I operator overloading:
a.add(b).sub(a.mul(b).mul(2)) a + b − 2 ∗ a ∗ b

I absolutely everything is interpreted
I lack of static types enables stupid mistakes

13 / 27

Programming Language
VIFF is written in Python:
I flexible language, well suited for rapid prototyping
I Twisted library for asynchronous network communication
I anonymous functions:

share_x.addCallback(lambda x: x ∗ x)

I operator overloading:
a.add(b).sub(a.mul(b).mul(2)) a + b − 2 ∗ a ∗ b

I absolutely everything is interpreted
I lack of static types enables stupid mistakes

13 / 27

Programming Language
VIFF is written in Python:
I flexible language, well suited for rapid prototyping
I Twisted library for asynchronous network communication
I anonymous functions:

share_x.addCallback(lambda x: x ∗ x)

I operator overloading:
a.add(b).sub(a.mul(b).mul(2)) a + b − 2 ∗ a ∗ b

I absolutely everything is interpreted
I lack of static types enables stupid mistakes

13 / 27

Programming Environment
VIFF provides the a framework in the form of a library:
I makes “VIFF programs” regular Python programs
I provides full access to Python standard library

I however, we cannot use control structures directly:
if rt.open(a < b and b < c):

print "Wow, monotone!"

Must rewrite as:
def check_monotone(result):

if result:
print "Wow, monotone!"

x = rt.open(a < b and b < c)
x.addCallback(check_monotone)

I long-term solution: put a DSL on top of VIFF

14 / 27

Programming Environment
VIFF provides the a framework in the form of a library:
I makes “VIFF programs” regular Python programs
I provides full access to Python standard library
I however, we cannot use control structures directly:

if rt.open(a < b and b < c):
print "Wow, monotone!"

Must rewrite as:
def check_monotone(result):

if result:
print "Wow, monotone!"

x = rt.open(a < b and b < c)
x.addCallback(check_monotone)

I long-term solution: put a DSL on top of VIFF

14 / 27

Programming Paradigm
Asynchronous communication via callbacks:
I “don’t call us, we’ll call you”
I uses a network library called Twisted

I Twisted’s fundamental abstraction is the Deferred:

def output(x): print x

d = Deferred()
d.addCallback(lambda x: x + 1)
d.addCallback(lambda x: x ∗ 2)
d.addCallback(output)
d.callback(10)

lambda x: x + 1

lambda x: x ∗ 2

output

10

11

22

Noned
I this can lead to an unnatural way of programming
I completely single-threaded — no blocking the event loop!

15 / 27

Programming Paradigm
Asynchronous communication via callbacks:
I “don’t call us, we’ll call you”
I uses a network library called Twisted
I Twisted’s fundamental abstraction is the Deferred:

def output(x): print x

d = Deferred()
d.addCallback(lambda x: x + 1)
d.addCallback(lambda x: x ∗ 2)
d.addCallback(output)
d.callback(10)

lambda x: x + 1

lambda x: x ∗ 2

output

10

11

22

Noned

I this can lead to an unnatural way of programming
I completely single-threaded — no blocking the event loop!

15 / 27

Programming Paradigm
Asynchronous communication via callbacks:
I “don’t call us, we’ll call you”
I uses a network library called Twisted
I Twisted’s fundamental abstraction is the Deferred:

def output(x): print x

d = Deferred()
d.addCallback(lambda x: x + 1)
d.addCallback(lambda x: x ∗ 2)
d.addCallback(output)
d.callback(10)

lambda x: x + 1

lambda x: x ∗ 2

output

10

11

22

Noned
I this can lead to an unnatural way of programming
I completely single-threaded — no blocking the event loop!

15 / 27

More on Deferreds
We use Deferreds heavily:
I subclass Share provides operator overloading:

x = a ∗ b + c ∗ 10

I Share objects are created and combined:
x

+

*

a b

*

c 10

network trafic

16 / 27

More on Deferreds
We use Deferreds heavily:
I subclass Share provides operator overloading:

x = a ∗ b + c ∗ 10

I Share objects are created and combined:
x

+

*

a b

*

c 10

network trafic

16 / 27

More on Deferreds
We use Deferreds heavily:
I subclass Share provides operator overloading:

x = a ∗ b + c ∗ 10

I Share objects are created and combined:
x

+

*

a b

*

c 10

network trafic

16 / 27

Dangers of Deferreds
Deferreds are not free:
I a single, empty Deferred is about 200 bytes
I adding a callback costs at least 300 bytes more

I it is easy to allocate lots of Deferreds:
for i in range(10000):

x = x ∗ x

I all 10,000 multiplications are scheduled immediately:
x * * . . . * x

17 / 27

Dangers of Deferreds
Deferreds are not free:
I a single, empty Deferred is about 200 bytes
I adding a callback costs at least 300 bytes more
I it is easy to allocate lots of Deferreds:

for i in range(10000):
x = x ∗ x

I all 10,000 multiplications are scheduled immediately:
x * * . . . * x

17 / 27

What About Threads?
Threads are the main alternative to callbacks:
I can use multiple cores!
I normal program flow, you can block when you want

I thread-switches supposedly have some overhead
I must synchronize threads (and avoid dead-locks. . .)
I need a way to specify future tasks (callbacks. . .)

18 / 27

What About Threads?
Threads are the main alternative to callbacks:
I can use multiple cores!
I normal program flow, you can block when you want
I thread-switches supposedly have some overhead
I must synchronize threads (and avoid dead-locks. . .)
I need a way to specify future tasks (callbacks. . .)

18 / 27

Pipelining
Network delay kills throughput unless we run things in parallel:
I like a CPU, we pipeline many operations in parallel

I can potentially remove idle time:

Idle

A B

Idle

Idle

Idle

A B

19 / 27

Pipelining
Network delay kills throughput unless we run things in parallel:
I like a CPU, we pipeline many operations in parallel
I can potentially remove idle time:

Idle

A B

Idle

Idle

Idle

A B

19 / 27

Pipelining
Network delay kills throughput unless we run things in parallel:
I like a CPU, we pipeline many operations in parallel
I can potentially remove idle time:

Idle

A B

Idle

Idle

Idle

A B

19 / 27

Pipelining
Network delay kills throughput unless we run things in parallel:
I like a CPU, we pipeline many operations in parallel
I can potentially remove idle time:

Idle

A B

Idle

Idle

Idle

A B

19 / 27

Pipelining
Network delay kills throughput unless we run things in parallel:
I like a CPU, we pipeline many operations in parallel
I can potentially remove idle time:

Idle

A B

Idle

Idle

Idle

A B

19 / 27

Pipelining
Network delay kills throughput unless we run things in parallel:
I like a CPU, we pipeline many operations in parallel
I can potentially remove idle time:

Idle

A B

Idle

Idle

Idle

A B

19 / 27

Automatic pipelining
VIFF will automatically pipeline everything:
I network traffic begins upon return to event loop
I no notion of rounds
I fits naturally with asynchronous execution

20 / 27

Why We Must Keep Track of Things
Consider this very high-level code for multiplication:
def mul(share_a, share_b):

result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

It is used twice like this:
x = a ∗ b
y = c ∗ d

We now have a problem:
I finish_mul is executed when a and b arrives
I finish_mul is executed when c and d arrives
I other players cannot know which pair arrives first!

21 / 27

Why We Must Keep Track of Things
Consider this very high-level code for multiplication:
def mul(share_a, share_b):

result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

It is used twice like this:
x = a ∗ b
y = c ∗ d

We now have a problem:
I finish_mul is executed when a and b arrives
I finish_mul is executed when c and d arrives
I other players cannot know which pair arrives first!

21 / 27

Why We Must Keep Track of Things
Consider this very high-level code for multiplication:
def mul(share_a, share_b):

result = gather_shares([share_a, share_b])
result.addCallback(finish_mul)
return result

It is used twice like this:
x = a ∗ b
y = c ∗ d

We now have a problem:
I finish_mul is executed when a and b arrives
I finish_mul is executed when c and d arrives
I other players cannot know which pair arrives first!

21 / 27

Program Counters
VIFF use program counters to track operations:

mul

finish_mul

mul

finish_mul

[0]

[1]

[2]

[1, 0]

[2, 0]

22 / 27

Program Counter Properties
I assignment depends on program structure
I ensures deterministic assignments
I unique labels for each operation

23 / 27

Preprocessing
Many protocols can be divided into two phases:
I an off-line phase which is independent of actual input
I an on-line phase which do depend on the input

A good example is an actively secure multiplication:
I generate a random triple ([a], [b], [ab]) off-line
I use it to multiply [x] and [y]:

d = open
(
[x]− [a]

)
e = open

(
[y]− [b]

)
[xy] = de + d [y] + e[x] + [ab]

But how to implement this?

24 / 27

Preprocessing
Many protocols can be divided into two phases:
I an off-line phase which is independent of actual input
I an on-line phase which do depend on the input

A good example is an actively secure multiplication:
I generate a random triple ([a], [b], [ab]) off-line
I use it to multiply [x] and [y]:

d = open
(
[x]− [a]

)
e = open

(
[y]− [b]

)
[xy] = de + d [y] + e[x] + [ab]

But how to implement this?

24 / 27

Program Counters Strikes Again!
We have an unique label for each operation:
I run program without any preprocessed data
I record program counters for missing data
I start next run with a preprocessing phase

Will the program always use the same program counters?
I yes! — otherwise it would leak information on the inputs

25 / 27

Program Counters Strikes Again!
We have an unique label for each operation:
I run program without any preprocessed data
I record program counters for missing data
I start next run with a preprocessing phase

Will the program always use the same program counters?
I yes! — otherwise it would leak information on the inputs

25 / 27

Outline

Overview
Multiparty Computation
Virtual Ideal Functionality Framework

Design
Network
Environment
Asynchronicity
Program Counters

Conclusion

26 / 27

Conclusion
Experiences with VIFF:
I asynchronous design works well
I flexible design pays off

Thank you!

27 / 27

Conclusion
Experiences with VIFF:
I asynchronous design works well
I flexible design pays off

Thank you!

27 / 27

	Overview
	Multiparty Computation
	Virtual Ideal Functionality Framework

	Design
	Network
	Environment
	Asynchronicity
	Program Counters

	Conclusion

