
Automatic generation of optimised Cryptographic
Pairing functions’ code

Luis J. Dominguez P. and Michael Scott

Dublin City University. School of Computing.
ldominguez.computing.dcu.ie.

SPEED-CC, Berlin.

October 12th-13th, 2009.

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Outline

1 Preliminaries

2 Pairing functions
Tate
ate
R-ate

3 Addition-chain

4 Final exponentiation

5 Fast hashing to G2

6 Demo

7 Conclusion

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 2/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Automatic generation of pairing functions’ code

Motivation:

◮ Pairing based cryptography is more complex to understand
and to implement than, for example, the RSA.

◮ If a higher security level is desired, a different pairing friendly
curve should be selected. For optimisation, it will need a
different implementation.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 3/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Definition

The computation of pairings basically involves two groups, G1 and
G2. These groups are finite, cyclic, additively-written groups and
at least one of which is of prime order r .

The pairing will take an element from each of the two groups and
map them to a group, denoted GT , which is a finite, cyclic,
multiplicatively-written group also of prime order r .

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 4/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Definition, II.

A useful cryptographic pairing satisfies the following properties:

◮ Bilinearity:
For all P ,P ′ ∈ G1 and all Q,Q ′ ∈ G2, one has: e(P + P ′,Q)
= e(P ,Q)× e(P ′,Q) and e(P ,Q + Q ′) = e(P ,Q)× e(P ,Q ′)

◮ Non-degeneracy:
For all P ∈ G1 with P 6= 0, there is some Q ∈ G2 such that
e(P ,Q) 6= 1.
For all Q ∈ G2 with Q 6= 0, there is some P ∈ G1 such that
e(P ,Q) 6= 1.

◮ Computability: can be easily evaluated.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 5/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Tate

Tate pairing

The Tate pairing was introduced as a general pairing on Abelian
varieties over local fields. Lichtenbaum gave an application of this
pairing to the Jacobians of curves over local fields.

Let P ∈ E (Fp)[r] and let Q ∈ E (Fpk). Let fa,P be a function with
a divisor (fa,P) = a(P)− (aP)− (a − 1)(O) for a ∈ Z.

A non-degenerate, bilinear Tate pairing can be defined as a map:

Definition

er : E (Fp)[r]× E (Fpk)/rE (Fpk)→ F∗

pk /(F
∗

pk)
r

(P ,Q) 7→ 〈P ,Q〉r = fr ,P(Q)

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 6/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

ate

ate pairing

The ate pairing is a variant of the Tate pairing and it is a
generalisation of the Eta pairing on ordinary pairing-friendly elliptic
curves.

We denote G1 = E [r] ∩ Ker(πp − [1]),G2 = E [r] ∩ Ker(πp − [p]).
Let T = t − 1. Let N = gcd(T k − 1, pk − 1),T k − 1 = LN.

The ate pairing takes Q ∈ G2[r] and P ∈ G1.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 7/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

ate

ate pairing, II.

Definition

The ate pairing is defined as:
eT : (Q,P) 7−→ fT ,Q(P)cT (pk

−1)/N

where cT =
∑k−1−i

i=0 pi ≡ kpk−1 mod r . The ate pairing is a
bilinear non-degenerate pairing if r ∤ L.

In practice, the reduced ate pairing: fT ,Q(P)(p
k
−1)/r is preferred.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 8/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

R-ate

R-ate pairing

The R-ate pairing introduced by Lee, Lee and Park is a
generalisation of the ate and atei pairing.

Let Ti ≡ pi mod r and Tj ≡ pj mod r . We define A = a.B + b,
where Ti = a.Tj + b.

The definition of the R-ate pairing with A,B , a, b,∈ Z and
non-trivial is as follows:

Definition

eA,B(P ,Q) = fa,BP(Q)× fb,P(Q)× GaBP,bP(Q)

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 9/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

R-ate

R-ate Pairing, II

Generally this definition does not always give a bilinear and
non-degenerate pairing. For efficiency, we look for a combination
of A and B that would give the shortest Miller loop.

The R-ate pairing algorithm uses a and b as follows:

◮ m1 = max{a, b},

◮ m2 = min{a, b},

◮ f {a, b}, {a, b}Q = {m1,m2}.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 10/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

R-ate

R-ate Pairing, III

The three (two) Miller loop calls are:

◮ M(Q,P ,m2),

◮ M(m2Q,P , c),

◮ M(Q,P , d).

where the parameters for these Miller function calls are as follows:

◮ m1 ← max{a, b},

◮ m2 ← min{a, b},

◮ c ← [m1
m2

],

◮ d ← m1 − c ·m2.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 11/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

R-ate

R-ate pairing, IV.

KSS curves with embedding degree k = 18

Miller-length in iterations

a b loops Ham m2 c

1 3 x 23 4 0 23
2 5/7x 1/7x2 47 6 24 23
3 8/7x 3/7x2 48 7 25 23
...
10 3/7x 2/7x 23 4 23 0
11 2/7x 3/7x 23 4 23 0
12 3/14x 1/14x2 46 8 23 23
...
15 3/49x2 5/49x2 47 5 47 0

Table: KSS: k = 18 Curves A,B parameters

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 12/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

The addition-chain

Definition: addition chain

An addition chain for a given number e is a sequence
U = (u0, u1, u2, . . . , uℓ) such that u0 = 1,uℓ = e and uk = ui + uj

for some i , j with 0 ≤ i ≤ j < k ≤ ℓ.

Finding a minimal addition chain for a given positive integer e is
an NP-complete problem.

Definition: addition sequence

Given a list of integers Γ = {v1, .., vℓ} where vℓ > vi

∀i = 1, .., ℓ − 1, an addition sequence for Γ is an addition chain for
vℓ containing all elements of Γ.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 13/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Solving an addition-chain

Definition: multi-addition chain

Given a list of integers Λ = {s1, .., sℓ} where sℓ > si
∀i = 1, .., ℓ − 1, a multi addition chain for Λ is a set containing
multiple addition chains in which some si are common.

A multi-addition-chain is a generalisation of the concept of the
addition chains, which can be used to perform the final
exponentiation.

To construct the multi-addition-chain we modify the Cruz-Cortéz et
al. method, which is designed to generate a simple addition-chain
for the RSA method using “Artificial Immune Systems”.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 14/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

The final exponentiation

One of the most expensive operations in the pairing computation is
the final exponentiation by (pk − 1)/r in the extension field Fpk .
This is required in the computation of the Tate, ate and R-ate
pairings on ordinary elliptic curves.

Usually one separates the exponent into 3 pieces:

(pk − 1)/r ⇒ (p
k
2 + 1) · (p

k
2 − 1)/Φk(p) · (Φk(p))/r . The first 2

parts can be easily computed using the Frobenius exponentiation.
The remaining, using the Scott et al.1 method.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 15/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

The final exponentiation, II

At the end of the Scott et al.1 method, one uses the multi
addition-chain method described in the last section and then
generates the code using vector chains with the Olivos method.

Exponentiation in RSA using addition chains usually requires the
shortest possible addition chain.

For the final exponentiation method, one may prefer a longer chain
if it contains a greater number of doublings and lower number of
additions, as it will generate code with more squarings and less
multiplications.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 16/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Hashing to G2[r].

Implementing identity-based protocols using ordinary
pairing-friendly elliptic curves requires two groups, at least one of
which is to be of order r .

If there is a requirement to hash to a point in G2 of order r , then
the operation becomes much more complex. Thanks to the use of
a twisted curve, the operation cost is not exorbitant, but still need
to be addressed.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 17/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Hashing to G2[r], II.

The Scott et al.2 method for fast hashing to G2 requires the use of
our addition chains method. In this case, the code will generate a
doubling or addition depending on the chain.

In the final exponentiation case, the operations are squarings and
multiplications in E (Fpk). Here the operations are doublings or
additions of a point in a large subgroup of points on a curve. A
proper chain selection may lead to shorter computation times.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 18/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

◮ Working demo... ?

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 19/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Contribution and status

We have adapted several construction methods for automatically
generate cryptographic pairing functions’ code to ease the job of
the protocol implementer.

Our tool can be extended to analyze different constraints such as
low memory, high bandwidth cost, or higher speed requirements
(i.e. more memory use).

A lot of work still need to be done to fully automate this tool.
Families of pairing friendly curves with different discriminants can
be added, finite field arithmetic on the fly, cross-platform
compiling, among others.

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 20/21

Preliminaries Pairing functions Addition-chain Final exponentiation Fast hashing to G2 Demo Conclusion

Final thoughts

Open questions:

◮ How to generate an optimal addition chain,

◮ is addition faster than doubling in each scenario?

Future work:

◮ Parallel computation of the mini Miller loops at the R-ate
pairing,

◮ try other method for the addition chain creation,

◮ define a method for the towering construction of the finite
field extensions,

◮ adapt the arithmetic to the scenario.

H

“Automatic generation of optimised Cryptographic Pairing functions’ code”, Dominguez and Scott. 21/21

	Preliminaries
	Pairing functions
	Tate
	ate
	R-ate

	Addition-chain
	Final exponentiation
	Fast hashing to G2
	Demo
	Conclusion

