High-Performance Modular Multiplication on the Cell Broadband Engine

Joppe W. Bos

Laboratory for Cryptologic Algorithms EPFL, Lausanne, Switzerland joppe.bos@epfl.ch

- Motivation and previous work
- Applications for multi-stream modular multiplication
- Background
 - Fast reduction with special primes
 - The Cell broadband engine
- Modular multiplications on the Cell
- Performance results
- Conclusions

Modular multiplication is a performance critical operation in many cryptographic applications

- RSA
- ElGamal
- Elliptic curve cryptosystems

as well as in cryptanalytic applications

- computing elliptic curve discrete logarithms (Pollard rho)
- factoring integers (elliptic curve factorization method)

Measure the performance on the Cell.

Misc. Platforms

Lots of performance results for many platforms

- GNU Multiple Precision (GMP) Arithmetic Library: almost all platforms (multiplicaton + reduction seperately),
- Bernstein et. al (Eurocrypt 2009): NVIDIA GPUs,
- Brown et al. (CT-RSA 2001): NIST primes on x_86.

On the Cell Broadband Engine

• The Multi-Precision Math (MPM) Library by IBM,

Optimize for one specific bit-size

- Costigan and Schwabe (Africacrypt 2009): special 255-bit prime,
- Bernstein et. al (SHARCS 2009): 195-bit generic moduli

Contributions

What did I do?

Present high-performance multi-stream algorithms

- Montgomery multiplication,
- schoolbook multiplication,
- various special reduction schemes.

Implementation details (in C) are presented for a cryptologic interesting range 192 - 521 bits targeted at the Cell Broadband Engine.

Multi-Stream Modular Multiplication Applications

Modular exponentiations using a square-and-multiply algorithm.

Cryptography

• Exponentiations with the same random exponent:

- ElGamal encryption (ElGamal, Crypto 1984),
- Double base ElGamal Damgård ElGamal (Damgård, Crypto 1991),
- "Double" hybrid Damgård ElGamal (Kiltz et. al, Eurocrypt 2009).
- Batch decryption in elliptic curve cryptosystems

Cryptanalysis

- Pollard rho (elliptic curve discrete logarithm problem)
- Integer factorization (elliptic curve factorization method)

Faster reduction exploiting the structure of the special prime.

By US National Institute of Standards

Five recommended primes in the FIPS 186-3 (Digital Signature Standard)

$$\begin{array}{ll} P_{192} &= 2^{192} - 2^{64} - 1 \\ P_{224} &= 2^{224} - 2^{96} + 1 \\ P_{256} &= 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 \\ P_{384} &= 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1 \\ P_{521} &= 2^{521} - 1 \end{array}$$

Prime used in Curve25519

Proposed by Bernstein at PKC 2006

$$P_{255} = 2^{255} - 19$$

$$0 \le x < P_{192}^2, \quad 0 \le x_H, x_L < 2^{192}, \quad x = x_H \cdot 2^{192} + x_L$$
$$x \equiv x_L + x_H \cdot 2^{64} + x_H \bmod P_{192}$$

$$0 \le x < P_{192}^2, \quad 0 \le x_H, x_L < 2^{192}, \quad x = x_H \cdot 2^{192} + x_L$$

$$x \equiv x_L + x_H \cdot 2^{64} + x_H \mod P_{192}$$
$$x_H \cdot 2^{64} < 2^{256}$$

$$x_H \cdot 2^{64} \equiv x_H \cdot 2^{64} \mod 2^{192} + \left\lfloor \frac{x_H \cdot 2^{64}}{2^{192}} \right\rfloor \cdot 2^{64} + \left\lfloor \frac{x_H \cdot 2^{64}}{2^{192}} \right\rfloor \mod P_{192}$$

Example: $P_{192} = 2^{192} - 2^{64} - 1$

$$0 \le x < P_{192}^2, \quad 0 \le x_H, x_L < 2^{192}, \quad x = x_H \cdot 2^{192} + x_L$$

$$x \equiv x_L + x_H \cdot 2^{64} + x_H \mod P_{192}$$
$$x_H \cdot 2^{64} < 2^{256}$$

$$x_{H} \cdot 2^{64} \equiv x_{H} \cdot 2^{64} \mod 2^{192} + \left\lfloor \frac{x_{H} \cdot 2^{64}}{2^{192}} \right\rfloor \cdot 2^{64} + \left\lfloor \frac{x_{H} \cdot 2^{64}}{2^{192}} \right\rfloor \mod P_{192}$$

 $s_1 = (c_5, c_4, c_3, c_2, c_1, c_0), \quad s_2 = (c_{11}, c_{10}, c_9, c_8, c_7, c_6),$ $s_3 = (c_9, c_8, c_7, c_6, 0, 0), \quad s_4 = (0, 0, c_{11}, c_{10}, 0, 0),$

 $s_5 = (0, 0, 0, 0, c_{11}, c_{10})$ Return $s_1 + s_2 + s_3 + s_4 + s_5$

Example: $P_{192} = 2^{192} - 2^{64} - 1$

$$0 \le x < P_{192}^2, \quad 0 \le x_H, x_L < 2^{192}, \quad x = x_H \cdot 2^{192} + x_L$$
$$x \equiv x_L + x_H \cdot 2^{64} + x_H \mod P_{192}$$
$$x_H \cdot 2^{64} < 2^{256}$$
$$\cdot 2^{64} \equiv x_H \cdot 2^{64} \mod 2^{192} + \left\lfloor \frac{x_H \cdot 2^{64}}{2} \right\rfloor \cdot 2^{64} + \left\lfloor \frac{x_H \cdot 2^{64}}{2} \right\rfloor \mod P_{102}$$

$$\begin{aligned} x_{H} \cdot 2^{64} &\equiv x_{H} \cdot 2^{64} \mod 2^{192} + \left\lfloor \frac{x_{H} \cdot 2^{-1}}{2^{192}} \right\rfloor \cdot 2^{64} + \left\lfloor \frac{x_{H} \cdot 2^{-1}}{2^{192}} \right\rfloor \mod P_{192} \\ s_{1} &= (c_{5}, c_{4}, c_{3}, c_{2}, c_{1}, c_{0}), \quad s_{2} = (0, 0, c_{7}, c_{6}, c_{7}, c_{6}), \\ s_{3} &= (c_{9}, c_{8}, c_{9}, c_{8}, 0, 0), \qquad s_{4} = (c_{11}, c_{10}, c_{11}, c_{10}, c_{11}, c_{10}) \end{aligned}$$

Return
$$s_1 + s_2 + s_3 + s_4$$

Solinas, technical report 1999

Note: this reduces to $[0, 4 \cdot P_{192}]$

Generic Moduli

Montgomery multiplication (with final subtraction)

Special Moduli

Multiplication + special reduction

Size of the modulus: 192 - 521 bit Multiplication method: schoolbook

Investigate other methods (such as Karatsuba) is left as future work.

Cell architecture in the PlayStation 3 (@ 3.2 GHz):

- Broadly available (24.6 million)
- Relatively cheap (US\$ 300)

- The Cell contains
 - eight "Synergistic Processing Elements" (SPEs) six available to the user in the PS3
 - one "Power Processor Element" (PPE)
 - the Element Interconnect Bus (EIB) a specialized high-bandwidth circular data bus

The SPEs contain

- a Synergistic Processing Unit (SPU)
 - Access to 128 registers of 128-bit
 - SIMD operations
 - Dual pipeline (odd and even)
 - Rich instruction set
 - In-order processor
- 256 KB of fast local memory (Local Store)
- Memory Flow Controller (MFC)

- Memory
 - The executable and all data should fit in the LS
 - Or perform manual DMA requests to the main memory (max. 214 MB)
- Branching
 - No "smart" dynamic branch prediction
 - Instead "prepare-to-branch" instructions to redirect instruction prefetch to branch targets
- Instruction set limitations
 - $16 \times 16 \rightarrow 32$ bit multipliers (4-SIMD)
- Dual pipeline
 - One odd and one even instruction can be dispatched per clock cycle.

Modular Multiplication on the Cell I

Four $(16 \cdot m)$ -bit integers A, B, C, D represented in m vectors.

$$X = \sum_{i=0}^{m-1} x_i \cdot 2^{16 \cdot i}$$

128-bit wide vector

either the lower or higher 16-bit of the 32-bit word

Implementation

- use the multiply-and-add instruction,
 - if $0 \le a, b, c, d < 2^{16}$, then $a \cdot b + c + d < 2^{32}$.
- try to fill both the odd and even pipelines,
- are branch-free.
- Do not fully reduce modulo (*m*-bits) *P*,
- Montgomery and special reduction $[0, 2^m\rangle$,
- These numbers can be used as input again,
- Reduce to [0, P) at the cost of a single comparison + subtraction.

Modular Multiplication on the Cell III

 $\mathsf{Special reduction} \to [0, t \cdot P) \quad (t \in \mathbb{Z} \mathsf{ and small})$

How to reduce to $[0, 2^m ?$?

- Apply special reduction again
- Repeated subtraction (t times)

For a constant modulus m-bit P

Select the four values to subtract simultaneously using select and cmpgt instructions and a look-up table.

Modular Multiplication on the Cell IV

For the special primes this can be done even faster.

t		$t \cdot P_{224} = t \cdot \left(2^{224} - 2^{96} + 1\right) = \{c_7, \dots, c_0\}$							
	<i>С</i> 7	<i>c</i> 6	<i>С</i> 5	<i>c</i> 4	<i>c</i> 3	<i>c</i> ₂	<i>c</i> ₁	<i>c</i> ₀	
0	0	0	0	0	0	0	0	0	
1	0	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 1$	0	0	1	
2	1	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 2$	0	0	2	
3	2	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 3$	0	0	3	
4	3	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 1$	$2^{32} - 4$	0	0	4	

• $c_0 = t$, $c_1 = c_2 = 0$ and $c_3 = (unsigned int) (0 - t)$.

- If t > 0 then $c_4 = c_5 = c_6 = 2^{32} 1$ else $c_4 = c_5 = c_6 = 0$.
- Use a single select.

Modular Multiplication on the Cell V

$$P_{255} = 2^{255} - 19$$

Original approach

Proposed by Bernstein and implemented on the SPE by Costigan and Schwabe (Africacrypt 2009):

Here
$$x \in \mathbb{F}_{2^{255}-19}$$
 is represented as $x = \sum_{i=0}^{19} x_i 2^{\lceil 12.75i \rceil}$.

Redundant representation

• Following ideas from Bos, Kaihara and Montgomery (SHARCS 2009),

15

• Calculate modulo
$$2 \cdot P_{255} = 2^{256} - 38 = \sum_{i=0}^{15} x_i 2^{16}$$
,

• Reduce to
$$[0, 2^{256})$$
.

Performance Results

Modular Multiplication Performance Results

Number of cycles for what?

- Measurements over millions of multi-stream modular multiplications,
- Cycles for a single modular multiplication,
- include benchmark overhead, function call, loading (storing) the input (output), converting from radix-2³² to radix-2¹⁶.

Number of cycles for what?

- Measurements over millions of multi-stream modular multiplications,
- Cycles for a single modular multiplication,
- include benchmark overhead, function call, loading (storing) the input (output), converting from radix-2³² to radix-2¹⁶.

Special prime P₂₅₅

- Costigan and Schwabe (Africacrypt 2009), 255 bit.
- single-stream: 444 cycles (144 mul, 244 reduction, 56 overhead).
- multi-stream: 168 cycles.
 - no function call, loading and storing, "perfectly" scheduled (filled both pipelines)
- this work: 180 cycles (< 168 + 56),
- both approaches are comparable in terms of speed (on the Cell).

Generic 195-bit moduli

- Bernstein et al. (SHARCS 2009), multi-stream, 189 cycles,
- This work: multi-stream, 159 cycles for 192-bit generic moduli,
- Scaling: $(\frac{195}{192})^2 \cdot 159 = 164$ cycles.

Generic moduli

Bitsize	#cycles					
	New	MPM	uMPM			
192	159	1,188	877			
224	237	1,188	877			
256	300	1,188	877			
384	719	2,092	1,610			
512	1,560	3,275	2,700			

- We presented SIMD algorithms for Montgomery and schoolbook multiplication and fast reduction.
- Implementations are optimized for the Cell architecture.
- Implementation results for moduli of size 192 to 521 bits show that special primes are 1.4 to 2.5 times faster compared to generic primes.

Future work

- Try Karatsuba multiplication
- Further optimize Montgomery multiplication (almost finished)