High-Performance Modular Multiplication on the Cell Broadband Engine

Joppe W. Bos
Laboratory for Cryptologic Algorithms
EPFL, Lausanne, Switzerland
joppe.bos@epfl.ch

Outline

- Motivation and previous work
- Applications for multi-stream modular multiplication
- Background
- Fast reduction with special primes
- The Cell broadband engine
- Modular multiplications on the Cell
- Performance results
- Conclusions

Motivation

Modular multiplication is a performance critical operation in many cryptographic applications

- RSA
- EIGamal
- Elliptic curve cryptosystems
as well as in cryptanalytic applications
- computing elliptic curve discrete logarithms (Pollard rho)
- factoring integers (elliptic curve factorization method)

Measure the performance on the Cell.

Previous works

Misc. Platforms

Lots of performance results for many platforms

- GNU Multiple Precision (GMP) Arithmetic Library: almost all platforms (multiplicaton + reduction seperately),
- Bernstein et. al (Eurocrypt 2009): NVIDIA GPUs,
- Brown et al. (CT-RSA 2001): NIST primes on x_86.

On the Cell Broadband Engine

- The Multi-Precision Math (MPM) Library by IBM,

Optimize for one specific bit-size

- Costigan and Schwabe (Africacrypt 2009): special 255-bit prime,
- Bernstein et. al (SHARCS 2009): 195-bit generic moduli

Contributions

What did I do?

Present high-performance multi-stream algorithms

- Montgomery multiplication,
- schoolbook multiplication,
- various special reduction schemes.

Implementation details (in C) are presented for a cryptologic interesting range $192-521$ bits targeted at the Cell Broadband Engine.

Multi-Stream Modular Multiplication Applications

Modular exponentiations using a square-and-multiply algorithm.

Cryptography

- Exponentiations with the same random exponent:
- EIGamal encryption (EIGamal, Crypto 1984),
- Double base EIGamal - Damgård EIGamal (Damgård, Crypto 1991),
- "Double" hybrid Damgård EIGamal (Kiltz et. al, Eurocrypt 2009).
- Batch decryption in elliptic curve cryptosystems

Cryptanalysis

- Pollard rho (elliptic curve discrete logarithm problem)
- Integer factorization (elliptic curve factorization method)

Special Primes

Faster reduction exploiting the structure of the special prime.

By US National Institute of Standards

Five recommended primes in the FIPS 186-3 (Digital Signature Standard)

$$
\begin{aligned}
& P_{192}=2^{192}-2^{64}-1 \\
& P_{224}=2^{224}-2^{96}+1 \\
& P_{256}=2^{256}-2^{224}+2^{192}+2^{96}-1 \\
& P_{384}=2^{384}-2^{128}-2^{96}+2^{32}-1 \\
& P_{521}=2^{521}-1
\end{aligned}
$$

Prime used in Curve25519

Proposed by Bernstein at PKC 2006

$$
P_{255}=2^{255}-19
$$

Example: $P_{192}=2^{192}-2^{64}-1$

$$
\begin{gathered}
0 \leq x<P_{192}^{2}, \quad 0 \leq x_{H}, x_{L}<2^{192}, \quad x=x_{H} \cdot 2^{192}+x_{L} \\
x \equiv x_{L}+x_{H} \cdot 2^{64}+x_{H} \bmod P_{192}
\end{gathered}
$$

Example: $P_{192}=2^{192}-2^{64}-1$

$$
\begin{gathered}
0 \leq x<P_{192}^{2}, \quad 0 \leq x_{H}, x_{L}<2^{192}, \quad x=x_{H} \cdot 2^{192}+x_{L} \\
x \equiv x_{L}+x_{H} \cdot 2^{64}+x_{H} \bmod P_{192} \\
x_{H} \cdot 2^{64}<2^{256} \\
x_{H} \cdot 2^{64} \equiv x_{H} \cdot 2^{64} \bmod 2^{192}+\left\lfloor\frac{x_{H} \cdot \cdot^{64}}{2^{192}}\right\rfloor \cdot 2^{64}+\left\lfloor\frac{x_{H} \cdot 2^{64}}{2^{192}}\right\rfloor \bmod P_{192}
\end{gathered}
$$

Example: $P_{192}=2^{192}-2^{64}-1$

$$
\begin{gathered}
0 \leq x<P_{192}^{2}, \quad 0 \leq x_{H}, x_{L}<2^{192}, \quad x=x_{H} \cdot 2^{192}+x_{L} \\
x \equiv x_{L}+x_{H} \cdot 2^{64}+x_{H} \bmod P_{192} \\
x_{H} \cdot 2^{64}<2^{256} \\
x_{H} \cdot 2^{64} \equiv x_{H} \cdot 2^{64} \bmod 2^{192}+\left\lfloor\frac{x_{H} \cdot 2^{64}}{2^{192}}\right\rfloor \cdot 2^{64}+\left\lfloor\frac{x_{H} \cdot 2^{64}}{2^{192}}\right\rfloor \bmod P_{192} \\
s_{1}=\left(c_{5}, c_{4}, c_{3}, c_{2}, c_{1}, c_{0}\right), \quad s_{2}=\left(c_{11}, c_{10}, c_{9}, c_{8}, c_{7}, c_{6}\right) \\
s_{3}=\left(c_{9}, c_{8}, c_{7}, c_{6}, 0,0\right), \quad s_{4}=\left(0,0, c_{11}, c_{10}, 0,0\right) \\
s_{5}=\left(0,0,0,0, c_{11}, c_{10}\right) \quad \text { Return } s_{1}+s_{2}+s_{3}+s_{4}+s_{5}
\end{gathered}
$$

Example: $P_{192}=2^{192}-2^{64}-1$

$$
\begin{aligned}
& 0 \leq x<P_{192}^{2}, \quad 0 \leq x_{H}, x_{L}<2^{192}, \quad x=x_{H} \cdot 2^{192}+x_{L} \\
& x \equiv x_{L}+x_{H} \cdot 2^{64}+x_{H} \bmod P_{192} \\
& x_{H} \cdot 2^{64}<2^{256} \\
& x_{H} \cdot 2^{64} \equiv x_{H} \cdot 2^{64} \bmod 2^{192}+\left\lfloor\frac{x_{H} \cdot 2^{64}}{2^{192}}\right\rfloor \cdot 2^{64}+\left\lfloor\frac{x_{H} \cdot 2^{64}}{2^{192}}\right\rfloor \bmod P_{192} \\
& s_{1}=\left(c_{5}, c_{4}, c_{3}, c_{2}, c_{1}, c_{0}\right), \quad s_{2}=\left(0,0, c_{7}, c_{6}, c_{7}, c_{6}\right) \text {, } \\
& s_{3}=\left(c_{9}, c_{8}, c_{9}, c_{8}, 0,0\right), \quad s_{4}=\left(c_{11}, c_{10}, c_{11}, c_{10}, c_{11}, c_{10}\right) \\
& \text { Return } s_{1}+s_{2}+s_{3}+s_{4}
\end{aligned}
$$

Solinas, technical report 1999
Note: this reduces to [0, 4 • P_{192}]

Multiplication algorithms

Generic Moduli

Montgomery multiplication (with final subtraction)

Special Moduli

Multiplication + special reduction

Size of the modulus: 192-521 bit
Multiplication method: schoolbook

Investigate other methods (such as Karatsuba) is left as future work.

The Cell Broadband Engine

Cell architecture in the PlayStation 3 (@ 3.2 GHz):

- Broadly available (24.6 million)
- Relatively cheap (US\$ 300)

The Cell contains

- eight "Synergistic Processing Elements" (SPEs) six available to the user in the PS3
- one "Power Processor Element" (PPE)
- the Element Interconnect Bus (EIB) a specialized high-bandwidth circular data bus

Cell architecture, the SPEs

The SPEs contain

- a Synergistic Processing Unit (SPU)
- Access to 128 registers of 128 -bit
- SIMD operations
- Dual pipeline (odd and even)
- Rich instruction set
- In-order processor
- 256 KB of fast local memory (Local Store)
- Memory Flow Controller (MFC)

Programming Challenges

- Memory
- The executable and all data should fit in the LS
- Or perform manual DMA requests to the main memory (max. 214 MB)
- Branching
- No "smart" dynamic branch prediction
- Instead "prepare-to-branch" instructions to redirect instruction prefetch to branch targets
- Instruction set limitations
- $16 \times 16 \rightarrow 32$ bit multipliers (4-SIMD)
- Dual pipeline
- One odd and one even instruction can be dispatched per clock cycle.

Modular Multiplication on the Cell I

Four ($16 \cdot m$)-bit integers A, B, C, D represented in m vectors.

$$
X=\sum_{i=0}^{m-1} x_{i} \cdot 2^{16 \cdot i}
$$

128-bit wide vector

either the lower or higher 16 -bit of the 32 -bit word

Modular Multiplication on the Cell II

Implementation

- use the multiply-and-add instruction,

$$
\text { - if } 0 \leq a, b, c, d<2^{16} \text {, then } a \cdot b+c+d<2^{32} \text {. }
$$

- try to fill both the odd and even pipelines,
- are branch-free.
- Do not fully reduce modulo (m-bits) P,
- Montgomery and special reduction $\left[0,2^{m}\right\rangle$,
- These numbers can be used as input again,
- Reduce to $[0, P\rangle$ at the cost of a single comparison + subtraction.

Modular Multiplication on the Cell III

Special reduction $\rightarrow[0, t \cdot P\rangle \quad(t \in \mathbb{Z}$ and small $)$

How to reduce to $\left[0,2^{m}\right\rangle$?

- Apply special reduction again
- Repeated subtraction (t times)

For a constant modulus m-bit P
Select the four values to subtract simultaneously using select and cmpgt instructions and a look-up table.

Modular Multiplication on the Cell IV

For the special primes this can be done even faster.

t	$t \cdot P_{224}=t \cdot\left(2^{224}-2^{96}+1\right)=\left\{c_{7}, \ldots, c_{0}\right\}$							
	c_{7}	c_{6}	c_{5}	c_{4}	c_{3}	c_{2}	c_{1}	c_{0}
0	0	0	0	0	0	0	0	0
1	0	$2^{32}-1$	$2^{32}-1$	$2^{32}-1$	$2^{32}-1$	0	0	1
2	1	$2^{32}-1$	$2^{32}-1$	$2^{32}-1$	$2^{32}-2$	0	0	2
3	2	$2^{32}-1$	$2^{32}-1$	$2^{32}-1$	$2^{32}-3$	0	0	3
4	3	$2^{32}-1$	$2^{32}-1$	$2^{32}-1$	$2^{32}-4$	0	0	4

- $c_{0}=t, c_{1}=c_{2}=0$ and $c_{3}=$ (unsigned int) $(0-t)$.
- If $t>0$ then $c_{4}=c_{5}=c_{6}=2^{32}-1$ else $c_{4}=c_{5}=c_{6}=0$.
- Use a single select.

Modular Multiplication on the Cell V

$$
P_{255}=2^{255}-19
$$

Original approach

Proposed by Bernstein and implemented on the SPE by Costigan and Schwabe (Africacrypt 2009):
Here $x \in \mathbb{F}_{2^{255}-19}$ is represented as $x=\sum_{i=0}^{19} x_{i} 2^{\lceil 12.75 i\rceil}$.

Redundant representation

- Following ideas from Bos, Kaihara and Montgomery (SHARCS 2009),
- Calculate modulo $2 \cdot P_{255}=2^{256}-38=\sum_{i=0}^{15} x_{i} 2^{16}$,
- Reduce to $\left[0,2^{256}\right\rangle$.

Performance Results

Modular Multiplication Performance Results

$$
\frac{\text { Montgomery multiplication }}{\text { multiplication }+ \text { fast reduction }} \approx 1.4-2.5
$$

Comparison Special Moduli

Number of cycles for what?

- Measurements over millions of multi-stream modular multiplications,
- Cycles for a single modular multiplication,
- include benchmark overhead, function call, loading (storing) the input (output), converting from radix-2 2^{32} to radix- 2^{16}.

Comparison Special Moduli

Number of cycles for what?

- Measurements over millions of multi-stream modular multiplications,
- Cycles for a single modular multiplication,
- include benchmark overhead, function call, loading (storing) the input (output), converting from radix- 2^{32} to radix- 2^{16}.

Special prime P_{255}

- Costigan and Schwabe (Africacrypt 2009), 255 bit.
- single-stream: 444 cycles ($144 \mathrm{mul}, 244$ reduction, 56 overhead).
- multi-stream: 168 cycles.
- no function call, loading and storing, "perfectly" scheduled (filled both pipelines)
- this work: 180 cycles $(<168+56)$,
- both approaches are comparable in terms of speed (on the Cell).

Comparison Generic Moduli

Generic 195-bit moduli

- Bernstein et al. (SHARCS 2009), multi-stream, 189 cycles,
- This work: multi-stream, 159 cycles for 192-bit generic moduli,
- Scaling: $\left(\frac{195}{192}\right)^{2} \cdot 159=164$ cycles.

Generic moduli

Bitsize	\#cycles		
	New	MPM	uMPM
192	159	1,188	877
224	237	1,188	877
256	300	1,188	877
384	719	2,092	1,610
512	1,560	3,275	2,700

Conclusions

- We presented SIMD algorithms for Montgomery and schoolbook multiplication and fast reduction.
- Implementations are optimized for the Cell architecture.
- Implementation results for moduli of size 192 to 521 bits show that special primes are 1.4 to 2.5 times faster compared to generic primes.

Future work

- Try Karatsuba multiplication
- Further optimize Montgomery multiplication (almost finished)

