Optimizing linear maps modulo 2
(i.e.: fast xor sequences
for bitsliced software)
D. J. Bernstein

University of Illinois at Chicago
NSF ITR-0716498

Example: size-4 poly Karatsuba. Start with size 2:

$$
\begin{aligned}
& F=F_{0}+F_{1} x, G=G_{0}+G_{1} x \\
& H_{0}=F_{0} G_{0}, H_{2}=F_{1} G_{1} \\
& H_{1}=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-H_{0}-H_{2} \\
& \Rightarrow F G=H_{0}+H_{1} x+H_{2} x^{2}
\end{aligned}
$$

Substitute $x=t^{2}$ etc.:

$$
\begin{aligned}
F= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3} \\
G= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3} \\
H_{0}= & \left(f_{0}+f_{1} t\right)\left(g_{0}+g_{1} t\right) \\
H_{2}= & \left(f_{2}+f_{3} t\right)\left(g_{2}+g_{3} t\right) \\
H_{1}= & \left(f_{0}+f_{2}+\left(f_{1}+f_{3}\right) t\right) \\
& \left(g_{0}+g_{2}+\left(g_{1}+g_{3}\right) t\right) \\
& \quad-H_{0}-H_{2} \\
\Rightarrow & F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}
\end{aligned}
$$

zing linear maps modulo 2
st xor sequences
liced software)
ernstein
sity of Illinois at Chicago
-R-0716498

Example: size-4 poly Karatsuba.
Start with size 2:
$F=F_{0}+F_{1} x, G=G_{0}+G_{1} x$,
$H_{0}=F_{0} G_{0}, H_{2}=F_{1} G_{1}$,
$H_{1}=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-H_{0}-H_{2}$,
$\Rightarrow F G=H_{0}+H_{1} x+H_{2} x^{2}$.
Substitute $x=t^{2}$ etc.:
$F=f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3}$,
$G=f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3}$,
$H_{0}=\left(f_{0}+f_{1} t\right)\left(g_{0}+g_{1} t\right)$,
$H_{2}=\left(f_{2}+f_{3} t\right)\left(g_{2}+g_{3} t\right)$,
$H_{1}=\left(f_{0}+f_{2}+\left(f_{1}+f_{3}\right) t\right)$.
$\left(g_{0}+g_{2}+\left(g_{1}+g_{3}\right) t\right)$
$-H_{0}-H_{2}$
$\Rightarrow F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}$.

Initial
$f_{0}+f_{2}$
algebra
Three $H_{0}=\gamma$ $H_{2}=$ $\mathrm{H}_{0}+$

Final li $H_{1}=$
algebra
$F G=$ algebra
maps modulo 2

uences

vare)
ois at Chicago

Example: size-4 poly Karatsuba. Start with size 2:

$$
\begin{aligned}
& F=F_{0}+F_{1} x, G=G_{0}+G_{1} x, \\
& H_{0}=F_{0} G_{0}, H_{2}=F_{1} G_{1}, \\
& H_{1}=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-H_{0}-H_{2}, \\
& \Rightarrow F G=H_{0}+H_{1} x+H_{2} x^{2} .
\end{aligned}
$$

Substitute $x=t^{2}$ etc.:

$$
\begin{aligned}
F= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3} \\
G= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3} \\
H_{0}= & \left(f_{0}+f_{1} t\right)\left(g_{0}+g_{1} t\right) \\
H_{2}= & \left(f_{2}+f_{3} t\right)\left(g_{2}+g_{3} t\right) \\
H_{1}= & \left(f_{0}+f_{2}+\left(f_{1}+f_{3}\right) t\right) \\
& \left(g_{0}+g_{2}+\left(g_{1}+g_{3}\right) t\right) \\
& \quad-H_{0}-H_{2} \\
\Rightarrow & F G=H_{0}+H_{1} t^{2}+H_{2} t^{4} .
\end{aligned}
$$

Initial linear com $f_{0}+f_{2}, f_{1}+f_{3}$, algebraic comple

Three size-2 mul
$H_{0}=p_{0}+p_{1} t+$
$H_{2}=q_{0}+q_{1} t+$
$H_{0}+H_{1}+H_{2}=$
Final linear recor

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-\right. \\
& \left(r_{1}-p_{1}-\right. \\
& \left(r_{2}-p_{2}-\right.
\end{aligned}
$$

algebraic comple $F G=H_{0}+H_{1} t$ algebraic comple
dulo 2
Example: size-4 poly Karatsuba.
Start with size 2:

$$
\begin{aligned}
& F=F_{0}+F_{1} x, G=G_{0}+G_{1} x \\
& H_{0}=F_{0} G_{0}, H_{2}=F_{1} G_{1} \\
& H_{1}=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-H_{0}-H_{2} \\
& \Rightarrow F G=H_{0}+H_{1} x+H_{2} x^{2}
\end{aligned}
$$

Substitute $x=t^{2}$ etc.:

$$
\begin{aligned}
F= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3}, \\
G= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3}, \\
H_{0}= & \left(f_{0}+f_{1} t\right)\left(g_{0}+g_{1} t\right), \\
H_{2}= & \left(f_{2}+f_{3} t\right)\left(g_{2}+g_{3} t\right), \\
H_{1}= & \left(f_{0}+f_{2}+\left(f_{1}+f_{3}\right) t\right) \\
& \left(g_{0}+g_{2}+\left(g_{1}+g_{3}\right) t\right) \\
& \quad-H_{0}-H_{2} \\
\Rightarrow & F G=H_{0}+H_{1} t^{2}+H_{2} t^{4} .
\end{aligned}
$$

Initial linear computation: $f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g$ algebraic complexity 4.

Three size-2 mults produci

$$
\begin{aligned}
& H_{0}=p_{0}+p_{1} t+p_{2} t^{2} \\
& H_{2}=q_{0}+q_{1} t+q_{2} t^{2} \\
& H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t
\end{aligned}
$$

Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2}
\end{aligned}
$$

algebraic complexity 6 ;
$F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}$, algebraic complexity 2 .

Example: size-4 poly Karatsuba.
Start with size 2:

$$
\begin{aligned}
& F=F_{0}+F_{1} x, G=G_{0}+G_{1} x \\
& H_{0}=F_{0} G_{0}, H_{2}=F_{1} G_{1} \\
& H_{1}=\left(F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-H_{0}-H_{2} \\
& \Rightarrow F G=H_{0}+H_{1} x+H_{2} x^{2}
\end{aligned}
$$

Substitute $x=t^{2}$ etc.:

$$
\begin{aligned}
F= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3} \\
G= & f_{0}+f_{1} t+f_{2} t^{2}+f_{3} t^{3} \\
H_{0}= & \left(f_{0}+f_{1} t\right)\left(g_{0}+g_{1} t\right) \\
H_{2}= & \left(f_{2}+f_{3} t\right)\left(g_{2}+g_{3} t\right) \\
H_{1}= & \left(f_{0}+f_{2}+\left(f_{1}+f_{3}\right) t\right) \\
\quad & \left(g_{0}+g_{2}+\left(g_{1}+g_{3}\right) t\right) \\
& \quad-H_{0}-H_{2} \\
\Rightarrow & F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}
\end{aligned}
$$

$f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$ algebraic complexity 4.

Three size-2 mults producing
$H_{0}=p_{0}+p_{1} t+p_{2} t^{2}$;
$H_{2}=q_{0}+q_{1} t+q_{2} t^{2}$;
$H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}$.
Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2},
\end{aligned}
$$

algebraic complexity 6;

$$
F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}
$$

algebraic complexity 2.
le: size-4 poly Karatsuba. jith size 2:

$$
\begin{aligned}
& +F_{1} x, G=G_{0}+G_{1} x \\
& =_{0} G_{0}, H_{2}=F_{1} G_{1} \\
& \left.F_{0}+F_{1}\right)\left(G_{0}+G_{1}\right)-H_{0}-H_{2} \\
& =H_{0}+H_{1} x+H_{2} x^{2}
\end{aligned}
$$

$$
\text { ute } x=t^{2} \text { etc.: }
$$

$$
+f_{1} t+f_{2} t^{2}+f_{3} t^{3}
$$

$$
+f_{1} t+f_{2} t^{2}+f_{3} t^{3}
$$

$$
\left.f_{0}+f_{1} t\right)\left(g_{0}+g_{1} t\right)
$$

$$
\left.f_{2}+f_{3} t\right)\left(g_{2}+g_{3} t\right)
$$

$$
\left.f_{0}+f_{2}+\left(f_{1}+f_{3}\right) t\right)
$$

$$
-H_{0}-H_{2}
$$

$$
=H_{0}+H_{1} t^{2}+H_{2} t^{4} .
$$

Initial linear computation:
$f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$ algebraic complexity 4.

Three size-2 mults producing
$H_{0}=p_{0}+p_{1} t+p_{2} t^{2}$;
$H_{2}=q_{0}+q_{1} t+q_{2} t^{2}$;
$H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}$.
Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2},
\end{aligned}
$$

algebraic complexity 6 ;
$F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}$, algebraic complexity 2.

Let's Ic at the $h_{0}=p$ $h_{1}=p$ $h_{2}=p$ $h_{3}=$ $h_{4}=$ $h_{5}=q$ $h_{6}=q$

$$
\left.g_{0}+g_{2}+\left(g_{1}+g_{3}\right) t\right)
$$

poly Karatsuba.

$$
=G_{0}+G_{1} x
$$

$=F_{1} G_{1}$,
$\left.\mathrm{F}_{0}+G_{1}\right)-H_{0}-H_{2}$,
$H_{1} x+H_{2} x^{2}$.
etc.:
$f_{2} t^{2}+f_{3} t^{3}$,
$f_{2} t^{2}+f_{3} t^{3}$,
$\left.g_{0}+g_{1} t\right)$,
$\left.g_{2}+g_{3} t\right)$,
$\left.\left(f_{1}+f_{3}\right) t\right)$.
$\left.\left(g_{1}+g_{3}\right) t\right)$
$H_{1} t^{2}+H_{2} t^{4}$.

Initial linear computation:
$f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$
algebraic complexity 4.
Three size-2 mults producing

$$
\begin{aligned}
& H_{0}=p_{0}+p_{1} t+p_{2} t^{2} \\
& H_{2}=q_{0}+q_{1} t+q_{2} t^{2} \\
& H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}
\end{aligned}
$$

Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2}
\end{aligned}
$$

algebraic complexity 6 ;

$$
F G=H_{0}+H_{1} t^{2}+H_{2} t^{4},
$$

algebraic complexity 2.

Let's look more at the reconstruc
$h_{0}=p_{0} ;$
$h_{1}=p_{1}$;
$h_{2}=p_{2}+\left(r_{0}-\right.$
$h_{3}=\left(r_{1}-p_{1}-\right.$
$h_{4}=\left(r_{2}-p_{2}-\right.$
$h_{5}=q_{1} ;$
$h_{6}=q_{2}$.

```
tsuba.
```

$G_{1} x$,
$\mathrm{H}_{0}-\mathrm{H}_{2}$,
Three size-2 mults producing

$$
\begin{aligned}
& H_{0}=p_{0}+p_{1} t+p_{2} t^{2} \\
& H_{2}=q_{0}+q_{1} t+q_{2} t^{2} \\
& H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}
\end{aligned}
$$

Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2}
\end{aligned}
$$

algebraic complexity 6 ;
$F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}$,
algebraic complexity 2.

Let's look more closely at the reconstruction:

$$
\begin{aligned}
& h_{0}=p_{0} ; \\
& h_{1}=p_{1} ; \\
& h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right) ; \\
& h_{3}=\left(r_{1}-p_{1}-q_{1}\right) ; \\
& h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0} ; \\
& h_{5}=q_{1} ; \\
& h_{6}=q_{2} .
\end{aligned}
$$

Initial linear computation:
$f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$ algebraic complexity 4.

Three size-2 mults producing
$H_{0}=p_{0}+p_{1} t+p_{2} t^{2}$;
$H_{2}=q_{0}+q_{1} t+q_{2} t^{2}$;
$H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}$.
Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2},
\end{aligned}
$$

algebraic complexity 6 ;

$$
F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}
$$

algebraic complexity 2 .

Let's look more closely at the reconstruction:

$$
\begin{aligned}
& h_{0}=p_{0} ; \\
& h_{1}=p_{1} ; \\
& h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right) ; \\
& h_{3}=\left(r_{1}-p_{1}-q_{1}\right) ; \\
& h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0} ; \\
& h_{5}=q_{1} ; \\
& h_{6}=q_{2} .
\end{aligned}
$$

Initial linear computation:
$f_{0}+f_{2}, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$ algebraic complexity 4.

Three size-2 mults producing
$H_{0}=p_{0}+p_{1} t+p_{2} t^{2}$;
$H_{2}=q_{0}+q_{1} t+q_{2} t^{2}$;
$H_{0}+H_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}$.
Final linear reconstruction:

$$
\begin{aligned}
H_{1}= & \left(r_{0}-p_{0}-q_{0}\right)+ \\
& \left(r_{1}-p_{1}-q_{1}\right) t+ \\
& \left(r_{2}-p_{2}-q_{2}\right) t^{2},
\end{aligned}
$$

algebraic complexity 6 ;
$F G=H_{0}+H_{1} t^{2}+H_{2} t^{4}$,
algebraic complexity 2 .

Let's look more closely at the reconstruction:
$h_{0}=p_{0} ;$
$h_{1}=p_{1}$;
$h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right) ;$
$h_{3}=\left(r_{1}-p_{1}-q_{1}\right)$;
$h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0} ;$
$h_{5}=q_{1}$;
$h_{6}=q_{2}$.
Can observe manually that $p_{2}-q_{0}$ is repeated.
See, e.g., 2000 Bernstein.
inear computation:
$2, f_{1}+f_{3}, g_{0}+g_{2}, g_{1}+g_{3} ;$
ic complexity 4.
size-2 mults producing

$$
\begin{aligned}
& 0_{0}+p_{1} t+p_{2} t^{2} \\
& 0+q_{1} t+q_{2} t^{2} \\
& t_{1}+H_{2}=r_{0}+r_{1} t+r_{2} t^{2}
\end{aligned}
$$

near reconstruction:
$\left.r_{0}-p_{0}-q_{0}\right)+$
$\left.r_{1}-p_{1}-q_{1}\right) t+$
$\left.r_{2}-p_{2}-q_{2}\right) t^{2}$
ic complexity 6 ;
$H_{0}+H_{1} t^{2}+H_{2} t^{4}$,
ic complexity 2 .

Let's look more closely at the reconstruction:

$$
\begin{aligned}
& h_{0}=p_{0} ; \\
& h_{1}=p_{1} ; \\
& h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right) ; \\
& h_{3}=\left(r_{1}-p_{1}-q_{1}\right) ; \\
& h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0} ; \\
& h_{5}=q_{1} ; \\
& h_{6}=q_{2} .
\end{aligned}
$$

Can observe manually that $p_{2}-q_{0}$ is repeated.
See, e.g., 2000 Bernstein.

Some will au find th

Consid
CSE al

- find with
- comp
- simp
- repea

This al automa inside
putation:
$g_{0}+g_{2}, g_{1}+g_{3} ;$
xity 4.
ts producing
$p_{2} t^{2}$;
$q_{2} t^{2}$;
$r_{0}+r_{1} t+r_{2} t^{2}$.
struction:
$\left.q_{0}\right)+$
$\left.q_{1}\right) t+$
$\left.q_{2}\right) t^{2}$
xity 6 ;
$+H_{2} t^{4}$,
xity 2.

Let's look more closely at the reconstruction:

$$
\begin{aligned}
& h_{0}=p_{0} \\
& h_{1}=p_{1} \\
& h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right) ; \\
& h_{3}=\left(r_{1}-p_{1}-q_{1}\right) ; \\
& h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0} ; \\
& h_{5}=q_{1} ; \\
& h_{6}=q_{2} .
\end{aligned}
$$

Can observe manually that $p_{2}-q_{0}$ is repeated.
See, e.g., 2000 Bernstein.

Some addition-ch will automaticall find this speedup

Consider, e.g., g CSE algorithm fr

- find input pair with most pop
- compute $i_{0} \oplus$
- simplify using
- repeat.

This algorithm w automatically fot inside Karatsuba

Let's look more closely at the reconstruction:

$$
\begin{aligned}
& h_{0}=p_{0} ; \\
& h_{1}=p_{1} ; \\
& h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right) ; \\
& h_{3}=\left(r_{1}-p_{1}-q_{1}\right) ; \\
& h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0} ; \\
& h_{5}=q_{1} ; \\
& h_{6}=q_{2} .
\end{aligned}
$$

Can observe manually that $p_{2}-q_{0}$ is repeated.
See, e.g., 2000 Bernstein.

Some addition-chain algori will automatically find this speedup.

Consider, e.g., greedy addi CSE algorithm from 1997

- find input pair i_{0}, i_{1}
with most popular $i_{0} \oplus i$
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm would have automatically found $p_{2} \oplus q$ inside Karatsuba reconstru

Let's look more closely at the reconstruction:
$h_{0}=p_{0} ;$
$h_{1}=p_{1}$;
$h_{2}=p_{2}+\left(r_{0}-p_{0}-q_{0}\right)$;
$h_{3}=\left(r_{1}-p_{1}-q_{1}\right)$;
$h_{4}=\left(r_{2}-p_{2}-q_{2}\right)+q_{0}$;
$h_{5}=q_{1}$;
$h_{6}=q_{2}$.
Can observe manually that $p_{2}-q_{0}$ is repeated.
See, e.g., 2000 Bernstein.

Some addition-chain algorithms will automatically find this speedup.

Consider, e.g., greedy additive CSE algorithm from 1997 Paar:

- find input pair i_{0}, i_{1} with most popular $i_{0} \oplus i_{1}$;
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm would have automatically found $p_{2} \oplus q_{0}$ inside Karatsuba reconstruction.
ook more closely reconstruction:

$$
2+\left(r_{0}-p_{0}-q_{0}\right)
$$

$$
\left.r_{1}-p_{1}-q_{1}\right)
$$

$$
\left.r_{2}-p_{2}-q_{2}\right)+q_{0}
$$

serve manually

- q_{0} is repeated.
g., 2000 Bernstein.

Some addition-chain algorithms will automatically find this speedup.

Consider, e.g., greedy additive CSE algorithm from 1997 Paar:

- find input pair i_{0}, i_{1} with most popular $i_{0} \oplus i_{1}$;
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm would have automatically found $p_{2} \oplus q_{0}$ inside Karatsuba reconstruction.

Today'
Start
for the
$h_{0}: 10$
$h_{1}: 01$
$h_{2}: 10$
$h_{3}: 01$
$h_{4}: 00$
$h_{5}: 00$
$h_{6}: 00$
Each r
p_{0}, p_{1},
=losely
ually epeated.
ernstein.

Some addition-chain algorithms will automatically find this speedup.

Consider, e.g., greedy additive CSE algorithm from 1997 Paar:

- find input pair i_{0}, i_{1} with most popular $i_{0} \oplus i_{1}$;
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm would have automatically found $p_{2} \oplus q_{0}$ inside Karatsuba reconstruction.

Today's algorithr Start with the m for the desired lir
$h_{0}: 100000000$
$h_{1}: 010000000$
$h_{2}: 101100100$
$h_{3}: 010010010$
$h_{4}: 001101001$
$h_{5}: 000010000$
$h_{6}: 000001000$
Each row has co
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}$,

Some addition-chain algorithms will automatically find this speedup.

Consider, e.g., greedy additive CSE algorithm from 1997 Paar:

- find input pair i_{0}, i_{1}
with most popular $i_{0} \oplus i_{1}$;
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm would have automatically found $p_{2} \oplus q_{0}$ inside Karatsuba reconstruction.

Today's algorithm: "xor la Start with the matrix mod for the desired linear map.
$h_{0}: 100000000$
h_{1} : 010000000
$h_{2}: 101100100$
$h_{3}: 010010010$
$h_{4}: 001101001$
h_{5} : 000010000
$h_{6}: 000001000$
Each row has coefficients $p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}$,

Some addition-chain algorithms will automatically find this speedup.

Consider, e.g., greedy additive CSE algorithm from 1997 Paar:

- find input pair i_{0}, i_{1}
with most popular $i_{0} \oplus i_{1}$;
- compute $i_{0} \oplus i_{1}$;
- simplify using $i_{0} \oplus i_{1}$;
- repeat.

This algorithm would have automatically found $p_{2} \oplus q_{0}$ inside Karatsuba reconstruction.

Today's algorithm: "xor largest." Start with the matrix mod 2 for the desired linear map.
$h_{0}: 100000000$
$h_{1}: 010000000$
$h_{2}: 101100100$
$h_{3}: 010010010$
$h_{4}: 001101001$
$h_{5}: 000010000$
h_{6} : 000001000
Each row has coefficients of
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.
ddition-chain algorithms tomatically
is speedup.
er, e.g., greedy additive gorithm from 1997 Paar:
nput pair i_{0}, i_{1}
most popular $i_{0} \oplus i_{1}$;
ute $i_{0} \oplus i_{1}$;
lify using $i_{0} \oplus i_{1}$;
t.
gorithm would have tically found $p_{2} \oplus q_{0}$ Karatsuba reconstruction.

Today's algorithm: "xor largest."
Start with the matrix mod 2 for the desired linear map.
$h_{0}: 100000000$
h_{1} : 010000000
$h_{2}: 101100100$
$h_{3}: 010010010$
$h_{4}: 001101001$
$h_{5}: 000010000$
$h_{6}: 000001000$
Each row has coefficients of
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.

Replac by its second

100000
010000
001100
010010
001101 000010 000001

Recurs and fin
ain algorithms
eedy additive om 1997 Paar:
i_{0}, i_{1}
ular $i_{0} \oplus i_{1}$;
1
$i_{0} \oplus i_{1} ;$
ould have
nd $p_{2} \oplus q_{0}$
reconstruction.

Today's algorithm: "xor largest."
Start with the matrix mod 2 for the desired linear map.
$h_{0}: 100000000$
h_{1} : 010000000
$h_{2}: 101100100$
$h_{3}: 010010010$
$h_{4}: 001101001$
$h_{5}: 000010000$
h_{6} : 000001000
Each row has coefficients of
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.

Replace largest r by its xor with second-largest ro

100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000 000001000

Recursively comp and finish with o

thms	Today's algorithm: "xor largest." Start with the matrix mod 2	Replace largest row by its xor with second-largest row.
for the desired linear map.		
tive	$h_{0}: 100000000$	100000000
Paar:	$h_{1}: 010000000$	010000000
	$h_{2}: 101100100$	$001100100 \leftarrow$
	$h_{3}: 010010010$	010010010
	$h_{4}: 001101001$	001101001
	$h_{5}: 000010000$	000010000
	$h_{6}: 000001000$	000001000
	Each row has coefficients of	Recursively compute this,
ction.	$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.	and finish with one xor.

thms
$h_{0}: 100000000$
$h_{1}: 010000000$
$h_{2}: 101100100$
$h_{3}: 010010010$
h_{4} : 001101001
h_{5} : 000010000
$h_{6}: 000001000$
Each row has coefficients of
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.

Replace largest row by its xor with
second-largest row.
100000000
010000000
$001100100 \leftarrow$
010010010
001101001 000010000 000001000

Recursively compute this, and finish with one xor.

Today's algorithm: "xor largest." Start with the matrix mod 2 for the desired linear map.
$h_{0}: 100000000$
h_{1} : 010000000
$h_{2}: 101100100$
$h_{3}: 010010010$
$h_{4}: 001101001$
$h_{5}: 000010000$
$h_{6}: 000001000$
Each row has coefficients of
$p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.

Replace largest row
by its xor with
second-largest row.
100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor.
s algorithm: "xor largest."
jith the matrix $\bmod 2$ desired linear map.

0000000
0000000
1100100
0010010
1101001
0010000
0001000
ow has coefficients of
$p_{2}, q_{0}, q_{1}, q_{2}, r_{0}, r_{1}, r_{2}$.

Replace largest row
by its xor with
second-largest row.
100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor.

If two don't change by clea 000000 010000 001100 010010 001101 000010 000001

Recurs and fin (often.
n: "xor largest." atrix $\bmod 2$
near map.
efficients of
$q_{2}, r_{0}, r_{1}, r_{2}$.

Replace largest row
by its xor with
second-largest row.
100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor.

If two largest rov don't have same change largest ro by clearing first
$000000000 \leftarrow$ 010000000

001100100
010010010
001101001
000010000
000001000
Recursively comp and finish with o (often just a cop
rgest."
2

Replace largest row by its xor with second-largest row.

100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$ 010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Replace largest row
by its xor with
second-largest row.
100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).
e largest row
kor with -largest row.

1000
000
$100 \leftarrow$
1010
001
1000
000
ively compute this, ish with one xor.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Contin
100000 010000
101100
010010
001101
000010
000001
(startir

If two largest rows
don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the
100000000
010000000
101100100
010010010
001101001
000010000
000001000
(starting matrix

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
100000000
010000000 101100100 010010010 001101001 000010000 000001000
(starting matrix again)

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
100000000
010000000
101100100
010010010
001101001
000010000
000001000
(starting matrix again)

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
100000000
010000000
$001100100 \leftarrow$
010010010
001101001
000010000
000001000
plus 1 xor.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
$000000000 \leftarrow$ 010000000
001100100
010010010
001101001
000010000
000001000
plus 1 xor, 1 input load.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
010000000
001100100
$000010010 \leftarrow$
001101001
000010000
000001000
plus 2 xors, 1 input load.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
$000000000 \leftarrow$
001100100
000010010
001101001
000010000
000001000
plus 2 xors, 2 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
001100100
000010010
$000001101 \leftarrow$
000010000
000001000
plus 3 xors, 2 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
$000100100 \leftarrow$
000010010
000001101
000010000
000001000
plus 4 xors, 3 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
$000000100 \leftarrow$
000010010
000001101
000010000
000001000
plus 5 xors, 4 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000100
$000000010 \leftarrow$
000001101
000010000
000001000
plus 6 xors, 4 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000100
000000010
000001101
$000000000 \leftarrow$
000001000
plus 6 xors, 5 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000100
000000010
$000000101 \leftarrow$
000000000
000001000
plus 7 xors, 5 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000 000000000
000000100
000000010
000000101
000000000
$000000000 \leftarrow$
plus 7 xors, 6 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000100
000000010
$000000001 \leftarrow$
000000000
000000000
plus 8 xors, 6 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
$000000000 \leftarrow$
000000010
000000001
000000000
000000000
plus 8 xors, 7 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000000
$000000000 \leftarrow$
000000001
000000000
000000000
plus 8 xors, 8 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.

If two largest rows don't have same first bit, change largest row by clearing first bit.
$000000000 \leftarrow$
010000000
001100100
010010010
001101001
000010000
000001000
Recursively compute this, and finish with one xor (often just a copy).

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"
argest rows
lave same first bit, largest row ring first bit.
$000 \leftarrow$
1000
100
1010
001
1000
000
ively compute this, ish with one xor just a copy).

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Anothe
000100 000010
100101
010010
001001
000000
000000
Same
in a dif
first r '
then p
then q^{\prime}
first bit,
w
it.
Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example
000100000
000010000
100101100
010010010
001001101
000000010
000000001
Same matrix, bu in a different ord first r 's (used on then p 's (used ty then q 's (used tu

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000100000
000010000
100101100
010010010
001001101
000000010
000000001
Same matrix, but inputs in a different order:
first r 's (used once each), then p 's (used twice each),
then q 's (used twice each).

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000100000
000010000
$000101100 \leftarrow$
010010010
001001101
000000010
000000001
plus 1 xor, 1 input load.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000100000
000010000
000101100
$000010010 \leftarrow$
001001101
000000010
000000001
plus 2 xors, 2 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000100000
000010000
000101100
000010010
$000001101 \leftarrow$
000000010
000000001
plus 3 xors, 3 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000100000
000010000
$000001100 \leftarrow$
000010010
000001101
000000010
000000001
plus 4 xors, 3 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
$000000000 \leftarrow$ 000010000
000001100
000010010
000001101
000000010
000000001
plus 4 xors, 4 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000
000010000
000001100
$000000010 \leftarrow$
000001101
000000010
000000001
plus 5 xors, 4 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000
$000000000 \leftarrow$
000001100
000000010
000001101
000000010
000000001
plus 5 xors, 5 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000
000000000
000001100
000000010
$000000001 \leftarrow$
000000010
000000001
plus 6 xors, 5 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000
000000000
$000000100 \leftarrow$
000000010
000000001
000000010
000000001
plus 7 xors, 6 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000
000000000
$000000000 \leftarrow$
000000010
000000001
000000010
000000001
plus 7 xors, 7 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000 000000000
000000000
$000000000 \leftarrow$
000000001
000000010
000000001
plus 7 xors, 7 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000 000000000
000000000
000000000
000000001
$000000000 \leftarrow$
000000001
plus 7 xors, 8 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be
an interesting algorithm?"

Another example:
000000000 000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000001
plus 7 xors, 8 input loads.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be an interesting algorithm?"

Another example:
000000000 000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.

Continue in the same way:
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
000000000
000000000
plus 8 xors, 9 input loads.
"Is this supposed to be an interesting algorithm?"

Another example:
000000000 000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.
Also has other useful features.
ue in the same way:

$$
1000 \leftarrow
$$

000
000
xors, 9 input loads.
supposed to be
resting algorithm?"

Another example:
000000000
000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.
Also has other useful features.

Memor
Algorit
to the
No ten
n inpu
total 2
with 0
Or $n+$
with n
each in
Or n
with n
if platf

same way:

Another example:
000000000
000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.
Also has other useful features.

Memory friendlin Algorithm writes to the output re No temporary st n inputs, n outp total $2 n$ register with 0 loads, 0 s Or $n+1$ registe with n loads, 0 s each input is rea

Or n registers with n loads, 0 if platform has Ic

Another example:
000000000
000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.
Also has other useful features.

Memory friendliness: Algorithm writes only to the output registers. No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores:
each input is read only onc
Or n registers
with n loads, 0 stores,
if platform has load-xor ins

Another example:
000000000
000000000
000000000
000000000
000000000
000000000
$000000000 \leftarrow$
plus 7 xors, 9 input loads.
Algorithm found the speedup.
Also has other useful features.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores:
each input is read only once.
Or n registers
with n loads, 0 stores, if platform has load-xor insn.
r example:
1000
1000
1000
1000
000
000
$000 \leftarrow$
xors, 9 input loads.
hm found the speedup.
as other useful features.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores:
each input is read only once.
Or n registers
with n loads, 0 stores,
if platform has load-xor insn.

Two-o Platfor but wit uses or

Naive
$n+1$ but us

Input p (e.g., 1
somew
somew
Greedy
somew
many

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores:
each input is read only once.
Or n registers
with n loads, 0 stores, if platform has load-xor insn.

Two-operand frie Platform with a but without $a \longleftarrow$ uses only n extra

Naive column sw $n+1$ registers, $?$ but usually many

Input partitionin (e.g., 1956 Lupa somewhat more somewhat more

Greedy additive somewhat fewer many more copie

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores:
each input is read only once.
Or n registers
with n loads, 0 stores,
if platform has load-xor insn.

Two-operand friendliness: Platform with $a \leftarrow a \oplus b$ but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also $n+1$ registers, n loads, but usually many more xor

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copie somewhat more registers.

Greedy additive CSE uses somewhat fewer xors but many more copies, register

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.
n inputs, n outputs:
total $2 n$ registers
with 0 loads, 0 stores.
Or $n+1$ registers
with n loads, 0 stores:
each input is read only once.
Or n registers
with n loads, 0 stores, if platform has load-xor insn.

Two-operand friendliness:
Platform with $a \leftarrow a \oplus b$ but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also uses $n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;
somewhat more registers.
Greedy additive CSE uses
somewhat fewer xors but many more copies, registers.

friendliness:

hm writes only output registers. porary storage.
ts, n outputs:
n registers
loads, 0 stores.
1 registers
loads, 0 stores:
put is read only once.
egisters
loads, 0 stores, orm has load-xor insn.

Two-operand friendliness:
Platform with $a \leftarrow a \oplus b$
but without $a \leftarrow b \oplus c$
uses only n extra copies.
Naive column sweep also uses
$n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;
somewhat more registers.
Greedy additive CSE uses
somewhat fewer xors but many more copies, registers.

For m averag

The xo
$\approx m n$,
n copi
ess:
only isters.
orage.
uts:
tores.
tores:
d only once.
tores,
ad-xor insn.

Two-operand friendliness:
Platform with $a \leftarrow a \oplus b$
but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also uses
$n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies; somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but many more copies, registers.

For m inputs and average $n \times m n$

The xor-largest
$\approx m n / \lg n$ twon copies; m load

Two-operand friendliness: Platform with $a \leftarrow a \oplus b$ but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also uses
$n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;
somewhat more registers.
Greedy additive CSE uses somewhat fewer xors but many more copies, registers.

For m inputs and n outpu average $n \times m$ matrix:

The xor-largest algorithm $\approx m n / \lg n$ two-operand \times n copies; m loads; $n+1$

Two-operand friendliness: Platform with $a \leftarrow a \oplus b$ but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also uses $n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;
somewhat more registers.
Greedy additive CSE uses
somewhat fewer xors but many more copies, registers.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Two-operand friendliness:
Platform with $a \leftarrow a \oplus b$ but without $a \leftarrow b \oplus c$ uses only n extra copies.

Naive column sweep also uses
$n+1$ registers, n loads, but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;
somewhat more registers.
Greedy additive CSE uses
somewhat fewer xors but many more copies, registers.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Pippenger's algorithm uses
$\approx m n / \lg m n$ three-operand xors but seems to need many regs.

Pippenger proved that his algebraic complexity was near optimal for most matrices (at least without mod 2), but didn't consider regs, two-operand complexity, etc.

jerand friendliness:

m with $a \leftarrow a \oplus b$
hout $a \leftarrow b \oplus c$
ly n extra copies.
column sweep also uses registers, n loads, ally many more xors.
artitioning
956 Lupanov) uses
hat more xors, copies;
hat more registers.
additive CSE uses
hat fewer xors but nore copies, registers.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Pippenger's algorithm uses
$\approx m n / \lg m n$ three-operand xors but seems to need many regs.

Pippenger proved that his algebraic complexity was near optimal for most matrices (at least without mod 2), but didn't consider regs, two-operand complexity, etc.

Case st produc

131-bit poly ba
"Rand
On Cel
128 code tc

Output code w fitting
Schwal
≈ 4000
ndliness:
$\leftarrow a \oplus b$ $b \oplus c$ copies.
eep also uses
\imath loads, more xors.
nov) uses
xors, copies;
registers.
CSE uses
xors but
s, registers.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses
$\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Pippenger's algorithm uses
$\approx m n / \lg m n$ three-operand xors but seems to need many regs.

Pippenger proved that his algebraic complexity was near optimal for most matrices (at least without mod 2), but didn't consider regs, two-operand complexity, etc.

Case study of be produced by xor-

131-bit conversio poly basis to nor "Random" 131

On Cell (≤ 1 xor $128-\epsilon$ registers code took ≈ 960

Output of xor-lar code with only 3 fitting into 132 r Schwabe tuned ≈ 4000 cycles.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Pippenger's algorithm uses $\approx m n / \lg m n$ three-operand xors but seems to need many regs.

Pippenger proved that his algebraic complexity was near optimal for most matrices (at least without mod 2), but didn't consider regs, two-operand complexity, etc.

Case study of benefits produced by xor-largest:

131-bit conversion from poly basis to normal basis. "Random" 131×131 mat On Cell (≤ 1 xor per cycle $128-\epsilon$ registers) bitsliced code took ≈ 9600 cycles.

Output of xor-largest: code with only 3380 xors fitting into 132 registers.
Schwabe tuned asm for Ce ≈ 4000 cycles.

For m inputs and n outputs, average $n \times m$ matrix:

The xor-largest algorithm uses $\approx m n / \lg n$ two-operand xors; n copies; m loads; $n+1$ regs.

Pippenger's algorithm uses
$\approx m n / \lg m n$ three-operand xors but seems to need many regs.

Pippenger proved that his algebraic complexity was near optimal for most matrices (at least without mod 2), but didn't consider regs, two-operand complexity, etc.

Case study of benefits produced by xor-largest:

131-bit conversion from poly basis to normal basis.
"Random" 131×131 matrix.
On Cell (≤ 1 xor per cycle, $128-\epsilon$ registers) bitsliced code took ≈ 9600 cycles.

Output of xor-largest: code with only 3380 xors fitting into 132 registers.
Schwabe tuned asm for Cell:
≈ 4000 cycles.
inputs and n outputs, e $n \times m$ matrix: r-largest algorithm uses / $\lg n$ two-operand xors; es; m loads; $n+1$ regs. ger's algorithm uses / $\lg m n$ three-operand xors ms to need many regs.
ger proved that ebraic complexity was timal for most matrices st without $\bmod 2$), In't consider regs, erand complexity, etc.

Case study of benefits produced by xor-largest:

131-bit conversion from poly basis to normal basis.
"Random" 131×131 matrix.
On Cell (≤ 1 xor per cycle, $128-\epsilon$ registers) bitsliced code took ≈ 9600 cycles.

Output of xor-largest: code with only 3380 xors fitting into 132 registers.
Schwabe tuned asm for Cell:
≈ 4000 cycles.

Inspira
000100 000010
100101
010010
001001
000000
000000
Goal:
$300 x$,
n outputs, natrix:

Igorithm uses operand xors;
s; $n+1$ regs.
rithm uses
ree-operand xors
d many regs.
that
plexity was
most matrices
$\bmod 2)$,
er regs,
iplexity, etc.

Case study of benefits produced by xor-largest:

131-bit conversion from poly basis to normal basis. "Random" 131×131 matrix.

On Cell (≤ 1 xor per cycle, $128-\epsilon$ registers) bitsliced code took ≈ 9600 cycles.

Output of xor-largest: code with only 3380 xors fitting into 132 registers. Schwabe tuned asm for Cell: ≈ 4000 cycles.

Inspiration: 1989
$000100000=32$ $000010000=16$ $100101100=30$
$010010010=14$ $001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute
$300 x, 146 x, 77 x$

Case study of benefits produced by xor-largest:

131-bit conversion from poly basis to normal basis. "Random" 131×131 matrix.

On Cell (≤ 1 xor per cycle, $128-\epsilon$ registers) bitsliced code took ≈ 9600 cycles.

Output of xor-largest: code with only 3380 xors fitting into 132 registers.
Schwabe tuned asm for Cell:
≈ 4000 cycles.

Inspiration: 1989 Bos-Cos
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Case study of benefits produced by xor-largest:

131-bit conversion from poly basis to normal basis.
"Random" 131×131 matrix.
On Cell (≤ 1 xor per cycle, $128-\epsilon$ registers) bitsliced code took ≈ 9600 cycles.

Output of xor-largest:
code with only 3380 xors
fitting into 132 registers.
Schwabe tuned asm for Cell:
≈ 4000 cycles.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.
udy of benefits
ed by xor-largest:
conversion from
as to normal basis.
m" 131×131 matrix.
((≤ 1 xor per cycle, ϵ registers) bitsliced ook ≈ 9600 cycles.
: of xor-largest:
ith only 3380 xors
into 132 registers.
se tuned asm for Cell:
cycles.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce
000100 000010 010011 010010 001001 000000 000000

Integer
of 146
nefits
largest:
n from
mal basis.
131 matrix.
per cycle,
) bitsliced
0 cycles.
gest:
380 xors
egisters.
sm for Cell:

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$,
$300 x$, $146 x, 77 x, 2 x, 1 x$.

Reduce largest ro
$000100000=32$
$000010000=16$
$010011010=15$
$010010010=14$
$001001101=77$
$000000010=2$
$000000001=1$
Integer subtracti of 146 from 300.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000100000=32$
$000010000=16$
$010011010=154 \leftarrow$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Integer subtraction of 146 from 300.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000100000=32$
$000010000=16$
$010011010=154$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$

Integer subtraction
of 146 from 300.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
000100000=32
$$

$$
000010000=16
$$

$$
000001000=8 \leftarrow
$$

$$
010010010=146
$$

$$
001001101=77
$$

$$
000000010=2
$$

$$
000000001=1
$$

plus 2 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000100000=32 \\
& 000010000=16 \\
& 000001000=8 \\
& 001000101=69 \\
& 001001101=77 \\
& 000000010=2 \\
& 000000001=1
\end{aligned}
$$

plus 3 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$001000101=69$
$000001000=8 \leftarrow$
$000000010=2$
$000000001=1$
plus 4 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$000100101=37 \leftarrow$
$000001000=8$
$000000010=2$
$000000001=1$
plus 5 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$000000101=5 \leftarrow$
$000001000=8$
$000000010=2$
$000000001=1$
plus 6 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000010000=16 \leftarrow \\
& 000010000=16 \\
& 000001000=8 \\
& 000000101=5 \\
& 000001000=8 \\
& 000000010=2 \\
& 000000001=1
\end{aligned}
$$

plus 7 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000010000=16$
$000001000=8$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 7 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000001000=8 \leftarrow$
$000001000=8$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 8 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000000000=0 \leftarrow$
$000001000=8$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 8 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 8 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000101=5$
$000000011=3 \leftarrow$
$000000010=2$
$000000001=1$
plus 9 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000010=2 \\
& 000000011=3 \\
& 000000010=2 \\
& 000000001=1
\end{aligned}
$$

plus 10 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000010=2 \\
& 000000001=1 \leftarrow \\
& 000000010=2 \\
& 000000001=1
\end{aligned}
$$

plus 11 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000001=1 \\
& 000000010=2 \\
& 000000001=1
\end{aligned}
$$

plus 11 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000001=1 \\
& 000000001=1 \leftarrow \\
& 000000001=1
\end{aligned}
$$

plus 12 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000001=1 \\
& 000000001=1
\end{aligned}
$$

plus 12 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000001=1
\end{aligned}
$$

plus 12 additions.

Inspiration: 1989 Bos-Coster.
$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 x, 16 x$, $300 x, 146 x, 77 x, 2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
plus 12 additions.
Final addition chain: $1,2,3,5,8$, $16,32,37,69,77,146,154,300$.

Short, no temporary storage, low two-operand complexity, etc.
tion: 1989 Bos-Coster.
$000=32$
$000=16$
$100=300$
$1010=146$
$101=77$
$010=2$
$001=1$
Compute $32 x, 16 x$, $146 x, 77 x, 2 x, 1 x$.

Reduce largest row:

$$
\begin{aligned}
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \leftarrow
\end{aligned}
$$

plus 12 additions.
Final addition chain: $1,2,3,5,8$, $16,32,37,69,77,146,154,300$.

Short, no temporary storage, low two-operand complexity, etc.

Can im $\bmod -2$ of the In redu Why u: the ren Why n Out of Why d Why n or buil

Can re
comprc
I'm cor

Bos-Coster.
$32 x, 16 x$,
$2 x, 1 x$.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
plus 12 additions.
Final addition chain: $1,2,3,5,8$, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity, etc.

Can imagine mar mod-2 adaptatio of the Bos-Coste

In reducing large Why use largest the remaining ro Why not minimi

Out of first-bit-s
Why do largest r
Why not start in or build Hammin

Can reduce xors compromising re I'm continuing tc

$$
\begin{aligned}
& \text { Reduce largest row: } \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \\
& 000000000=0 \leftarrow
\end{aligned}
$$

plus 12 additions.
Final addition chain: 1, 2, 3, 5, 8, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity, etc.

Can imagine many other mod-2 adaptations of the Bos-Coster idea.

In reducing largest row:
Why use largest of
the remaining rows?
Why not minimize xor?
Out of first-bit-set rows: Why do largest row first? Why not start in middle, or build Hamming tree?

Can reduce xors without compromising regs etc.
I'm continuing to experime

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
plus 12 additions.
Final addition chain: $1,2,3,5,8$, 16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage, low two-operand complexity, etc.

Can imagine many other mod-2 adaptations
of the Bos-Coster idea.
In reducing largest row:
Why use largest of
the remaining rows?
Why not minimize xor?
Out of first-bit-set rows:
Why do largest row first?
Why not start in middle, or build Hamming tree?

Can reduce xors without compromising regs etc.
I'm continuing to experiment.

