Montgomery Modular Multiplication Algorithm for Multi-Core Systems

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede

Katholieke Universiteit Leuven, ESAT/SCD-COSIC,
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee, Belgium

June 12, 2007
Montgomery Modular Multiplication Algorithm for Multi-Core Systems

1. Outline
 - Outline

2. Introduction
 - Montgomery Modular Multiplication Algorithm
 - Implementation Considerations

3. Design Platform
 - Multi-Core Systems
 - A Prototype Processor
 - Instruction Set Architecture

4. Instruction Scheduling Methods
 - Data Dependency
 - Scheduling Method-I
 - Scheduling Method-II
 - Performance Comparison

5. Implementation Results
 - Scalability
 - Performance Comparison

6. Future Work
What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer $x, y \in \mathbb{Z}_M$, $R = 2^n$

$Mont(x, y) = x \cdot y \cdot R^{-1} \mod M$
1 What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer $x, y \in \mathbb{Z}_M$, $R = 2^n$

$$
Mont(x, y) = x \cdot y \cdot R^{-1} \mod M
$$

2 Why Use Montgomery Modular Multiplication Algorithm?

Use Normal Multiplication

$$Z = A \cdot B \mod M$$

1. $C = A \cdot B$
2. $Z = C - \left\lfloor \frac{C}{M} \right\rfloor \cdot M$

Use MMM

$$Z = A \cdot B \mod M$$

1. $A' = Mont(A, R^2) = A \cdot R \mod M$
2. $Z = Mont(A', B) = A \cdot B \mod M$
1. What is Montgomery Modular Multiplication (MMM) Algorithm?

The Montgomery Multiplication Algorithm

Given n-bit modulo M, integer $x, y \in \mathbb{Z}_M$, $R = 2^n$

$$\text{Mont}(x, y) = x \cdot y \cdot R^{-1} \mod M$$

2. Why Use Montgomery Modular Multiplication Algorithm?

Use Normal Multiplication

$$Z = A \cdot B \mod M$$

1. $C = A \cdot B$

2. $Z = C - \lfloor \frac{C}{M} \rfloor \cdot M$

Use MMM

$$Z = A \cdot B \mod M$$

1. $A' = \text{Mont}(A, R^2) = A \cdot R \mod M$

2. $Z = \text{Mont}(A', B) = A \cdot B \mod M$

3. Widely used in RSA, ECC, Diffie-Hellman...
Radix-2^w Montgomery Modular Multiplication Algorithm

Input: integers $M = (M_{s-1}, \ldots, M_0)_r$, $X = (X_{s-1}, \ldots, X_0)_r$, $Y = (Y_{s-1}, \ldots, Y_0)_r$, where $0 \leq X, Y < M$, $r = 2^w$, $s = \lceil \frac{n}{w} \rceil$, $R = r^s$ with $gcd(M, r) = 1$ and $M' = -M^{-1} \mod r$.

Output: $X \cdot Y \cdot R^{-1} \mod M$

```
Z = (Z_{s-1}, \ldots, Z_0)_r \leftarrow 0
for i = 0 to s - 1 do
    T \leftarrow (Z_0 + X_0 \cdot Y_i) \cdot M' \mod r
    Z \leftarrow (Z + X \cdot Y_i + M \cdot T) / r
end for
if Z > M then
    Z \leftarrow Z - M
end if
return Z
```
Hardware Implementations

1. Fast, Power efficient
 1. special data-path
 2. multiple processing elements (PE)
2. expensive, fixed functions
 1. Cost extra hardware
 2. Hard to update

Software Implementations

1. Cheap, flexible
 1. Sharing CPU with other applications
 2. Easy to modify
2. Slow
 1. General purpose data-path
 2. Normally single core
Hardware Implementations
1 Fast, Power efficient
 1 special data-path
 2 multiple processing elements (PE)
2 expensive, fixed functions
 1 Cost extra hardware
 2 Hard to update

Software Implementations
1 Cheap, flexible
 1 Sharing CPU with other applications
 2 Easy to modify
2 Slow
 1 General purpose data-path
 2 Normally single core

The question is:
How about using multi-core systems?
In the real world, a multi-core system can be

1. A processor with multiple cores: shared cache
2. A system with multiple processors: shared memory
Our prototype processor

1. Very Long Instruction Set (VLIW)
2. Shared single-port data memory
Opecode

<table>
<thead>
<tr>
<th>Opecode</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nop</td>
<td></td>
<td></td>
<td></td>
<td>No operation</td>
</tr>
<tr>
<td>Load</td>
<td>Ri</td>
<td>#Addr</td>
<td></td>
<td>Load the data from location Addr of the data memory into register Ri</td>
</tr>
<tr>
<td>Store</td>
<td>Ri</td>
<td>#Addr</td>
<td></td>
<td>Store the data of register Ri to location Addr or the data memory</td>
</tr>
<tr>
<td>Mul</td>
<td>Ri</td>
<td>Rj</td>
<td>Rk</td>
<td>R(i+1),Ri = Rj \cdot Rk</td>
</tr>
<tr>
<td>Add</td>
<td>Ri</td>
<td>Rj</td>
<td>Rk</td>
<td>Ca,Ri = Rj + Rk, Ca is the carry out and is stored in the status register</td>
</tr>
<tr>
<td>Adc</td>
<td>Ri</td>
<td>Rj</td>
<td>Rk</td>
<td>Ca,Ri = Rj + Rk + Ca</td>
</tr>
<tr>
<td>Sub</td>
<td>Ri</td>
<td>Rj</td>
<td>Rk</td>
<td>Ri = Rj - Rk</td>
</tr>
</tbody>
</table>
The question is:

How to map the Montgomery Modular Multiplication to this platform?
Data dependency in one loop

\[
\text{for } i = 0 \text{ to } s - 1 \text{ do} \\
T \leftarrow (Z_0 + X_0 \cdot Y_i) \cdot M' \mod r \\
Z \leftarrow (Z + X \cdot Y_i + M \cdot T) / r \\
\text{end for}
\]
Basic considerations

1. Number of **Mul** and **Add** are almost constant
2. Data transfers are expensive
3. Carry should be used in the local core

We propose

1. Instruction scheduling method-I: Each core performs one iteration
2. Instruction scheduling method-II: Multiple cores perform one iteration
Montgomery Modular Multiplication Algorithm for Multi-Core Systems

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede
1. Carry is always used in the local core
2. Data transfers cause a heavy overhead
 1. Suppose Z has s words, one multiplication requires $s(s - 1)$ data transfers
 2. For example, when performing 256-bit MMM, 240 data transfers are needed
3. X_{s-1}, \ldots, X_0 and M_{s-1}, \ldots, M_0 are loaded to each core in each iteration
Data Dependency
Scheduling Method-I
Scheduling Method-II
Performance Comparison

Junfeng Fan, Kazuo Sakiyama and Ingrid Verbauwhede
Montgomery Modular Multiplication Algorithm for Multi-Core
1. Carry is always used in the local core
2. Less data transfers are required
 1. Suppose Z has s words and a p-core system is used, one multiplication requires $3ps - 2s$ data transfers
 2. For example, when performing 256-bit MMM on a 4-core system, 96 data transfers are needed
3. Only $\lceil \frac{s}{p} \rceil$ words of X_{s-1}, \ldots, X_0 and M_{s-1}, \ldots, M_0 are loaded to each core in each iteration
Compared to the method-I, the method-II has two major advantages.

1. Operands and intermediate data are distributed in the register file of each core, thus less registers are required in each core.

2. Less data transfers reduce memory accesses, as a result, a single-port data memory can support more cores before becoming the bottleneck.
Table: Number of memory accesses required for one Montgomery multiplication for various Register File size (S_{rf}).

<table>
<thead>
<tr>
<th>Processor type</th>
<th>S_{rf}</th>
<th>$N_{load-opr}$</th>
<th>$N_{load-tr}$</th>
<th>$N_{store-tr}$</th>
<th>N_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{rf} > 3s$</td>
<td>$S_{rf} > 3s$</td>
<td>$3s$</td>
<td>0</td>
<td>0</td>
<td>$3s$</td>
</tr>
<tr>
<td>$2s < S_{rf} \leq 3s$</td>
<td>$2s^2 + s$</td>
<td>$s^2 + 2s$</td>
<td>0</td>
<td>0</td>
<td>$s^2 + 2s$</td>
</tr>
<tr>
<td>$s < S_{rf} \leq 2s$</td>
<td>$2s^2 + s$</td>
<td>0</td>
<td>0</td>
<td>$2s^2 + s$</td>
<td></td>
</tr>
<tr>
<td>$S_{rf} \leq s$</td>
<td>$2s^2 + s$</td>
<td>$s(s - 1) \ast$</td>
<td>$s^2 \ast$</td>
<td>$4s^2$</td>
<td></td>
</tr>
<tr>
<td>Multi-core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{rf} > 2s$</td>
<td>$2ps + s$</td>
<td>$s(s - 1)$</td>
<td>s^2</td>
<td>$2s^2 + 2ps$</td>
<td></td>
</tr>
<tr>
<td>$s < S_{rf} \leq 2s$</td>
<td>$s^2 + ps + s$</td>
<td>$s(s - 1)$</td>
<td>s^2</td>
<td>$3s^2 + ps$</td>
<td></td>
</tr>
<tr>
<td>$S_{rf} \leq s$</td>
<td>$2s^2 + s$</td>
<td>$s(s - 1)$</td>
<td>s^2</td>
<td>$4s^2$</td>
<td></td>
</tr>
<tr>
<td>Multi-core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_{rf} > \frac{3s}{p}$</td>
<td>$2s + ps$</td>
<td>$2(p - 1)s$</td>
<td>ps</td>
<td>$5ps$</td>
<td></td>
</tr>
<tr>
<td>$\frac{2s}{p} < S_{rf} \leq \frac{3s}{p}$</td>
<td>$s^2 + ps + s$</td>
<td>$2(p - 1)s$</td>
<td>ps</td>
<td>$s^2 + 4ps - s$</td>
<td></td>
</tr>
<tr>
<td>$\frac{s}{p} < S_{rf} \leq \frac{2s}{p}$</td>
<td>$2s^2 + ps$</td>
<td>$2(p - 1)s$</td>
<td>ps</td>
<td>$2s^2 + 4ps - 2s$</td>
<td></td>
</tr>
<tr>
<td>$S_{rf} \leq \frac{s}{p}$</td>
<td>$2s^2 + s$</td>
<td>$s^2 + (2p - 3)s \ast$</td>
<td>$s^2 + s \ast$</td>
<td>$4s^2 + 2ps - s$</td>
<td></td>
</tr>
</tbody>
</table>

*Including store and load operations caused by calculating intermediate data.
Figure: Number of data memory accesses for various operand bit-length.
\((w = 16, S_{rf} = 16)\).
Figure: Performance of 256-bit Montgomery modular multiplication on a multi-core system. \((n = 256, w = 16, S_{rf} = 16)\).

The performance of 256-bit MMM can be improved by a factor of 1.87 and 3.68 when using 2-core and 4-core systems, respectively. [Method-II]
Table: Performance comparison of modular multiplication.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Platform</th>
<th>Area (Slices)</th>
<th>Freq. (MHz)</th>
<th>256-bit time (μs)</th>
<th>1024-bit time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>4-cores/4 16x16 mults</td>
<td>Xilinx</td>
<td>2029</td>
<td>125</td>
<td>6.8</td>
<td>131.0</td>
</tr>
<tr>
<td>(method-I)</td>
<td>4-cores/4 32x32 mults</td>
<td>XC2VP30</td>
<td>3173</td>
<td>93</td>
<td>2.6</td>
<td>44.0</td>
</tr>
<tr>
<td>This work</td>
<td>4-cores/4 16x16 mults</td>
<td>Xilinx</td>
<td>2029</td>
<td>125</td>
<td>5.5</td>
<td>134.7</td>
</tr>
<tr>
<td>(method-II)</td>
<td>4-cores/4 32x32 mults</td>
<td>XC2VP30</td>
<td>3173</td>
<td>93</td>
<td>2.2</td>
<td>33.0</td>
</tr>
<tr>
<td>Tenca et al.</td>
<td>Software</td>
<td>ARM</td>
<td>-</td>
<td>80</td>
<td>43</td>
<td>570</td>
</tr>
<tr>
<td>Itoh et al.</td>
<td>Software</td>
<td>DSP(TMS320C6201)</td>
<td>-</td>
<td>200</td>
<td>2.68‡</td>
<td>-</td>
</tr>
<tr>
<td>Brown et al.</td>
<td>Software</td>
<td>Pentium II</td>
<td>-</td>
<td>400</td>
<td>1.57§</td>
<td>-</td>
</tr>
<tr>
<td>Kelley et al.</td>
<td>4-PEs/8 16x16 mults</td>
<td>XC2V2000</td>
<td>360*</td>
<td>135</td>
<td>0.68</td>
<td>8.3</td>
</tr>
<tr>
<td>Mentens</td>
<td>130 16x16 mults</td>
<td>XC2VP30</td>
<td>7244</td>
<td>64</td>
<td>0.31</td>
<td>1.07</td>
</tr>
</tbody>
</table>

* Author’s estimation from the original paper.
‡ 239-bit Montgomery modular multiplication.
§ Using fixed modulo for fast reduction.
1. Hardware implementations
 1. Use specific data-path
 2. Use specific Register Files

2. Software implementations
 1. VLIW DSP
 2. Intel quad-core processors
Thanks!