

Performance Analysis of Contemporary Lightweight Block Ciphers on 8-bit Microcontrollers

Sören Rinne, Thomas Eisenbarth, and Christof Paar

Horst Görtz Institute for IT Security

Ruhr-Universität Bochum, Germany

Overview

- 1. Motivation
 - Embedded Systems
 - Our Platform
- 2. Implemented Ciphers
 - Overview of Ciphers
 - Implementation Criteria
- 3. Results and Comparison
 - Code Size
 - Throughput

What are Embedded Systems?

Embedded System

- "Processor hidden in a product", or
- "A computer that doesn't look like a computer"
- Single purpose device
- Interacts with the world

Is this really important?

Lightweight Ciphers

Motivation:

- Ubiquitous computing evolves
- New lightweight ciphers are being proposed

Main Question:

Are lightweight ciphers able to outperform the AES on constrained devices?

Chosen Platform 8-bit Microcontroller

8-bit Atmel AVR processor:

- e.g. ATmega family:
- ~130 instructions, most of them single cycle (RISC architecture)
- 32 general purpose registers of 8 bit size
- 8 128 kBytes of program memory (FLASH)
- 1 4 kBytes of volatile memory (SRAM)
- several Power Savings modes

Overview

- 1. Motivation
 - Embedded Systems
 - Our Platform
- 2. Implemented Ciphers
 - Overview of Ciphers
 - Implementation Criteria
- 3. Results and Comparison
 - Code Size
 - Throughput

Discussed Ciphers

Cipher	Cipher remark	Presented at
DES(X)	DESX: key whitening	FIPS 46 1976
(X)TEA	Arithmetic operations only	FSE 1994
AES	DES successor	FIPS 197 1997
SEA	Parametric in text, key and processor size	ECRYPT Workshop 2005
HIGHT	8-bit oriented, high throughput	CHES 2006
DES-L	Single S-Box design	FSE 2007
PRESENT	Small outline SPN	CHES 2007

Cipher	DES	DESX	TEA	XTEA	AES	SEA	HIGHT	DES-L	PRESENT
Block length	64	64	64	64	128	96	64	64	64
Key length	56	184	128	128	128	96	128	56	80
Rounds	16	16	32	32	10	141	32	16	32

PRESENT

Fig. 1. . The S/P network for present.

Hard facts:

- 64 Bit block length
- 80 Bit key length
- 32 rounds

Performed operations:

- XOR with key
- 4x4 bit S-Box
- Bit permutation

Designed for hardware implementation

Major design goal of embedded devices : Low Costs

Security:

Lightweight Crypto

Performance:

Small Payloads

Response Time

Cost:

Device Cost

Overall System Cost

Implementation Step

Performance:

Response time and availability

Device cost:

small code size \rightarrow cheaper device

System cost:

wireless devices \rightarrow power consumption

Execution time is cost in energy storage!!!

We focus on cost: code size-performance trade off

Overview

- 1. Motivation
 - Embedded Systems
 - Our Platform
- 2. Implemented Ciphers
 - Overview of Ciphers
 - Implementation Criteria
- 3. Results and Comparison
 - Code Size
 - Throughput

Results -Our Implementations

Ciphers implemented in Assembly language

- reduces code size
- yields higher performance

Keep code size small wherever performance is not reduced too much.

- Keep all states in registers
- on the fly key scheduling (no SRAM usage)
- only small LUTs (8-bit S-boxes) that give a good performance code-size tradeoff
- no macros (no loop unrolling)

Results – **Code Size**

Results – Throughput

Results – Throughput- Code Size Ratio

Horst-Görtz In

für IT Sicherheit

Concluding Remarks

Generally AES seems to be the best allround choice.

For small code size (X)TEA and even PRESENT seem to be a decent choice

Results will be put on the web, together with other implementations for the focused platform:

www.lightweightcrypto.org

Thanks for your attention!

eisenbarth@crypto.rub.de

11.06.2007

SPEED Workshop, Amsterdam